МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»
Институт машиностроения

Кафедра «Оборудование и технологии машиностроительного производства»

Направление 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств»
Профиль «Технология машиностроения»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему	у <u>Разработка</u>	технологического	процесса	изготовления	вала-	
шестерн	и редуктора на	<u>icoca</u>	_			
	1 1 0 1					
Студент	с(ка)	Пестов Д.Н.				
		(И.О. Фамилия)		(личная подг	ись)	
Руковод	итель	Логинов Н.Ю				
	_	(И.О. Фамилия)		(личная подг	шсь)	
Консуль	танты	Горина Л.Н.				
		(И.О. Фамилия)	(И.О. Фамилия)			
		Зубкова Н.В.				
	_	(И.О. Фамилия)	_	(личная подг	іись)	
		Виткалов В.Г	•			
	_	(И.О. Фамилия)		(личная подг	іись)	
		Допустить к зап	щите			
И.о. зав	едующего кафе	дрой				
к.т.н, до				А.В. Бобро	вский	
, 	¬	(лична	н подпись)			
		,,		-	0016 =	

Тольятти 2016

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет» Институт машиностроения

Кафедра «Оборудование и технологии машиностроительного производства»

УТВЕРЖД А	ОIA	
И.о.	зав.	кафедрой
	А.В.Бобровский	
	«»	2016 r

ЗАДАНИЕ

на выполнение выпускной квалификационной работы (уровень бакалавра)

направление подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» профиль «Технология машиностроения»

Студент Гр. ТМбз-
<u>1132</u>
1. Тема Разработка технологического процесса изготовления вала-шестерни редуктора
насоса
2. Срок сдачи студентом законченной выпускной квалификационной работы «» 2016
г.
3. Исходные данные к выпускной квалификационной работе <u>материалы</u>
преддипломной практики, чертеж детали программа выпуска N_z =5000
дет./год
4. Содержание выпускной квалификационной работы (объем 40-60 с.)
Титульный лист.
Задание. Аннотация. Содержание.
Введение, цель работы
1) Описание исходных данных
2) Технологическая часть работы
3) Проектирование станочного приспособления
4) Проектирование режущего инструмента
5) Безопасность и экологичность технического объекта
6) Экономическая эффективность работы
Заключение. Список используемой литературы.

Приложения: технологическая документация

АННОТАЦИЯ

Выпускная квалификационная работа направлена на разработку технологического процесса изготовления вала-шестерни редуктора насоса. Выполнено оснащение техпроцесса современными технологическими средствами.

В работе спроектировано усовершенствованное приспособление для шпоночно-фрезерной операции. Разработана конструкция зуборезной головки. Техпроцесс сопровождается технологической документацией.

Работа состоит из страниц расчетно-пояснительной записки. Графическая часть работы составляет 7 листов формата A1.

СОДЕРЖАНИЕ

	Стр
АННОТАЦИЯ	3
ВВЕДЕНИЕ, ЦЕЛЬ РАБОТЫ	6
1 ОПИСАНИЕ ИСХОДНЫХ ДАННЫХ	7
1.1 Назначение и условия работы детали	7
1.2 Систематизация поверхностей детали	7
1.3 Анализ требований к поверхностям детали	8
1.4 Формулировка задач работы	10
2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ РАБОТЫ	11
2.1 Определение типа производства	11
2.2 Выбор стратегии разработки техпроцесса	11
2.3 Выбор метода получения заготовки	12
2.4 Расчет припусков	19
2.5 Выбор методов обработки поверхностей	23
2.6 Разработка технологического маршрута и плана обработки	
детали	24
2.8 Расчет режимов резания	27
2.9 Нормирование технологического процесса	52
3 ПРОЕКТИРОВАНИЕ СТАНОЧНОГО ПРИСПОСОБЛЕНИЯ	65
3.1 Описание устройства приспособления для шпоночно-	
фрезерной операции	65
3.2 Расчет силы вдавливания рифленого центра в деталь	65
4 ПРОЕКТИРОВАНИЕ РЕЖУЩЕГО ИНСТРУМЕНТА	68
4.1 Расчет режущей части	69
4.2 Выбор хвостовой части	70
5 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО	71
ОБЪЕКТА	
6 ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ РАБОТЫ	
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЯ	

ВВЕДЕНИЕ, ЦЕЛЬ РАБОТЫ

Свовкупность методов и приемов изготовления машин, выработанных в течение длинельного времени и используемых в определенной области производства, составляет технологию этой области. В связи с этим возникли понятия: технология литья, технология обработки давлением, технология сварки, технология механической обработки, технология сборки машин. Все эти области производства относятся к технологии машиностроения, охватывающие все этапы процесса изготовления машиностроительной продукции.

Однако под «технологией машиностроения» принято понимать научную дисциплину, изучающую преимущественно процессы механической обработки деталей и сборки машин и попутно затрагивающую вопросы выбора заготовок и методы их изготовления. Это объясняется тем, что в машиностроении заданные формы деталей с требуемой точностью и качеством их поверхностей достигаются в основной путем механической обработки, т.к. другие способы обработки не всегда могут обеспечить выполнение этих технических требований. В процессе механической обработки деталей машин возникает наибольшее число проблемных вопросов, связанных с выполнением технических требований, поставленных конструкторами перед производством. Процесс механической обработки связан с эксплуатацией сложного оборудования – металлорежущих станков; трудоемкость и себестоимость механической обработки больше, чем на других этапах процесса изготовления машин.

Целью данной работы является создание рационального техпроцесса, который обеспечивал бы при достижении заданного качества минимальную себестоимость изготовления вала-шестерни редуктора насоса.

1 ОПИСАНИЕ ИСХОДНЫХ ДАННЫХ

1.1 Служебное назначение детали.

Вал-шестерню используют для передачи крутящего момента. Вал установлен в корпусе редуктора, в качестве опор используются шейки валов, на которые устанавливаются подшипники. Шейки валов имеют высокую точность. Крутящий момент передается посредством зубчатого колеса, закрепленного на валу с помощью шпоночных пазов и шпонок.

1.2 Систематизация поверхностей детали.

Систематизируем поверхности детали, согласно её назначения, и выделим из них исполнительные поверхности, основные конструкторские базы, вспомогательные конструкторские базы, а оставшиеся поверхности будут свободными.

Итоги систематизации сведем в таблицу 1.1.

Таблица 1.1 - Систематизация поверхностей детали

Наименование поверхности	Номер поверхности
Основная конструкторская база (ОКБ)	7, 9, 6
Вспомогательная конструкторская база (ВКБ)	11, 12, 14, 16
Исполнительная поверхность (ИП)	3, 14, 18
Свободная поверхность	1, 2, 3, 4, 5, 8, 10, 13, 15, 17, 19, 20

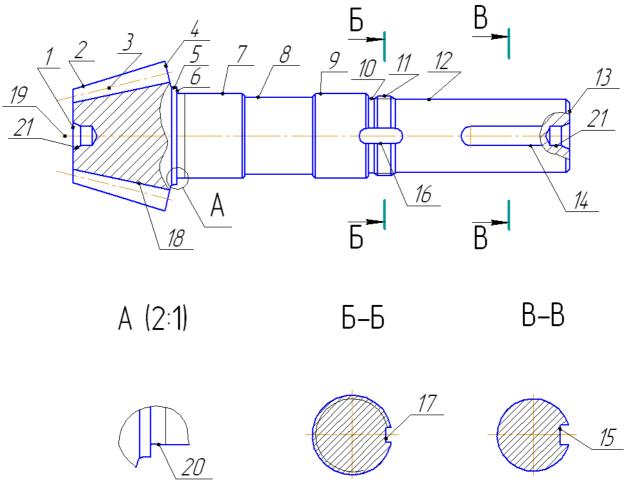


Рис. 1.1. Систематизация поверхностей детали

Функциональным назначением данной детали является передача крутящего момента от шпоночного паза зубчатому венцу. Таким образом, исполнительными (рабочими) поверхностями данной детали являются шпоночный паз (поз. 14) и боковые поверхности зубчатого венца (поз. 3, 18). Основными конструкторскими базами, определяющими положение валашестерни в редукторе, являются шейки Ø 35m6 (поз. 6, 7 и 9). Вспомогательными конструкторскими базами, определяющими положение присоединяемых деталей, являются поверхности 11, 12, 14, 16.

1.3 Анализ требований к поверхностям детали.

Одними из причин отказов работы деталей является износ, коррозия, изменение остаточных напряжений, приводящие к потере геометрической формы детали, а также усталостные разрушения в материале, и, как следствие,

поломка механизма в целом. Поэтому при изготовлении детали меобходимо учитывать механические, физические, химические свойства материала детали.

В качестве материала для изготовления вала принимаем сталь 40X ГОСТ 4543-71. Она является конструкционной легированной. Содержание хрома в ней составляет 0,8-1,1%, поэтому сталь хромистая. [1]

Таблица 1.2 - Химический состав в % материала 40Х

Углерод	Кремний	Марганец	Хром
0,36-0,44	0,17-0,37	0,5-0,8	0,8-1,1

Таблица 1.3 - Физико-механические свойства

Термообработка			Предел	Времен-	Отно-	Отно-	Ударная	Число	
Закал	тка	От	Отпуск		ное	ситель	ситель	вязкость	твер-
Темпера-	Среда	Темпе-	Среда	ти σ _т ,	сопро-	ное	ное	KCU,	дости,
тура	охлаж-	ратура,	охлаж-	H/mm^2	тивление	удлине	сужен	Дж/см ²	НВ, не
закалки	дения	°C	дения		$\sigma_{\rm b}$, H/mm ²	ние δ _у ,	ие Ѱ,		более
или						%	%		
нормали-				не менее					
зации, °С									
·			Вода						
860	масло	500	или	785	980	10	45	59	217
			масло						

Согласно данным таблиц 1.2 и 1.3 свойства стали 40Х ГОСТ 4543-71 по характеристикам соответствуют необходимым требованиям нашей детали.

Заготовку для детали можно получить прокатом или штамповкой на горизонтальном кривошипном прессе. И в том, и в другом случае форма заготовки получится достаточно простая.

Условиями работы детали продиктованы требования по шероховатости и точности поверхностей. Снижение точности поверхностей приведет к снижению позиционирования детали в узле и снижению надежности узла в целом.

Конструкцией детали предусмотрены технологические канавки для выхода резца и шлифовального круга.

Конструкция детали позволяет свободно обрабатывать механическим способом и измерять любую поверхность. Это позволяет применять в основном универсальный, а реже специализированный инструмент.

Таким образом, проанализировав требования, предъявляемые к поверхностям детали, можно сделать вывод о достаточной ее технологичности.

1.4 Формулировка задач работы.

Формулируем задачи, которые необходимо решить для достижения цели:

- 1. Определить тип производства и выбрать стратегию разработки ТП.
- 2. Выбрать оптимальный метод получения заготовки и маршруты обработки поверхностей.
- 3. Разработать технологический маршрут и схемы базирования заготовки.
- 4. Выбрать оборудование, приспособления, режущий инструмент, средства контроля.
 - 5. Рассчитать припуски на обработку и спроектировать заготовку.
- 6. Определить содержание операций, рассчитать режимы резания и время на обработку.
- 7. Разработать технологическую документацию и графические материалы.

2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ РАБОТЫ

2.1 Определение типа производства.

Для предварительного определения типа производства воспользуемся таблицей. [2]

Таблица 2.1 – Определение типа производства

Macca	Тип производства								
детали, кг	Единичное	Мелкосерийное	Среднесерийное	Крупносерийно е	Массовое				
до 10	до 100	100-500	500-5000	5000-50000	св. 50000				
10-100	до 10	10-200	200-500	500-5000	св. 5000				
более 100	до 5	5-100	100-300	300-1000	св. 1000				

Масса детали — 1,2 кг. Годовая программа выпуска изделия — 5000 шт. Тип производства — среднесерийное.

В зависимости от типа производства определяем его характеристики, т.е. принципиальный подход к определению его составляющих.

2.2 Выбор стратегии разработки технологического процесса.

Серийное производство специализируется на изготовлении ограниченной номенклатуры изделий сравнительно небольшими объёмами и повторяющимися через определенное время партиями (сериями). [3]

Для среднесерийного производства характерно, что выпуск изделий производится довольно крупными сериями ограниченной номенклатуры; серии повторяются с известной регулярностью по периоду запуска и числу изделий в партии; годичная номенклатура все же шире, чем номенклатура выпуска в каждом месяце. За рабочими местами закреплена более узкая номенклатура операций: $K_{cn} = 10 - 20$ операций ($K_{cep} = 20$; $K_{M} < 1$). Заводы имеют развитую производственную структуру, заготовительные цеха

специализируются по технологическому принципу, а в механосборочных цехах создаются предметно-замкнутые участки.

Таблица 2.2 – Характеристики серийного производства

Характеристики оборудования	Универсальное и
	специализированное
	(модернизированное)
Характеристики приспособлений	Универсальные,
	нормализованные, специальные
Тип режущих инструментов	Стандартные, нормализованные,
	специальные
Средства контроля	Универсальные,
	модернизированные

Для серийного производства характерна групповая форма организации техпроцессов. Рассчитаем размер партии для выпуска:

$$n = \frac{N \times a}{254},\tag{2.1}$$

где а=24 – периодичность;

N = 5000 - годовая программа.

$$n = \frac{5000 \times 24}{254} = 473 \mu m.$$

2.3 Выбор метода получения заготовки.

Штамповочное оборудование – горизонтально-ковочная машина.

Материал заготовки – Сталь 40Х ГОСТ 4543-71.

Масса детали – 1,2 кг.

По ГОСТ 7505-89 определяем:

- класс точности Т4;
- группа стали M2;
- степень сложности С2;
- поверхность разъема штампа Π (плоская);
- исходный индекс 11;
- радиус закругления наружных углов не более 2,5 мм;

- штамповочный уклон 5°;
- наклон среза 5°.

Определяем основные припуски по ГОСТ 7505 – 89 [4] и заносим в табл. 2.3.

Таблица 2.3 – Основные припуски

Размер, мм	Шероховатость	Припуск, мм
Ø61,66	Ra 5	1,6
Ø40	Ra 10	1,6
Ø35	Ra 0,63	1,6
43	Ra 10	1,7
43	Ra 1,25	1,9
205	Ra 10	1,8
5,21	Ra 10	1,5
2,3	Ra 10	1,5

Определяем размеры поковки.

$$\emptyset$$
 61,66+1,6×2= \emptyset 64,86 mm.

$$\emptyset$$
 40+1,6×2= \emptyset 43,2 mm.

$$\emptyset$$
 35+1,6×2= \emptyset 38,2 mm.

$$5,21+1,5=6,71$$
 mm.

$$2,3+1,5=3,8$$
 mm.

Определяем допускаемые отклонения размеров:

Ø 64,86
$$^{+1,3}_{-0,7}$$
;

Ø 43,2
$$^{+1,3}_{-0,7}$$
;

Ø 38,2
$$^{+1,1}_{-0,5}$$
;

$$46,6^{+1,3}_{-0,7}$$
;

$$208,5_{-0,9}^{+1,6};$$

$$6,71^{+1,1}_{-0,5};$$

Для определения объема заготовки условно разбиваем фигуру на отдельные простые элементы. Определяем их объем по отдельности.

$$V_{3ar} = V_1 + V_2 + V_3 + V_4$$

где $V_{1,2,3,4}$ – объемы отдельных простых элементов, см³;

$$V_{1,2}=1/3\pi H(R_1^2+2R_1R_2+R_2^2)$$

где R_1 и R_2 – радиусы усеченного конуса, мм;

Н – высота усеченного конуса, мм.

$$V_1 = 1/3 \times 3,14 \times 40,09 \times (20,05^2 + 2 \times 20,05 \times 33,08 + 33,08^2) = 83262,53 \text{mm}^3 = 83,26 \text{cm}^3$$

$$V_2 = 1/3 \times 3.14 \times 2,91 \times (22,25^2 + 2 \times 22,25 \times 33,08 + 33,08^2) = 7131,19 \text{ MM}^3 = 7,13 \text{ cm}^3$$

$$V_{3.4} = \pi R^2 H$$
,

где R – радиус цилиндра, мм;

Н – высота цилиндра, мм.

$$V_3$$
=3,14×22,25²×4,9=6023,03 MM^3 = 6,02 CM^3

$$V_4$$
=3,14×19,65²×162,2=136655,28 mm³= 136,66 cm³

$$V_{3ar} = 83,26+7,13+6,02+136,66=233,07cm^2$$

Масса штампованной заготовки

$$G_{3,III} = \gamma \times V_{3az}$$
,

где ү – плотность стали, кг; ү $\approx 0,00785$ кг.

$$G_{3,III} = 0.00785 \times 233.07 = 1.73 \kappa c$$

Принимая неизбежные технологические потери при горячей объемной штамповке равными 10%, определим расход материала на одну деталь:

$$G_{3.II} = G_{3.III.}(100+10)/100.$$

$$G_{3.\Pi} = 1,73 \times 1,1 = 1,9 \kappa e.$$

Коэффициент использования материала

где $G_{\text{Д}}$ – масса детали.

$$K_{_{U,M}} = 1,2/1,9 = 0,63$$

Определяем технологическую себестоимость изготовления детали

$$C_{\scriptscriptstyle T} = C_{\scriptscriptstyle 3A\Gamma} \cdot Q + C_{\scriptscriptstyle MEX} \left(Q - q \right) - C_{\scriptscriptstyle OTX} \left(Q - q \right)$$
 , [5]

где $C_{3A\Gamma}$ - стоимость одного кг заготовки, руб./кг;

 C_{MEX} - стоимость механической обработки, отнесенная к одному кг срезаемой стружки, руб./кг;

 C_{OTX} - цена одного кг отходов, руб./кг; $C_{OTX}=1,4$ руб./кг;

Q – масса заготовки, кг;

q – масса детали, кг.

Затраты на механическую обработку, отнесенные на один кг стружки, определяем по формуле:

$$C_{\text{\tiny MEX}} = C_{\text{\tiny C}} + E_{\text{\tiny H}} \cdot C_{\text{\tiny K}}$$

где C_c - текущие затраты на один кг стружки, руб./кг; C_c = 4,95 руб./кг;

 C_{κ} - капитальные затраты на один кг. стружки, руб./кг; C_{κ} = 10,85 руб./кг;

 E_{H} - нормативный коэффициент эффективности капитальных вложений; E_{H} =0,1.

$$C_{\text{MEX}} = 4,95 + 0,1 \cdot 10,85 = 6,035 \, py 6$$
 / кг.

Стоимость горячештампованых заготовок, полученных на ГКМ, можно определить по формуле:

$$C_{\scriptscriptstyle 3A\Gamma} = C_{\scriptscriptstyle I\!I\!I\!I} \cdot h_{\scriptscriptstyle T} \cdot h_{\scriptscriptstyle C} \cdot h_{\scriptscriptstyle B} \cdot h_{\scriptscriptstyle M} \cdot h_{\scriptscriptstyle \Pi} \,, \, [6]$$

где $C_{\it ШT}$ - базовая стоимость одного кг штампованых заготовок, руб.; $C_{\it ШT}$ = 29,96 руб.

 h_T , h_C , h_B , h_M , h_Π - коэффициенты, зависящие от класса точности, массы, группы сложности, марки материала и объема производства заготовок; $h_T=0.9$; $h_M=1$; $h_C=0.77$; $h_B=1$; $h_\Pi=1$.

$$C_{3A\Gamma} = 29,96 \cdot 0,9 \cdot 1 \cdot 0,77 \cdot 1 \cdot 1 = 20,76 \, py 6.$$

$$C_T = 20,76 \cdot 1,73 + 6,035(1,73 - 1,2) - 1,4(1,73 - 1,2) = 38,23 py 6.$$

Рассчитаем получение заготовки методом проката.

Согласно точности и шероховатости поверхностей обрабатываемой детали определяем промежуточные припуски. За основу расчета промежуточных припусков принимаем диаметр детали ø61,66(-0,06) мм.

Устанавливаем предварительный маршрутный технологический процесс обработки поверхности детали ø61,66(-0,06) мм.

010. Токарная черновая.

015. Токарная чистовая.

030. TO.

Припуск на подрезание торцовых поверхностей – 2мм.

При черновом точении припуск на обработку составляет 4,5 мм, а при чистовом – 1,5мм.

Определяем промежуточные размеры обрабатываемой поверхности согласно маршрутному технологическому процессу:

на токарную операцию 015

$$D^{P.015} = D^H + 2z^{010}$$

$$D^{P.015} = 61,66 + 1,5 = 63,16 \text{ MM};$$

на токарную операцию 010

$$D^{P.010} = D^{P.010} + 2z^{005}$$

$$D^{P.010} = 63,16 + 4,5 = 67,66 \text{ MM}.$$

Получаем расчетный размер заготовки 67,66 мм.

По расчетным данным заготовки выбираем выбираем необходимый размер горячекатанного проката обычной точности по ГОСТ 2590-2006 [7]:

$$Ø68^{+0,5}_{-1,1}$$
 MM.

Общая длина заготовки

$$L^3 = L^{\mathcal{A}} + 2z^{\text{подр}},$$

где $L^{\rm I}$ – номинальная длина заготовки по рабочему чертежу, мм.

$$L^3 = 205 + 2 = 207$$
 MM.

Объем заготовки определяем по плюсовым допускам.

$$V_3 = \frac{\pi D_{3.\Pi}^2}{4} L_3,$$

где $D^{3.\Pi.}$ – диаметр заготовки по плюсовым допускам, см;

 L^3 – длина стержня (заготовки) по плюсовым допускам, см.

$$V_3 = \frac{3,14 \times 6,85^2}{4} \times 20,7 = 762,47$$
cm³

Массу заготовки определяем по формуле

$$G_3 = \gamma \times V_{3az}$$
,

где у — плотность стали, кг; у ≈ 0.00785 кг.

$$G_{3.III} = 0.00785 \times 762,47 = 5.99 \kappa c$$

Выбираем оптимальную длину проката для изготовления заготовки.

Потери на зажим заготовки $l^{\text{заж}}$ принимаем 80 мм.

Длину торцового обрезка проката определяем из соотношения

$$1^{\circ 6} = (0,3 \div 0,5)d,$$

где d – диаметр сечения заготовки, мм; d =68 мм.

$$1^{\text{of}} = 0.3 \times 68 = 20.4 \text{ mm}.$$

Число заготовок, исходя из принятой длины проката по стандартам, определяем по формуле:

$$x = \frac{L_{np} - l_{3ax} - l_{o6}}{L_{3} + l_{p}},$$

где L^{np} – длина выбранного проката, мм;

 l^p — ширина реза, мм; l^p = 5 мм.

Из проката длиною 4 м:

$$x_4 = \frac{4000 - 80 - 20,4}{207 + 5} = 18,39 \mu m.$$

Получаем 18 заготовок из данной длины проката.

Из проката длиною 6 мм:

$$x_6 = \frac{6000 - 80 - 20,4}{207 + 5} = 27,83 \mu m.$$

Получаем 27 заготовок из данной длины проката.

Остаток длины (некратность) определяется в зависимости от принятой длины проката.

$$L^{HK} = L^{np} - l^{o6} - l^{3ak} - (L^{3} x).$$

Из проката длиною 4м:

$$L^{HK4} = 4000 - 20,4 - 80 - (207 \times 18) = 173,6 \text{ mm}.$$

Определяем потери материала на некратность.

$$\Pi^{\text{HK}} = (L^{\text{HK}} \times 100)/L^{\text{np.}}$$

$$\Pi^{\text{HK4}}$$
=(173,6×100)/4000=4,34%

Из проката длиною 6м:

$$L^{HK4} = 6000 - 20,4 - 80 - (207 \times 27) = 310,6 \text{ MM}.$$

Определяем потери материала на некратность.

$$\Pi^{\text{HK6}}$$
=(310,6×100)/6000=5,18%

Из расчетов на некратность следует, что прокат длиною 4 м для изготовления заготовок более экономичен, чем прокат длиною 6 м.

Потери на зажим при отрезке по отношению к длине проката составят

$$\Pi^{\text{\tiny 3AЖ}} = (l^{\text{\tiny 3AЖ}} \times 100)/L^{\text{\tiny TIP.}}$$

$$\Pi^{\text{3aж}} = (80 \times 100)/4000 = 2\%.$$

Потери материала на длину торцевого обрезка проката в процентном отношении к длине проката составят

$$\Pi^{\text{of}} = (l^{\text{of}} \times 100)/L^{\text{np.}}$$

$$\Pi^{\text{3aж}} = (20,4 \times 100)/4000 = 0,51\%.$$

Общие потери к длине выбранного проката

$$\Pi^{\text{r.o.}} = \Pi^{\text{HK}} + \Pi^{\text{of}} + \Pi^{\text{3a}}.$$
 (3.2.12)

$$\Pi^{\text{n.o.}} = 4,34 + 0,51 + 2 = 6,85\%.$$

Расход материала на одну деталь с учетом всех технологических неизбежных потерь определяем по формуле

$$G^{3.\Pi.} = Q(100 + \Pi^{\Pi.0})/100$$

$$G^{3.\pi.} = 1,73(100 + 6,85)/100 = 1,85 \text{ kg}.$$

Коэффициент использования материала

$$K^{\text{и.м}} = q/G^{_{3.\Pi.}}$$
.

$$K^{\text{\tiny H.M}} = 1.2/1.85 = 0.61.$$

Определяем технологическую себестоимость изготовления детали.

Если деталь изготавливается из проката, то затраты на заготовку определяются исходя из стоимости проката, требующего на изготовление детали:

$$C_{3A\Gamma} = C_{\Pi P} \cdot h_{\phi}$$
,

где $C_{\mathit{\Pi P}}$ - цена одного кг материала заготовки, руб.; $C_{\mathit{\Pi P}}$ = 24,74 руб.

 h_{ϕ} - коэффициент, учитывающий форму заказа металлопроката; $h_{\phi}=1$.

$$C_{3A\Gamma} = 24,74 \cdot 1 = 24,74 \, \text{py} 6.$$

$$C_T = 24,74 \cdot 1,73 + 6,035(1,73 - 1,2) - 1,4(1,73 - 1,2) = 45,12 \, py 6.$$

Экономический эффект рассчитываем по формуле

$$\mathfrak{I} = (C^{T2} - C^{T1}) \times N,$$

где N – годовая программа выпуска, шт.

$$\Theta = (45,12-38,23) \times 5000 = 34450$$
 руб.

Таким образом, для получения заготовки выбираем метод штамповки на горизонтально-ковочных машинах, так как он обеспечивает меньшую себестоимость и имеет больший коэффициент использования материала.

2.4 Расчет припусков.

Определяем припуски на обработку самой точной поверхности расчетноаналитическим методом. Расчет припусков будем вести по диаметру под подшипники $35k6(^{+0,025}_{+0,009})$ мм. Технологический маршрут обработки данной поверхности состоит из: точения чернового, точения чистового, шлифования чернового, термообработки и шлифования чистового.

Основные формулы:

$$Z_i \min = a_{i-1} + \sqrt{\rho_{i-1}^2 + \varepsilon_i^2}$$
 [8]

$$Z_i \max = Z_i \min + 0.5(Td_{i-1} - Td_i)$$

где Z_imin и Z_imax – наименьший и наибольший припуск на i-ом переходе;

Td – допуск на размер;

$$a = Rz + h_g,$$

где Rz – шероховатость;

h_g – глубина дефектного слоя;

ho - суммарное значение пространственных отклонений для элементарной поверхности;

ε - погрешность установки заготовки в приспособлении.

Предельные размеры:

$$d_{(i-1)} \min = d_i \min + 2Z_i \min$$

$$d_{(i-1)} \max = d_{(i-1)} \min + Td_{i-1}$$

Определим суммарное значение пространственных отклонений для рассчитываемой поверхности для каждого перехода:

$$\rho_{o} = \sqrt{\rho_{cM}^{2} + \rho_{kop}^{2} + \rho_{ij}^{2}}$$

где $\rho_{\mbox{\tiny CM}}$ - отклонение смещения; $\rho_{\mbox{\tiny CM}}$ =0,5 мм;

 $\rho_{\text{кор}}$ - отклонение коробления;

 $\rho_{\text{\tiny L}}$ - величина отклонения расположения заготовки центровки.

$$\rho_{\text{kop}} = \Delta_{\mathbf{k}} \cdot \mathbf{L}$$

где L-длина заготовки

$$\rho_{\text{кор}}$$
=1,20· 208,5=250,2 мм

$$\rho_{\text{u}}=0,25\sqrt{\delta_3^2+1},$$

где $\delta 3$ — допуск на поверхности, используемые в качестве базовых на фрезерно-центровальных операциях; $\delta 3=2.4$ мм.

$$\rho_{\text{H}} = 0.25\sqrt{2.4^2 + 1} = 0.650 \text{ MM}$$

Суммарное отклонение расположения

$$\rho_0 = \sqrt{0.5^2 + 0.25^2 + 0.65^2} = 0.857 \text{ mm}$$

Суммарное отклонение пространственных отклонений после чернового точения

$$\rho_1 = \rho_0 \cdot k_v$$

где k_v – коэффициент уточнения; k_v =0,06.

$$\rho_1 = 0.857 \cdot 0.06 = 0.051$$
 MM.

Суммарное отклонение пространственных отклонений после чистового точения

$$\rho_2 = \rho_0 \cdot k_y$$

где k_y – коэффициент уточнения; k_y =0,04.

$$\rho_2 = 0.857 \cdot 0.04 = 0.034$$
 MM.

Суммарное отклонение пространственных отклонений после чернового шлифования

$$\rho_3 = \rho_0 \cdot k_y,$$

где k_v – коэффициент уточнения; $k_v = 0.02$.

$$\rho_3 = 0.857 \cdot 0.02 = 0.017$$
 _{MM}.

Расчет четвертого перехода (шлифование чистовое).

$$D_4 \max = 35,025 \text{ MM}, D_4 \min = 35,009 \text{ MM}, Td_4 = 0.016 \text{ MM}.$$

$$\rho_3 = 0.017$$
 MM.

$$\varepsilon_4 = 0.03 \, \text{MM}.$$

$$a_3 = 0.03$$
 mm.

$$(Td_3 = 0.04)$$

$$Z_3 \min = 0.03 + \sqrt{0.017^2 + 0.03^2} = 0.055$$
MM

$$Z_3 \max = 0.055 + 0.5(0.04 - 0.016) = 0.067 \text{ MM}$$
.

Определим предельные размеры до шлифования:

$$D_3 \min = 35,009 + 2 \cdot 0.055 = 35,119$$
 мм

$$D_3 \max = 35,119 + 0.04 = 35,159 \text{ MM}$$

Расчет третьего перехода (шлифование черновое).

$$D_3 \max = 35,159 \text{ MM}, D_3 \min = 35,119 \text{ MM}, Td_3 = 0,04 \text{ MM}.$$

$$\rho_2 = 0.034$$
 MM.

$$\varepsilon_3 = 0.03_{MM}$$
.

$$a_2 = 0.045 \text{ MM}.$$

$$(Td_2 = 0.22)$$

$$Z_3 \min = 0.0045 + \sqrt{0.034^2 + 0.03^2} = 0.085 \text{MM}$$

$$Z_3 \max = 0.085 + 0.5(0.22 - 0.04) = 0.175 \text{ MM}$$

Определим предельные размеры до шлифования:

$$D_2 \min = 35,159 + 2 \cdot 0,085 = 35,329$$
 мм

$$D_2 \max = 35,329 + 0,22 = 35,549$$
 мм

Расчет второго перехода (точение чистовое).

$$D_2 \max = 35,549 \text{ MM}, D_2 \min = 35,329 \text{ MM}, Td_2 = 0,22 \text{ MM}.$$

$$\rho_1 = 0.051 \text{ MM}.$$

$$\varepsilon_2 = 0.03 \, \text{MM}.$$

$$a_1 = 0.08$$
 MM.

$$(Td_1=0.23)$$

$$Z_2 \min = 0.08 + \sqrt{0.051^2 + 0.03^2} = 0.139 \,\text{MM}$$

$$Z_2 \max = 0.139 + 0.5(0.23 - 0.22) = 0.144 \text{MM}.$$

Определим предельные размеры до чистового точения:

$$D_1 \min = 35,329 + 2 \cdot 0,139 = 35,607$$
 мм

$$D_1 \max = 35,607 + 0,23 = 35,837$$
 мм

Расчет первого перехода (точение черновое).

$$D_1 \max = 35,837 \, \text{MM}, \ D_1 \min = 35,607 \, \text{MM}, \ Td_1 = 0,23 \, \text{MM}.$$

$$\rho_0 = 0.857$$
 MM.

$$\varepsilon_1 = 0.06 \, \mathrm{MM}$$
.

$$a_0 = 0,360$$
 мм.

$$(Td_0=0.25)$$

$$Z_1 \min = 0.36 + \sqrt{0.857^2 + 0.06^2} = 1.22 \text{MM}$$

$$Z_1 \max = 1,22 + 0.5(0,25 - 0,23) = 1,32$$
 мм

Определим предельные размеры до чернового точения:

$$D_0 \min = 35,607 + 2 \cdot 1,22 = 38,047 \text{ MM}$$

$$D_0 \max = 38,047 + 0,25 = 38,297 \,\text{мм}$$

Таблица 2.4 - Припуски и операционные переходы

№ опера	Наименова ние	Точн	ОСТЬ	1	тавляю ипуска,	•	Пр	рипуск,	MM	1	едельные меры, ми	
ции	перехода	Ква литет	Td, мм	а	Δ	arepsilon	Z_{\min}	Z_{max}	$Z_{\text{cp.}}$	$d_{\scriptscriptstyle min}$	d_{max}	$ m d_{cp.}$
000	Заготовите льная		0,25	0,360	-	ı	-	1	1	38,047	38,297	38,172
010	точение черновое	14	0,23	0,09	0,857	0,06	1,22	1,32	1,27	35,607	35,837	35,722
015	точение чистовое	11	0,22	0,045	0,051	0,03	0,139	0,144	0,142	35,329	35,549	35,439
040	шлифовани е черновое	8	0,04	0,03	0,034	0,03	0,085	0,175	0,13	35,119	35,159	35,139
050	шлифовани е чистовое	6	0,04	0,02	0,017	0,03	0,055	0,067	0,061	35,009	35,025	35,017
	Общий припуск 2Z							1,706	1,603			

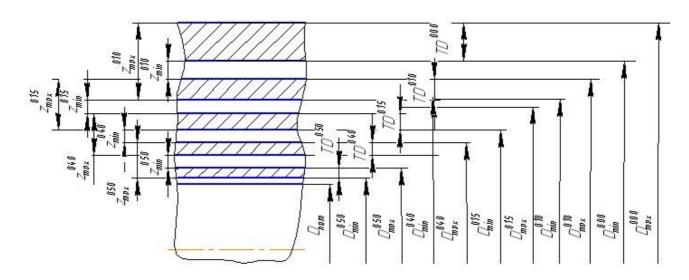


Рис. 2.1 – Схема припусков и допусков поверхности ø35 мм.

2.5 Выбор методов обработки поверхностей

Каждому методу обработки соответствует определенное качество получаемой поверхности (IT, Ra). Метод окончательной обработки, т. е. содержание последнего перехода, подсказывается рабочим чертежом. Зная содержание первого и последнего переходов, устанавливаем промежуточные. При определении маршрутов обработки стремимся к

снижению номенклатуры применяемого оборудования, инструментов и приспособлений.

Маршрут обработки поверхностей выполняем в виде таблицы 2.5.

Таблица 2.5 – Маршрут обработки поверхностей

·	таршрут оораоо. Квалитет	гки поверхностеи	Последовательность
№ поверхности	точности	Шероховатость Ra	обработки
1, 13	14	Ra10	Фрезерование
			Томочно нериороз
4, 5, 8, 10, 20	14	Ra10	Точение черновое ТО
			Точение черновое
	10	Ra5	Точение чистовое
2	10	Kas	Зубофрезерование
			TO
			Точение черновое
6, 12	7	Ra1,25	Точение чистовое
0, 12	,		TO
			Шлифование черновое
	6	Ra0,63	Точение черновое
7, 9			Точение чистовое, ТО
·			Шлифование черновое
			Шлифование чистовое Точение черновое
11	14	Ra10	точение черновое ТО
11	14		Резьбошлифование
	_	D-2.5	Фрезерование
14	8	Ra2,5	TO
15, 16	9	Ra5	Фрезерование
15, 10	9	11405	TO
17	14	Ra10	Фрезерование
1/	17		TO
3, 18	8	Ra2,5	Зубофрезерование
-, -	_		TO
21	7	Ra1,25	Точение черновое ТО
<u>∠1</u>	/	1111,20	_
			Шлифование черновое

2.6 Разработка технологического маршрута и плана обработки детали.

Основой для построения этого маршрута являются ранее установленные в п. 2.5 маршруты обработки отдельных поверхностей детали. Оформление производим путем последовательной записи всех технологических операций в виде таблицы 2.6.

Таблица 2.6 – Технологический маршрут обработки

Номер	Наименование, модель	Наименование	Номер обрабатываемых	
операции	оборудования	операции	поверхностей	
000	Горизонтально-	Заготовительная		
000	ковочная машина	(штамповка)		
005	2A932	Центровально- подрезная	1, 13	
	16Б16ТМ	Токарная черновая	Установ А: 2	
010			Установ Б: 4, 5, 6, 7, 8, 9, 10, 11, 12	
015	16Б16ТМ	Токарная чистовая	2, 6, 7, 9, 12	
020	692Д	Шпоночно-фрезерная	14, 15, 16, 17	
025	5K25	Зубофрезерная	18, 19	
030		ТО		
035	3922	Центрошлифовальная	21	
040	3M151	Круглошлифовальная черновая	7, 9, 12	
045	5822M	Резьбошлифовальная	11	
050	3Б153Т	Шлифовальная чистовая	6, 7, 9	
055		Моечная		
060		Контрольная		

2.7 Выбор оборудования и средств технологического оснащения.

Для каждой операции выбираем такие оборудование, приспособления, инструмент и средства контроля, которые бы обеспечили минимальные затраты на обработку при безусловном выполнении требований к качеству обработки, заданных чертежом детали. Оформляем выбранные СТО в виде таблицы 2.7.

Таблица 2.7 – Выбор оборудования и средств технологического оснащения

№ наименование операции	Наименование, модель оборудования	Наименование станочного приспособления	Наименование и размер инструмента, марка материала, № стандарта или чертежа	Наименование и типоразмер измерительного средства, № стандарта или чертежа
000	ГКМ			
Заготовительная 005 Центровально-подрезная	2А932 Центровально- подрезной станок	Призмы опорные ГОСТ 12195-66	Сверло центровочное ø8 Тип А ГОСТ 14952-75 Р6М5 Пластина 03124.7.2.4.15.04.5.1 ГОСТ 19052-80 Т5К10 Пластина 05123.7.2.15.04.5.1 ГОСТ 19057-80 Т5К10	Штанген- циркуль ГОСТ 166-80
010 Токарная черновая	16Б16ТМ Токарный станок	Патрон 3-х кулачковый самоцентрирую щий 7100-0001 ГОСТ 2675-80. Центр вращающийся ГОСТ 13214-67.	Резец токарный проходной отогнутый ГОСТ 18868-73 Резец токарный проходной упорный отогнутый ГОСТ 18879-73 Резец канавочный В=2,5 Т5К10 ГОСТ 18884-73	Штанген- циркуль ГОСТ 166-80
015 Токарная чистовая	16Б16ТМ Токарный станок	Центр вращающийся ГОСТ 13214-67.	Резец токарный проходной отогнутый ГОСТ 18868-73	Штанген- циркуль ГОСТ 166-80

Продолжение таблицы 2.7

020	692Д	Призмы	Фреза	Калибр-призма
Шпоночно-	Шпоночно-	опорные	шпоночная	ГОСТ 24114-80
фрезерная	фрезерный станок	ГОСТ 12195-66	ГОСТ 9140-78	Штанген-
		Упор	Фреза	циркуль ГОСТ
		технологический	шпоночная	166-80
		регулируемый	ГОСТ 9140-78	
025	5K25	Цанговый	Головка	Штанген-
Зубофрезерная	Зуборезный	зажимной	зуборезная	зубомер ШЗ-18
	полуавтомат	патрон	ГОСТ 11902-77	ГОСТ 1643-72
	110v1y ab 10 mai			Индикатор
				2МИГ ГОСТ
				9696-75
035	3922	Приспособление	Круг	Калибр-скоба
Центро-	Центрошлифоваль	специальное	шлифовальный	ГОСТ 18360-93
шлифовальная	ный станок		ГОСТ 2424-83	
025	23.41.51	TT	I/	V
035	3M151	Центр 	Круг	Калибр-скоба
Круглошлифова	Круглошлифоваль	поводковый	шлифовальный	ГОСТ 18360-93
льная черновая	ный станок	ГОСТ 2571-71	ГОСТ 2424-83	Калибр-скоба ГОСТ 18360-93
040	5822M	Harren	M.vonovvvmovv	
) 5022IVI	Центр	Многониточный	Кольцо ГОСТ 17764-73
Резьбошлифова	Резьбошлифовальн	вращающийся ГОСТ 2571-71	шлифовальный	10011//04-/3
льная	ый станок	1001 25/1-/1	круг	
045	3Б153Т	Центр	Круг	Измерительная
Шлифовальная	Topuovovenouveva	вращающийся	шлифовальный	головка ОКБ-
чистовая	Торцекруглошлиф овальный станок	ΓΟCT 2571-71	ГОСТ 2424-83	1456

2.8 Расчет режимов резания.

Операция 005 Цетровально-подрезная.

Центровать и подрезать торцы, выдерживая размер 205 мм.

1. Глубина резания t:

Подрезка пластины 2-1,7мм.

Подрезка пластины 3-1,7 мм.

Центрование:

t = d/2

 $t = 8/2 = 4_{MM}$.

2. Подача S:

Подрезка пластины 2 - 0.35 мм/об.

Подрезка пластины 3 - 0.35 мм/об.

Центрование -0.15 мм/об.

Принимаем лимитирующую подачу So=0,15 мм/об

3. Скорость резания.

При подрезании:

$$V = \frac{C_V}{T^m \cdot t^x \cdot S^y} K_V$$

где Т - стойкость инструмента; Т = 45 мин.

$$C_v = 350$$
, [10]; $y = 0.35$, [10]; $m = 0.2$, [10]; $x = 0.15$ [10];

 K_v – общий поправочный коэффициент.

$$K_V = K_{MV} \cdot K_{IV} \cdot K_{EV}$$

где
$$K_{\Pi V}$$
 = 0,8 [10];

$$K_{\text{MV}} = 1$$
 [10].

$$K_{MV} = K_r \left(\frac{750}{\sigma_{\hat{A}}}\right)^{nv} = 1 \left(\frac{750}{980}\right)^1 = 0.77$$

$$K_v = 0.77 \cdot 0.8 \cdot 1 = 0.616.$$

Подрезка пластины 2

$$V = (350/45^{0.2} \cdot 1,7^{0.15} \cdot 0,15^{0.35}) \cdot 0.616 = 134,28 \text{ м/мин.}$$

Подрезка пластины 3

$$V = (350/45^{0.2} \cdot 1,7^{0.15} \cdot 0,15^{0.35}) \cdot 0.616 = 134,28 \text{ м/мин.}$$

При центровании:

$$V = \frac{C_{\nu}D}{T^m s^y}^q K_{\nu}$$

где Т = 45 мин. [10].

$$C_v = 7, [10];$$

$$q = 0,40, [10];$$

$$y = 0,70, [10];$$

$$m = 0,20 [10].$$

$$V = \frac{7 \times 8^{0.4}}{45^{0.2} 0.15^{0.7}} \times 0.616 = 17,46 \text{ м/мин.}$$

4. Частота вращения шпинделя.

$$n = \frac{1000 \cdot V}{\pi \cdot d}.$$

Подрезка пластины 2

 $n = 1000 \cdot 134,28/3,14 \cdot 37 = 1155,79$ об/мин.

Подрезка пластины 3

 $n = 1000 \cdot 134,28/3,14 \cdot 38,2 = 1119,49$ об/мин.

Центрование

 $n = 1000 \cdot 17,46/3,14 \cdot 8 = 695,06$ об/мин.

Принимаем лимитирующую частоту n = 695,06 об/мин.

По паспорту станка выбираем N = 630 об/мин.

5. Фактическая скорость резания

$$n = \frac{1000 \cdot V}{\pi \cdot d}.$$

Подрезка пластины 2

 $V = 3,14 \cdot 37 \cdot 630/1000 = 73,19 \text{ м/мин.}$

Подрезка пластины 3

 $V = 3,14 \cdot 38,2 \cdot 630/1000 = 75,57 \text{м/мин}.$

Центрование

 $V = 3,14 \cdot 8 \cdot 630/1000 = 15,83$ м/мин.

5. Сила резания P_{z} .

$$P_{z} = 10 \cdot C_{p} \cdot t^{x} \cdot S^{y} \cdot V^{n} \cdot K_{p},$$

где $C_p = 300$, [10]; x = 1, [10]; y = 0.75, [10]; n = -0.15 [10];

$$K_{p} = K_{MP} \cdot K_{\varphi p} \cdot K_{\gamma p} \cdot K_{\lambda p} \cdot K_{rp},$$

$$K_{\phi p} = 0.94; \; K_{\gamma p} = 0.98; \; K_{\lambda p} = 1.0; \; K_{rp} = 1.0 \; [10].$$

$$K_{MV} = K_r \left(\frac{750}{\sigma_{\hat{A}}}\right)^{nv} = 1 \left(\frac{750}{980}\right)^{0.75} = 1,22$$

$$K_p = 1,22 \cdot 0,94 \cdot 0,98 \cdot 1,0 \cdot 1,0 = 1,12.$$

Подрезка пластины 2

 $P_Z = 10.300.1, 7^1.0, 15^{0.75}.73, 19^{-0.15}.1, 12 = 716,57 \text{ H}.$

Подрезка пластины 3

 $P_z = 10.300.1,8^1.0,15^{0.75}.75,57^{-0.15}.1,12 = 761,95 \text{ H}.$

Мощность резания N рассчитывают по формуле:

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

Подрезка пластины 2

N = 716,57.73,19/1020.60 = 0,91 kBt.

Подрезка инструментальной головки В

N = 761,95.75,57/1020.60 = 0,94 kBt.

Мощность станка по паспорту – 5,5 кВт.

 $N_{\text{pes}} < N_{\text{пасп}}$.

Резание возможно.

6. Крутящий момент $M_{\kappa p}$.

$$M_{\kappa p} = 10C_M D^q s^y K_p,$$

где $C_M = 0.0345$, [10];

q = 2, [10];

y = 0.8 [10];

 $K_p = 1,22. [10]$

$$M_{\kappa p} = 10 \times 0.0345 \times 8^2 \times 0.15^{0.8} \times 1.22 = 4.84 H \cdot M$$

Мощность резания N_e

$$N_e = \frac{M_{\kappa p} n}{9750}$$

$$N_e = \frac{4,84 \times 630}{9750} = 0,31 \kappa Bm$$

Мощность станка по паспорту – 5,5 кВт.

 $N_e < N_{\text{пасп}}$.

Резание возможно.

Операция 025. Зубофрезерная.

Нарезать зубья $m_n = 2,8178$, z=13.

Глубина резания.

t = 0.5 MM.

Подача.

s=0,01 мм/зуб.

Скорость резания V.

$$V = V_{\partial \dot{\alpha} \dot{\alpha} \dot{\alpha}} \cdot K_1 \cdot K_2$$

 $v_{\text{табл}} = 40$ м/мин [11]; $K_1 = 1$ [11]; $K_2 = 0.9$ [11].

 $V=40\times1\times0,9=36$ м/мин.

Частота вращения шпинделя.

$$n = \frac{1000 \cdot V}{\pi \cdot d}.$$

 $n = 1000 \cdot 36/3, 14 \cdot 160 = 71,66$ об/мин.

Принимаем n = 60 об/мин.

Фактическая скорость резания

$$V = \frac{1000 \cdot V}{\pi \cdot d}$$

 $V = 3,14 \cdot 160 \cdot 60/1000 = 41,12 \text{ м/мин.}$

Назначаем скорость V=80 м/мин, т. к. используем инструмент с модифицированными рабочими поверхностями (электроакустическое напыление-легирование ЭЛАН).

Уточняем частоту вращения шпинделя

 $n=1000\cdot80/3,14\cdot160=161,2$ об/мин.

Принимаем n = 160 об/мин.

Уточняем скорость резания

 $V=3,14\cdot160\cdot80/1000=80,38$ м/мин.

Операция 050 Шлифовальная чистовая.

Шлифовать поверхность ф $35k6_{+0,009}^{+0,025}$ мм, выдерживая p-p L=28 мм и L=23 мм, и торец, выдерживая размер 43 мм.

- 1. Глубина шлифования 0,1 мм.
- 2. Радиальная подача S=0,009 мм/об.
- 3. Скорость вращения круга:

$$v_{_{\mathit{l}p}} = \frac{\pi \cdot d \cdot n_{_{CT}}}{1000 \cdot 60}$$

$$v_{\kappa p} = \frac{3,14 \cdot 30 \cdot 1590}{1000 \cdot 60} = 2,5 \,\text{m/c}$$

 $n_{CT} = 1590$ об/мин (по паспорту станка 3M151).

Принимаемv = 50 м/с (по паспорту станка 3M151).

4. Скорость вращения детали:

$$v_{\partial} = \frac{\pi \cdot D_{\partial} \cdot n_{\partial}}{1000}$$

$$v = \frac{3,14 \cdot 35 \cdot 320}{1000} = 35,17 \,\text{M} / \text{MUH}$$

 $n_{\scriptscriptstyle \partial} = 320\,$ об/мин. (по паспорту станка 3M151).

5. Минутная подача:

$$S_m = n_{\ddot{a}} \cdot S_p$$

$$S_m = 320 \cdot 0,009 = 2,88 \text{ } \text{мм/мин}$$

6. Мощность шлифования:

$$N = C_N \cdot V_3^r \cdot S^y \cdot d^q \cdot t^x$$

$$N = 2,2 \cdot 35,17^{0,5} \cdot 0.009^{0.55} \cdot 0.03^{0,2} \cdot 0.0001^{0.5} = 0.01 \kappa Bm$$

36

Мощность станка по паспорту – 10 кВт.

$$N_{pes} < N_{nacn}$$
.

Шлифование возможно.

На остальные операции назначаем оптимальные режимы резания по справочным нормативам.

Операция 010. Токарная черновая.

Установ А.

Точить наружную коническую поверхность, выдерживая угол 17°04'10".

1. Глубина резания t.

t=1,6 MM.

2. Подача S.

S = 0.3 мм/об [10].

3. Скорость резания V.

$$V = V_{\partial \dot{a} \dot{a} \ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 175 м/мин; [10]

$$K_{1.}=1$$
; $K_{2.}=0,8$; $K_{3.}=0,8$ [10].

$$V = 175 \times 1 \times 0,8 \times 0,8 = 112 \text{ м/мин.}$$

4. Частота вращения шпинделя n.

$$n = \frac{1000 \cdot V}{\pi \cdot d}.$$

 $n=1000\cdot112/(3,14\cdot61,66)=578,48$ об/мин.

По паспорту станка берем п = 450 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

V = 3,14.61,66.450/1000 = 87,13 м/мин.

5. Сила резания Р_z.

$$P_z = 0.74 \times 1.6 = 1.18 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

N = 1,18.87,13/1020.60 = 1,02 kBt.

Мощность станка по паспорту – 10 кВт.

 $N_{pes} < N_{nacn}$.

Резание возможно.

Установ Б.

Переход 1. Точить наружную цилиндрическую поверхность $\emptyset 35 k6 \binom{+0,025}{+0,009}$ мм, выдерживая размер 162 мм.

1. Глубина резания t.

t=1,2 MM.

2. Подача S.

S = 0.3 MM/of [10].

3. Скорость резания V.

$$V = V_{\grave{o}\grave{a}\acute{a}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 175 м/мин; [10]

$$K_{1.}=1$$
; $K_{2.}=0,8$; $K_{3.}=0,8$ [10].

$$V = 175 \times 1 \times 0,8 \times 0,8 = 112$$
 м/мин.

4. Частота вращения шпинделя п.

$$n = \frac{1000 \times V}{\pi \times d}.$$

$$n = \frac{1000 \times 112}{3,14 \times 35} = 1019,11$$
об/мин.

По паспорту станка берем n = 1000 об/мин.

Фактическая скорость

$$n = \frac{1000 \cdot V}{\pi \cdot d}.$$

 $V = 3.14 \cdot 35 \cdot 1000/1000 = 109.96 \text{ м/мин.}$

$$P_Z = P_{Z \hat{o} \hat{a} \hat{a} \hat{e}} \cdot t$$

$$P_{z \text{ табл.}}=0,74$$
к $H.$ [10]

$$P_z = 0.74 \times 1.2 = 0.89 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

 $N = 0.89 \cdot 109.96 / 1020 \cdot 60 = 0.98 \text{ kBt.}$

Мощность станка по паспорту – 10 кВт.

 $N_{\text{pes}} < N_{\text{пасп}}$.

Резание возможно.

Переход 2. Подрезать торец ø40 мм, выдерживая размер 43 мм.

1. Глубина резания t.

t=1,6 MM.

2. Подача S.

S = 0.5 MM/of [10].

3. Скорость резания V.

$$V = V_{\hat{o}\hat{a}\hat{a}\hat{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 150 м/мин; [10]

$$K_{1.}=1$$
; $K_{2.}=0.8$; $K_{3.}=0.8$ [10].

 $V = 150 \times 1 \times 0,8 \times 0,8 = 96$ м/мин.

4. Частота вращения шпинделя п.

$$n = \frac{1000 \times V}{\pi \times d}$$

$$n = \frac{1000 \times 96}{3,14 \times 40} = 764,33$$
 Об/мин.

По паспорту станка берем п = 850 об/мин.

39

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

 $V=3,14\cdot40\cdot850/1000=106,76$ м/мин.

$$P_{Z} = P_{Z \hat{o} \hat{a} \hat{a} \hat{e}} \cdot t$$

 $P_{z \text{ табл.}}=1,1кH.$

 $P_z = 1,1.\times1,6=1,76\kappa H,$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

 $N = 1,76 \cdot 106,76/1020 \cdot 60 = 1,87 \text{ kBt.}$

Мощность станка по паспорту – 10 кВт.

 $N_{\text{pes}} < N_{\text{nacm}}$.

Резание возможно.

Переход 3. Точить наружную цилиндрическую поверхность ø40 мм.

1. Глубина резания t.

t=1,6 MM.

2. Подача S.

S = 0.3 MM/of [10].

3. Скорость резания V.

$$V = V_{\dot{\alpha}\dot{\alpha}\dot{\alpha}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

 $v_{\text{табл.}} = 175 \text{ м/мин; } [10]$

 $V = 175 \times 1 \times 0,8. \times 0,8 = 112$ м/мин.

4. Частота вращения шпинделя n.

$$n = \frac{1000 \times V}{\pi \times d}$$

$$n = \frac{1000 \times 112}{3,14 \times 40} = 891,72 \text{ об/мин.}$$

По паспорту станка берем п = 850 об/мин.

40

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

 $V=3,14\cdot40\cdot850/1000=106,76$ м/мин.

$$P_{Z} = P_{Z \circ a \dot{a} \dot{a} \ddot{e}} \cdot t$$
 ,

$$P_{z \text{ табл.}}=0,74 \text{ кH.} [10]$$

$$P_z = 0.74 \times 1.6 = 1.18 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

$$N = 1,18.106,76/1020.60 = 1,26 \text{ kBt}.$$

Мощность станка по паспорту – 10 кВт.

$$N_{\text{pes}} < N_{\text{пасп}}$$
.

Резание возможно.

Переход 4. Точить наружную коническую поверхность ø61,66 мм, выдерживая размер 5,21 мм и угол 75°57'50".

1. Глубина резания t.

t=1,5 MM.

2. Подача S.

$$S = 0.3 \text{ мм/об } [10].$$

3. Скорость резания V.

$$V = V_{\partial \dot{a} \dot{a} \ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

$$v_{\text{табл.}}$$
= 175 м/мин; $K_{1.}$ =1; $K_{2.}$ =0,8; $K_{3.}$ =0,8 [10].

$$V = 175 \times 1 \times 0,8 \times 0,8 = 112$$
 м/мин.

4. Частота вращения шпинделя n.

$$n = \frac{1000 \cdot V}{\pi \cdot d} .$$

$$n=1000\cdot112/(3,14\cdot61,66)=578,48$$
 об/мин.

По паспорту станка берем n = 450 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

$$V = 3,14.61,66.450/1000 = 87,13 м/мин.$$

$$P_{Z} = P_{Z \circ a \dot{a} \dot{a} \ddot{e}} \cdot t$$
 ,

 $P_{z \text{ табл.}} = 0,74 \text{кH.}$

$$P_z = 0.74 \times 1.5 = 1.11 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_{\rm z} \cdot V}{1020 \cdot 60}.$$

N = 1,11.87,13/1020.60 = 0,96 kBt.

Мощность станка по паспорту – 10 кВт.

 $N_{\text{pes}} < N_{\text{пасп}}$.

Резание возможно.

Переход 5. Точить наружную цилиндрическую поверхность ø32 мм, выдерживая размер 28 мм.

1. Глубина резания t.

t = 1,5 MM.

2. Подача S.

S = 0.3 мм/об [10].

3. Скорость резания V.

$$V = V_{\partial \dot{a} \dot{a} \ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

 $v_{\text{табл.}}$ = 175 м/мин; $K_{1.}$ =1; $K_{2.}$ =0,8; $K_{3.}$ =0,8 [10].

 $V = 160 \times 1 \times 0,8 \times 0,8 = 112 \text{ м/мин.}$

4. Частота вращения шпинделя n.

$$n = \frac{1000 \cdot V}{\pi \cdot d} .$$

 $n=1000\cdot112/(3,14\cdot32)=1114,65$ об/мин.

По паспорту станка берем n = 1000 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

 $V = 3,14 \cdot 32 \cdot 1000/1000 = 100,48 \text{ м/мин.}$

$$P_Z = P_{Z \hat{o} \hat{a} \hat{a} \hat{e}} \cdot t$$

 $P_{z \text{ табл.}} = 0,74 \text{кH.}$

$$P_z = 0.74 \times 1.5 = 1.11 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_{\rm z} \cdot V}{1020 \cdot 60}.$$

 $N = 1,11\cdot100,48/1020\cdot60 = 1,12 \text{ kBt.}$

Мощность станка по паспорту – 10 кВт.

$$N_{pes} < N_{nacm}$$
.

Резание возможно.

Переход 6. Точить наружную цилиндрическую поверхность $\emptyset 30h8(_{-0.033})$ мм, выдерживая размер 72 мм.

1. Глубина резания t.

t=2,5 MM.

2. Подача S.

S = 0.4 MM/of [10].

3. Скорость резания V.

$$V = V_{\grave{o}\grave{a}\acute{a}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 165 м/мин; $K_{1.}$ =1; $K_{2.}$ =0,8; $K_{3.}$ =0,8 [10].

 $V = 165 \times 1 \times 0,8 \times 0,8 = 105,6$ м/мин.

4. Частота вращения шпинделя п.

$$n = \frac{1000 \times V}{\pi \times d}$$

$$n = \frac{1000 \times 105,6}{3,14 \times 30} = 1121,02$$
 об/мин.

По паспорту станка берем п = 1000 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

 $V=3,14\cdot30\cdot1000/1000=94,2$ м/мин.

5. Сила резания P_z.

$$P_Z = P_{Z \hat{o} \hat{a} \hat{a} \hat{e}} \cdot t$$
,

$$P_{z \text{ табл.}} = 0,92 \text{кH.}$$

$$P_z = 0.92 \times 2.5 = 2.3 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_{\rm z} \cdot V}{1020 \cdot 60}.$$

$$N = 2,3.94,2/1020.60 = 2,17 \text{ kBt}.$$

Мощность станка по паспорту – 10 кВт.

$$N_{\text{pes}} < N_{\text{пасп}}$$
.

Резание возможно.

Переход 7. Точить наружную цилиндрическую поверхность ø33 мм, выдерживая размер 8,5 мм.

1. Глубина резания t.

t=1 MM.

2. Подача S.

S = 0.3 MM/of [10].

3. Скорость резания V.

$$V = V_{\partial \hat{a} \hat{a} \hat{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где
$$v_{\text{табл.}}$$
= 175 м/мин; $K_{1.}$ =1; $K_{2.}$ =0,8; $K_{3.}$ =0,8 [10].

$$V = 175 \times 1 \times 0,8 \times 0,8 = 112$$
 м/мин.

4. Частота вращения шпинделя n.

$$n = \frac{1000 \times V}{\pi \times d}$$

$$n = \frac{1000 \times 112}{3,14 \times 33} = 1080,87$$
 об/мин.

По паспорту станка берем п = 1000 об/мин.

44

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

V = 3,14.33.1000/1000 = 103,62 м/мин.

5. Сила резания P_z.

$$P_Z = P_{Z \hat{o} \hat{a} \hat{a} \hat{e}} \cdot t$$

 $P_{z \text{ табл.}} = 0,74 \text{кH.}$

$$P_z = 0.74 \times 1 = 0.74 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

 $N = 0.74 \cdot 103,62/1020 \cdot 60 = 0.77 \text{ kBt.}$

Мощность станка по паспорту – 10 кВт.

$$N_{\text{pes}} < N_{\text{nacm}}$$
.

Резание возможно.

Переход 8. Точить наружную цилиндрическую поверхность ø30,8 мм, выдерживая размер 2,5 мм.

1. Глубина резания t.

t=2,1 MM.

2. Подача S.

S = 0.15 MM/of [10].

3. Скорость резания V.

$$V = V_{\partial \hat{a} \hat{a} \hat{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 110 м/мин; $K_{1.}$ =1; $K_{2.}$ =0,8; $K_{3.}$ =0,8 [10].

$$V = 110 \times 1 \times 0,8 \times 0,8 = 70,4$$
 м/мин.

4. Частота вращения шпинделя n.

$$n = \frac{1000 \times V}{\pi \times d}$$

$$n = \frac{1000 \times 70,4}{3,14 \times 30,8} = 727,93$$
 об/мин.

По паспорту станка берем n=650 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000}.$$

V = 3,14.30,8.650/1000 = 62,86 м/мин.

5. Сила резания P_z.

$$P_Z = P_{Z \hat{o} \hat{a} \hat{a} \hat{e}} \cdot t$$
,

$$P_{z \text{ табл.}} = 0,46 \text{кH.}$$

$$P_z = 0.46 \times 2.1 = 0.97 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

$$N = 0.97.62,86/1020.60 = 0.61 \text{ kBt}.$$

Мощность станка по паспорту – 10 кВт.

$$N_{pes} < N_{nacn}$$
.

Резание возможно.

Операция 015. Токарная чистовая.

Переход 1. Точить наружные цилиндрические поверхности ${\tt ø35k6} {\tiny \begin{pmatrix} +0,025\\+0,009 \end{pmatrix}} {\tt мм}, \, {\tt выдерживая} \, {\tt размер} \, {\tt 28} \, {\tt и} \, {\tt 23} \, {\tt мм}.$

1. Глубина резания t.

t=0,15 MM.

2. Подача S.

S = 0.15 мм/об [10].

3. Скорость резания V.

$$V = V_{\partial \dot{a} \dot{a} \ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 220 м/мин; $K_{1.}$ =1; $K_{2.}$ =0,8; $K_{3.}$ =0,8 [10].

 $V = 220 \times 1 \times 0,8 \times 0,8 = 140,8 \text{ м/мин.}$

4. Частота вращения шпинделя n.

$$n = \frac{1000 \times V}{\pi \times d}$$

$$n = \frac{1000 \times 140,8}{3,14 \times 35} = 1281,16$$
 об/мин.

По паспорту станка берем n = 1000 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000}.$$

V = 3,14.35.1000/1000 = 109,9 м/мин.

5. Сила резания Р_z.

$$P_Z = P_{Z \circ a \dot{a} \ddot{a} \ddot{c}} \cdot t$$

 $P_{z \text{ табл.}} = 0,46 \text{кH.}$

$$P_z = 0.46 \times 0.15 = 0.069 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

 $N = 0.069 \cdot 109.9 / 1020 \cdot 60 = 0.08 \text{ kBt.}$

Мощность станка по паспорту – 10 кВт.

$$N_{pes} < N_{nacn}$$
.

Резание возможно.

Переход 2. Подрезать торец ø40 мм, выдерживая размер 43 мм.

47

1. Глубина резания t.

$$t = 1,5 \text{ MM}.$$

2. Подача S.

$$S = 0.15 \text{ MM/of} [10].$$

3. Скорость резания V.

$$V = V_{\grave{o}\grave{a}\acute{a}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 205 м/мин; $K_{1.}$ =1; $K_{2.}$ =0,8; $K_{3.}$ =0,8 [10].

$$V = 205 \times 1 \times 0,8 \times 0,8 = 131,2 \text{ м/мин.}$$

4. Частота вращения шпинделя n.

$$n = \frac{1000 \times V}{\pi \times d}$$

$$n = \frac{1000 \times 131,2}{3,14 \times 40} = 1044,59$$
 об/мин.

По паспорту станка берем n = 1000 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000}.$$

V = 3,14.40.1000/1000 = 125,6 м/мин.

5. Сила резания P_z.

$$P_Z = P_{Z \circ a \dot{a} \ddot{a} \ddot{e}} \cdot t$$

 $P_{z \text{ табл.}} = 0,46 \text{кH.}$

$$P_z = 0.46 \times 1.5 = 0.69 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

 $N = 0.69 \cdot 125.6 / 1020 \cdot 60 = 0.87 \text{ kBt.}$

Мощность станка по паспорту – 10 кВт.

$$N_{pes} < N_{nacn}$$
.

Резание возможно.

Переход 3. Точить наружную цилиндрическую поверхность $ø30h8(_{-0,033})$ мм, выдерживая размер 72 мм.

48

1. Глубина резания t.

t=0,5 мм.

2. Подача S.

S = 0.15 mm/of [10].

3. Скорость резания V.

$$V = V_{\grave{o}\grave{a}\acute{a}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 220 м/мин; $K_{1.}$ =1; $K_{2.}$ =0,8; $K_{3.}$ =0,8 [10].

 $V = 220 \times 1 \times 0.8 \times 0.8 = 140.8 \text{ м/мин.}$

4. Частота вращения шпинделя n.

$$n = \frac{1000 \times V}{\pi \times d}$$

$$n = \frac{1000 \times 140,8}{3.14 \times 30} = 1494,7$$
 об/мин.

По паспорту станка берем n = 1250 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

 $V = 3,14 \cdot 30 \cdot 1250/1000 = 117,75 \text{ м/мин.}$

5. Сила резания P_z.

$$P_Z = P_{Z \hat{o} \hat{a} \hat{a} \hat{e}} \cdot t$$

 $P_{z \text{ табл.}} = 0,46 \text{кH.}$

$$P_z = 0.46 \times 0.15 = 0.069 \text{ kH},$$

6. Мощность резания N.

$$N = \frac{P_Z \cdot V}{1020 \cdot 60}.$$

 $N = 0.069 \cdot 117,75/1020 \cdot 60 = 0.08 \text{ kBt}.$

Мощность станка по паспорту – 10 кВт.

 $N_{\text{рез}} \leq N_{\text{пасп}}$. Резание возможно.

Операция 020. Шпоночно-фрезерная.

Переход 1. Фрезеровать шпоночный паз, выдерживая размеры B=6,3 мм, 18 мм.

1. Глубина резания t.

t = 2,5 MM.

- 2. Подача $S_z = 0.04$ мм/зуб. [10].
- 3. Скорость резания V.

$$V = V_{\grave{o}\grave{a}\acute{a}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 43 м/мин; $K_{1.}$ =1; $K_{2.}$ =1; $K_{3.}$ =0,9 [10].

$$V = 43 \times 1 \times 1. \times 0,9 = 38,7$$
 м/мин.

4. Частота вращения шпинделя.

$$n = \frac{1000 \cdot V}{\pi \cdot d}.$$

 $n=1000\cdot38,7/3,14\cdot33=373,48$ об/мин.

По станку берем n = 315 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

 $V=3,14\cdot33\cdot315/1000=32,64$ м/мин.

5. Минутная подача S_м, мм/мин:

$$S_M = S_Z \cdot z \cdot n$$
,

 S_{M} =0,04 ×2×315=25,2 мм/мин

6. Мощность резания N

$$N=N_{\tilde{A}}\cdot K_{1},$$

$$N_r = 0.9 \text{ kBt}$$
; $K_1 = 1 [10]$.

$$N = 0.9 \times 1 = 0.9 \text{ kBt.}$$

Мощность станка по паспорту – 1,5 кВт.

$$N_{pes} < N_{nacn}$$
.

Резание возможно.

Переход 2. Фрезеровать шпоночный паз, выдерживая размеры $B=8P9\left(\begin{smallmatrix} -0,015\\ -0,051 \end{smallmatrix} \right)\,$ мм, 40 мм.

1. Глубина резания t.

t = 4 MM.

- 2. Подача $S_z = 0.05$ мм/зуб. [10].
- 3. Скорость резания V.

$$V = V_{\grave{o}\grave{a}\acute{a}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $v_{\text{табл.}}$ = 38 м/мин; $K_{1.}$ =1; $K_{2.}$ =1; $K_{3.}$ =0,9 [10].

$$V = 38 \times 1 \times 1. \times 0,9 = 34,2 \text{ м/мин.}$$

4. Частота вращения шпинделя.

$$n = \frac{1000 \cdot V}{\pi \cdot d}.$$

 $n=1000\cdot34,2/3,14\cdot30=363,06$ об/мин.

По станку берем n = 315 об/мин.

Фактическая скорость

$$V = \frac{\pi \cdot d \cdot n}{1000} .$$

 $V = 3,14 \cdot 30 \cdot 315/1000 = 29,67 \text{ м/мин.}$

5. Минутная подача S_м, мм/мин:

$$S_M = S_Z \cdot z \cdot n,$$

 S_{M} =0,05×2×315=31,5 мм/мин

6. Мощность резания N

$$N=N_{\tilde{A}}\cdot K_{1},$$

$$N_r = 1,1 \text{ kBT}; K_1 = 1 [10].$$

$$N = 1,1 \times 1 = 1,1 \text{ kBt.}$$

Мощность станка по паспорту – 1,5 кВт.

$$N_{\text{pes}} < N_{\text{nacm}}$$
.

Резание возможно.

Операция 035. Центрошлифовальная.

Шлифовать центровые отверстия ø8мм, выдерживая угол 60°.

1. Глубина шлифования t.

t=0,1 MM.

2. Скорость вращения круга ν

$$v_{\varphi} = \frac{\pi \cdot d_{\varphi} \cdot n_{CT}}{1000 \cdot 60},$$

 $\stackrel{^{\text{ct}}}{n}$ — частота вращения шлифовального круга по паспорту станка; $\stackrel{^{\text{ct}}}{n}$ = 3000

об/мин.

$$v_{\kappa\rho} = \frac{3,14 \cdot 7 \cdot 3000}{1000 \cdot 60} = 1,1 \text{ M/c}$$

По станку выбираем v = 50 м/с.

3. Скорость вращения детали:

$$v_{\partial} = \frac{\pi \cdot d_{\partial} \cdot n_{\partial}}{1000}$$

где d^{-} диаметр обрабатываемого отверстия, мм; d^{-} = 8 мм;

 $\stackrel{_{\scriptstyle \pi}}{\rm n}$ – частота вращения детали по паспорту станка; $\stackrel{_{\scriptstyle \pi}}{\rm n}$ = 400 об/мин.

$$v_{\partial} = \frac{3{,}14 \cdot 8 \cdot 400}{1000} = 10{,}48\,\text{M}/\,\text{MUH}$$

4. Поперечная подача на S_p .

$$S_p = S_{p.\delta\dot{a}\dot{a}\ddot{e}} \cdot K_1 \cdot K_2$$

где $S_{p \text{ табл}} = 2,2 \text{ мм/мин}; K_1 = 0,85 [10]; K_2 = 0,7 [10].$

$$S_p = 2,2 \times 0,85 \times 0,7 = 1,31$$
 мм/мин

5. Мощность шлифования N.

$$N = C_N \cdot V_{\partial}^r \cdot t^x \cdot d_{\alpha}^q \cdot s^y,$$

где C^N =0,36 [10]; r=0,35 [10]; x=0,4 [10]; y=0,4 [10]; q=0,3 [10].

$$N = 0.36 \cdot 10.48^{0.35} \cdot 0.1^{0.4} \cdot 8^{0.3} \cdot 1.31^{0.4} = 0.47 \kappa Bm$$

Мощность станка по паспорту – 0,6 кВт.

$$N_{\text{pes}} < N_{\text{пасп}}$$
.

Шлифование возможно.

Операция 040. Круглошлифовальная.

Переход 1. Шлифовать наружные цилиндрические поверхности ø35k6 $\binom{+0,025}{+0,009}$ мм, выдерживая размер 28 и 23 мм.

1. Глубина шлифования t.

t=0,15 MM.

2. Скорость вращения круга ν

$$v_{\wp} = \frac{\pi \cdot d_{\wp} \cdot n_{CT}}{1000 \cdot 60},$$

где $d^{^{\text{кp}}}$ – диаметр шлифовального круга, мм; $d^{^{\text{кp}}}$ = 350 мм;

 $n^{^{\rm cr}}$ — частота вращения шлифовального круга по паспорту станка; $n^{^{\rm cr}}$ = 1590

об/мин.

$$v_{_{\mathit{pp}}} = \frac{3,14 \cdot 350 \cdot 1590}{1000 \cdot 60} = 29,12 \, \text{m/c}$$

По станку выбираем v = 25 м/c.

3. Скорость вращения детали:

$$v_{\partial} = \frac{\pi \cdot d_{\partial} \cdot n_{\partial}}{1000},$$

где $d^{^{\!\!\!\!/}}$ – диаметр обрабатываемой поверхности, мм; $d^{^{\!\!\!\!/}}$ = 35 мм;

 $\stackrel{^{\pi}}{n}$ – частота вращения детали по паспорту станка; $\stackrel{^{\pi}}{n}$ = 315 об/мин.

$$v_{\rm a} = \frac{3,14 \cdot 35 \cdot 315}{1000} = 34,62 \,\text{m/MuH}$$

4. Продольная подача на S_p.

$$S_p = S_{p.\delta\dot{\alpha}\dot{\alpha}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3$$

где $S_{p \text{ табл}} = 2 \text{ мм/мин}$; $K_1 = 1 [10]$; $K_2 = 0,7 [10]$; $K_3 = 0,7 [10]$.

$$S_p = 2 \times 1 \times 0,7 \times 0,7 = 0,98$$
 мм/мин

5. Мощность шлифования N.

$$N = C_N \cdot v_{\partial}^r \cdot b^z \cdot d_{\alpha}^q \cdot s_p^y,$$

где $C^N=0.14$ [10]; r=0.8; z=1; y=0.8; q=0.2 [10]; b=28 мм.

$$N = 0.14 \cdot 34.62^{0.8} \cdot 28^{1} \cdot 35^{0.2} \cdot 0.98^{0.8} = 0.53 \kappa Bm$$

Мощность станка по паспорту – 10 кВт.

 $N_{\text{pes}} < N_{\text{пасп}}$.

Шлифование возможно.

Переход 2. Шлифовать наружную цилиндрическую поверхность ø30h8 ($_{-0.033}$)мм, выдерживая размер 47 мм.

- 1. Глубина шлифования t.
- t=0.25 MM.
- 2. Скорость вращения круга ν

$$v_{_{\wp}} = \frac{\pi \cdot d_{_{\wp}} \cdot n_{CT}}{1000 \cdot 60},$$

где d^{kp} – диаметр шлифовального круга, мм; d^{kp} = 350 мм;

 $\stackrel{^{\text{ct}}}{n}$ — частота вращения шлифовального круга по паспорту станка; $\stackrel{^{\text{ct}}}{n}$ = 1590

об/мин.

$$v_{\kappa\rho} = \frac{3,14 \cdot 350 \cdot 1590}{1000 \cdot 60} = 29,12 \,\text{m/c}$$

По станку выбираем v = 25 м/c.

3. Скорость вращения детали:

$$v_{\partial} = \frac{\pi \cdot d_{\partial} \cdot n_{\partial}}{1000},$$

где $d^{\bar{a}}$ – диаметр обрабатываемой поверхности, мм; $d^{\bar{a}}$ = 30 мм;

 n^{-} – частота вращения детали по паспорту станка; n^{-} = 315 об/мин.

$$v_{\partial} = \frac{3,14 \cdot 30 \cdot 315}{1000} = 29,67 \,\text{M} / \,\text{MUH}$$

4. Продольная подача на S_p .

$$S_p = S_{p.\delta\dot{a}\dot{a}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $S_{p \text{ табл}} = 1,75 \text{ мм/мин}; K_1=0,8 [10]; K_2=1 [10]; K_3=0,7 [10].$

$$S_p = 1,75 \times 0,8 \times 1 \times 0,7 = 0,98$$
 мм/мин

5. Мощность шлифования N.

$$N = C_N \cdot V_{\partial}^r \cdot b^z \cdot d_{\pi}^q \cdot s_{p}^y,$$

где $C^N=0.14$ [10]; r=0.8; z=; y=0.; q=0.2 [10]; b=28 мм.

$$N = 0.14 \cdot 29.67^{0.8} \cdot 47^{1} \cdot 30^{0.2} \cdot 0.98^{0.8} = 0.78 \kappa Bm$$

Мощность станка по паспорту – 10 кВт.

$$N_{\text{pes}} < N_{\text{пасп}}$$

Шлифование возможно.

Операция 045. Резьбошлифовальная.

Нарезать резьбу M33×1,5-8g, выдерживая размер 8,5 мм.

1. Скорость вращения круга ν

$$v_{_{\mathit{ip}}} = \frac{\pi \cdot d_{_{\mathit{ip}}} \cdot n_{_{\mathit{CT}}}}{1000 \cdot 60},$$

где $d^{^{K\!p}}=300$ мм; $n^{^{^{C\!T}}}=1250$ об/мин.

$$v_{\kappa\rho} = \frac{3,14 \cdot 300 \cdot 1250}{1000 \cdot 60} = 19,63 \,\text{m/c}$$

По станку выбираем v = 15 м/c.

3. Скорость вращения детали:

$$v_{\partial} = \frac{\pi \cdot d_{\partial} \cdot n_{\partial}}{1000}$$

где $d^{\pi} = 33$ мм; $n^{\pi} = 315$ об/мин.

$$v_{\partial} = \frac{3,14 \cdot 33 \cdot 315}{1000} = 32,64 \,\text{m} \,/\,\,$$
 Muh

4. Поперечная подача на S_p.

$$S_p = S_{p.\delta\dot{a}\dot{a}\ddot{e}} \cdot K_1 \cdot K_2 \cdot K_3,$$

где $S_{p \text{ табл}} = 2,2 \text{ мм/мин}; K_1=0,8 [10]; K_2=0,8 [10]; K_3=0,7 [10].$

$$S_p = 2,2 \times 0,8 \times 1 \times 0,7 = 1,23$$
 мм/мин

5. Мощность шлифования N.

$$N = C_N \cdot v_{\partial}^{r} \cdot b^z \cdot d_{\pi}^{q} \cdot s_{p}^{y},$$

где C^N =0,14 [10]; r=0,8; z=1; y=0,8; q=0,2 [10]; b = 28 мм.

$$N = 0,14 \cdot 32,64^{0,8} \cdot 8,5^{1} \cdot 33^{0,2} \cdot 1,23^{0,8} = 0,45 \kappa Bm$$

Мощность станка по паспорту – 5,5 кВт.

$$N_{\text{pes}} < N_{\text{пасп}}$$
.

Шлифование возможно.

2.9 Нормирование технологического процесса.

В среднесерийном производстве за норму времени принимают штучнокалькуляционное время $T_{\iota\iota\iota\kappa}$:

$$T_{u\kappa} = T_{um} + \frac{T_{n3}}{n},$$

где T_{ns} - подготовительно-заключительное время;

 $T_{\text{шт}}$ – норма штучного времени для производства одной детали;

n - объем партии запуска заготовок.

$$T_{um} = T_o + T_g + T_{o6} + T_{nep},$$

где T_o - основное время - время непосредственно на обработку, определяется исходя из схемы обработки;

 $T_{\scriptscriptstyle 6}$ - вспомогательное время на установку и снятие заготовки, управление станком, подвод и отвод режущего инструмента, контроль размеров, определяется по справочным нормативам или экспериментально;

 T_{ob} - время обслуживания;

 T_{nep} - время перерывов в работе.

Операция 005. Центровально-подрезная.

Подрезка пластины 2

$$T_{oB} = \frac{L}{nS_o},$$

где L =12мм; $S_0 = 0.15$ мм/об; n = 630 об/мин.

$$T_o = \frac{12}{630 \times 0,15} = 0,15$$
мин

$$T_{\scriptscriptstyle B} = T_{\acute{o}\~{n}} + \grave{O}_{\varsigma\^{i}} + \grave{O}_{\acute{o}\~{i}} + \grave{O}_{\grave{e}\varsigma}$$

где T_{yc} =0,08 мин [12]; T_{30} =0,24 мин [10]; $T_{y\pi}$ =0,055мин [12]; $T_{и3}$ =0,22 мин [12].

$$T_{\scriptscriptstyle g} = 0.08 + 0.24 + 0.055 + 0.22 = 0.595$$
 мин.

$$T_{ob} = T_{mex} + T_{ope}$$

где $T_{mex} = 1,5$ [12]; $T_{ope} = 0,006$ мин [12].

$$T_{o6} = 1.5 + 0.006 = 1.506$$
 muh,

Время на перерыв по [12] принимаем

$$T_{nep} = 0.02$$
 мин.

$$T_{um} = 0.15 + 0.595 + 1.506 + 0.02 = 2.27$$
 мин.

Подрезка пластины 3

$$T_{oB} = \frac{L}{nS_o}$$
,

где L – длина рабочего хода, мм; L =18мм; S_0 =0,15мм/об; n =630 об/мин.

$$T_o = \frac{18}{630 \times 0.15} = 0.19$$
мин

$$T_{B} = T_{\delta \tilde{n}} + \dot{O}_{\varsigma \hat{i}} + \dot{O}_{\delta \tilde{i}} + \dot{O}_{\delta \tilde{c}}$$

где T_{yc} =0,08 мин [12]; T_{30} =0,24 мин [12]; $T_{y\pi}$ =0,055мин [12]; $T_{и3}$ =0,22 мин [12].

$$T_{s} = 0.08 + 0.24 + 0.055 + 0.22 = 0.595$$
 мин.

$$T_{ob} = T_{mex} + T_{ope}$$

где
$$T_{mex} = 1,5[12]; T_{ope} = 0,006$$
 мин [12].

$$T_{o6} = 1.5 + 0.006 = 1.506$$
 мин

Время на перерыв по [12] принимаем

$$T_{nep} = 0,02$$
 мин.

$$T_{um} = 0,19 + 0,595 + 1,506 + 0,02 = 2,31$$
мин.

Центрование

$$T_o = \frac{L}{nS_o}$$
,

где L – длина рабочего хода, мм; L =11мм; S_0 =0,15мм/об; n =630 об/мин.

$$T_o = \frac{11}{630 \times 0,15} = 0,12$$
мин

$$T_{\scriptscriptstyle B} = T_{\scriptscriptstyle \acute{o}\~{n}} + \grave{O}_{\varsigma \^{i}} + \grave{O}_{\acute{o}\~{i}} + \grave{O}_{\grave{e}\varsigma}$$

где T_{yc} =0,08 мин [12]; T_{30} =0,24 мин [12]; $T_{y\pi}$ =0,055мин [12];

 $T_{\text{из}} = 0,22$ мин [12].

$$T_{e} = 0.08 + 0.24 + 0.055 + 0.22 = 0.595$$
 мин.

$$T_{o \textit{G}} = T_{\textit{mex}} + T_{\textit{opr}} \; \text{,}$$

где
$$T_{mex} = 1,5[12]; T_{ope} = 0,006$$
 мин [12].

$$T_{o6} = 1.5 + 0.006 = 1.506$$
 muh,

Время на перерыв по [12] принимаем

 $T_{nep} = 0.02$ мин.

 $T_{um} = 0.12 + 0.595 + 1.506 + 0.02 = 2.24$ мин.

$$T_{u\kappa} = T_{um} + \frac{T_{n3}}{n},$$

где $T_{n3} = 8$ мин [12]; n = 473 шт; $T_{um} = 2,31$ мин.

$$T_{\text{\tiny MK}} = 2,31 + \frac{8}{473} = 2,33$$
 мин

Операция 010. Токарная черновая.

Установ А.

$$T_o = \frac{L}{nS_o}$$
,

где L = 44мм; $S_0 = 0,3$ мм/об; n = 450 об/мин.

$$T_o = \frac{44}{450 \times 0.3} = 0,33$$
мин

$$T_{\scriptscriptstyle B} = T_{\acute{o}\~{n}} + \grave{O}_{\varsigma\^{i}} + \grave{O}_{\acute{o}\~{i}} + \grave{O}_{\grave{e}\varsigma} \, ,$$

где T_{yc} =0,1 мин [12]; T_{3o} =0,024 мин [12]; $T_{y\pi}$ =0,116мин [12];

 $T_{\text{\tiny M3}}$ =0,07 мин [12].

 $T_{e} = 0.1 + 0.024 + 0.116 + 0.07 = 0.31$ мин.

Установ Б. Переход 1.

$$T_o = \frac{L}{nS_o}$$
,

где L =164мм; S_0 =0,3мм/об; n =1000 об/мин.

$$T_o = \frac{164}{1000 \times 0.3} = 0,55$$
мин

Переход 2.

$$T_o = \frac{L}{nS}$$

где L =3,6мм; S_0 =0,5мм/об; n =850 об/мин.

$$T_o = \frac{3.6}{850 \times 0.3} = 0.014$$
 мин

Переход 3.

$$T_o = \frac{L}{nS_o}$$
,

где L =3,5мм; S_0 =0,3мм/об; n =850 об/мин.

$$T_o = \frac{3,5}{850 \times 0,3} = 0,014$$
мин

Переход 4.

$$T_o = \frac{L}{nS_o}$$
,

где L =12мм; S_0 =0,3мм/об; n =450 об/мин.

$$T_o = \frac{12}{450 \times 0.3} = 0.09$$
мин

Переход 5.

$$T_o = \frac{L}{nS_o}$$
,

где L =32мм; S_0 =0,3мм/об; n =1000 об/мин.

$$T_o = \frac{32}{1000 \times 0.3} = 0.11$$
 мин

Переход 6.

$$T_o = \frac{L}{nS_o}$$
,

где L =74мм; S_0 =0,4мм/об; n =1000 об/мин.

$$T_o = \frac{74}{1000 \times 0.4} = 0.19$$
мин

Переход 7.

$$T_o = \frac{L}{nS_o}$$
,

где L =12,5мм; S_0 =0,3мм/об; n =1000 об/мин.

$$T_o = \frac{12,5}{1000 \times 0,3} = 0,004$$
мин

Переход 8.

$$T_o = \frac{L}{nS_o}$$
,

где L =4,1мм; S_0 =0,15мм/об; n =650 об/мин.

$$T_o = \frac{4,1}{650 \times 0.15} = 0,04$$
мин

Вспомогательное время для установа А:

$$T_{B} = T_{\delta \tilde{n}} + \dot{O}_{\varsigma \hat{i}} + \dot{O}_{\delta \tilde{i}} + \dot{O}_{\dot{e}\varsigma}$$

где T_{yc} =0,1 мин [12]; T_{30} =0,024 мин [12]; T_{yn} =0,3мин [12];

 $T_{\text{из}} = 0,56$ мин [12].

$$T_{\rm g} = 0.1 + 0.024 + 0.3 + 0.56 = 0.98$$
 мин.

Основное время на всю операцию:

$$T_0 = 0.33 + 0.55 + 0.014 + 0.014 + 0.09 + 0.11 + 0.19 + 0.004 + 0.04 = 1.342$$
 мин.

Вспомогательное время на всю операцию:

$$T_{e} = 0.31 + 0.98 = 1.29$$
 мин.

Время обслуживания на всю операцию:

$$T_{o6} = T_{mex} + T_{ope}$$

где $T_{mex} = 3.9$ мин [12]; $T_{ope} = 0.06$ мин [12].

$$T_{ob} = 3.9 + 0.06 = 3.96$$
 мин ,

Время на перерыв по [12] принимаем

$$T_{nep} = 0.07$$
 мин.

$$T_{um} = 1,342 + 1,29 + 3,96 + 0,07 = 6,67$$
 мин.

$$T_{u\kappa} = T_{um} + \frac{T_{n3}}{n},$$

где $T_{n3} = 8$ мин [12]; n = 473 шт.

$$T_{\text{\tiny MK}} = 6,67 + \frac{8}{473} = 6,69 \text{\tiny MUH}$$

Операция 015. Токарная чистовая.

Переход 1.

$$T_o = \frac{L}{nS_o}$$
,

где L =81мм; S_0 =0,15мм/об; n =1000 об/мин.

$$T_o = \frac{81}{1000 \times 0.15} = 0.54$$
мин

Переход 2.

$$T_o = \frac{L}{nS_o}$$
,

L = 4,5мм; $S_0 = 0,15$ мм/об; n = 1000 об/мин.

$$T_o = \frac{4,5}{1000 \times 0,15} = 0,03$$
мин

Переход 3.

$$T_o = \frac{L}{nS_o}$$
,

где L =74мм; S_0 =0,15мм/об; n =1250 об/мин.

$$T_o = \frac{74}{1250 \times 0,15} = 0,39$$
мин

Основное время на всю операцию:

$$T^{\circ} = 0,54+0,03+0,39=0,96$$
 мин.

Вспомогательное время:

$$T_{\scriptscriptstyle B} = T_{\acute{o}\~{n}} + \grave{O}_{\varsigma\~{i}} + \grave{O}_{\acute{o}\~{i}} + \grave{O}_{\grave{e}\varsigma}$$

где T_{yc} =0,1 мин [12]; T_{so} =0,024 мин [12]; $T_{y\pi}$ =0,1мин [12];

$$T_{\text{из}} = 0,27$$
 мин [12].

$$T_{\text{\tiny B}} = 0,1+0,024+0,1+0,27=0,49$$
 мин.

Время обслуживания на всю операцию:

$$T_{ob} = T_{mex} + T_{ope}$$
 ,

где $T_{mex} = 1,34$ мин [12]; $T_{ope} = 0,09$ мин [12].

$$T_{o6} = 1.34 + 0.09 = 1.43$$
 MuH,

Время на перерыв по [12] принимаем

 $T_{nep} = 0,04$ мин.

 $T_{um} = 0.96 + 0.49 + 1.43 + 0.04 = 2.92$ мин.

$$T_{uik} = T_{uim} + \frac{T_{n3}}{n},$$

где $T_{n_3} = 7$ мин [12]; n = 473 шт.

$$T_{uik} = 2,92 + \frac{7}{473} = 2,94$$
 muh

Операция 020. Шпоночно-фрезерная.

Переход 1.

$$T_o = \frac{L}{S_M},$$

где L = 18 мм; $S^{\text{M}} = 25,2$ мм/мин.

$$T_o = \frac{18}{25.2} = 0,71$$
мин.

Переход 2.

$$T_o = \frac{L}{S_M},$$

где L = 40 мм; $S^{\text{M}} = 31,5$ мм/мин.

$$T_o = \frac{40}{31.5} = 1,27$$
 мин.

Основное время на всю операцию:

$$T^{\circ} = 1,27+0,71=1,98$$
 мин.

Вспомогательное время на всю операцию:

63

$$T_{\scriptscriptstyle B} = T_{\acute{o}\~{n}} + \grave{O}_{\varsigma\^{i}} + \grave{O}_{\acute{o}\~{i}} + \grave{O}_{\grave{e}\varsigma}$$

где T_{yc} =0,053 мин [12]; T_{so} =0,042 мин [12]; $T_{y\pi}$ =0,18мин [12];

 $T_{\text{из}} = 0,3$ мин [12].

 $T_{\text{\tiny B}} = 0.053 + 0.042 + 0.18 + 0.3 = 0.575$ мин.

Время обслуживания на всю операцию:

$$T_{o6} = T_{mex} + T_{ope}$$

где T_{mex} - затраты времени на техническое обслуживание; $T_{mex}=1,8$ мин [12];

 T_{opz} - время организационного обслуживания рабочего места; T_{opz} = 0,17 мин [12].

$$T_{o6} = 1.8 + 0.17 = 1.97 \text{ MUH}$$

Время на перерыв по [12] принимаем

 $T_{nep} = 0.07$ мин.

$$T_{um} = 1,98 + 0,575 + 1,97 + 0,07 = 4,6$$
 мин.

$$T_{u\kappa} = T_{um} + \frac{T_{n3}}{n},$$

где T_{n3} = 12 мин [12]; n = 473 шт.

$$T_{uk} = 4.6 + \frac{12}{473} = 4.63$$
 мин

Операция 025. Зубофрезерная.

Глубина зубофрезерования за один оборот фрезы:

$$h = S \cdot z_{\hat{e}},$$

где $\, z_{\text{\tiny M}} = \! 16 \,$ - число зубьев инструмента

 $h=0,01\times16=0,16$ mm.

Для обработки зуба на полную высоту требуется оборотов:

$$n_{\hat{o}} = \frac{h_z}{h}$$

где h_z =8мм.

$$n_{\Phi} = 8/0,16=50$$
 of.

Количество оборотов для обработки всех зубьев шестерни:

$$n_{\hat{o}.\hat{i}\hat{a}\hat{u}} = n_{\hat{o}} \cdot z_{\ddot{a}}$$

где
$$z_{\text{Д}} = 13$$
.

$$n_{\Phi \text{ общ}} = 50 \times 13 = 650 \text{ об.}$$

Время обработки для базового варианта

$$T = \frac{n_{\Phi O B I I I}}{V}$$

$$T = \frac{650}{60} = 10.8$$
 мин

Время обработки для проектного варианта

$$T = \frac{650}{80,38} = 8,54$$
 мин

С учетом времени, затрачиваемого на выполнение движения деления при переходе обработки одного зуба на другой, за один переход затрачивается 0,8 мин [12].Тогда для всех зубьев — 10,4 мин.

Основное время для базового варианта

$$T_O = 10,4 + 10,8 = 21,2$$
мин

Основное время для проектного варианта

$$T_O = 8,54 + 10,8 = 18,84$$
 мин

Вспомогательное время:

$$T_{B} = T_{\delta\tilde{n}} + \dot{O}_{\varsigma\hat{i}} + \dot{O}_{\delta\tilde{i}} + \dot{O}_{\dot{e}\varsigma}$$

где T_{yc} =0,31 мин [12]; T_{30} =0,02 мин [12]; $T_{y\pi}$ =0,57мин [12];

 $T_{\text{из}}$ =0,23 мин [12].

$$T_{\text{\tiny B}} = 0.31 + 0.02 + 0.57 + 0.23 = 1.13$$
 мин.

Время обслуживания на всю операцию:

$$T_{ob} = T_{mex} + T_{ope}$$
 ,

где
$$T_{mex} = 3,4$$
мин [12]; $T_{ope} = 1,45$ мин [12].

$$T_{o6} = 3.4 + 1.45 = 4.85$$
 MuH

Время на перерыв по [12] принимаем

 $T_{nep} = 0,56$ мин.

Для базового варианта штучное время

$$T_{um} = 21,2 + 1,13 + 4,85 + 0,56 = 27,76$$
мин.

Для проектного варианта (применение электроакустического напыления)

штучное время

$$T_{um} = 18,94 + 1,13 + 4,85 + 0,56 = 25,48$$
мин.

$$T_{u\kappa} = T_{um} + \frac{T_{n3}}{n},$$

где T_{n3} - подготовительно-заключительное время; $T_{n3} = 15$ мин [12];

n – объем партии запуска заготовок; n = 473 шт.

Для базового варианта

$$T_{\text{шк}} = 27,76 + \frac{15}{473} = 27,79$$
мин

Для проектного варианта

$$T_{\text{\tiny MK}} = 25,48 + \frac{15}{473} = 25,51$$
 мин

Операция 035. Центрошлифовальная.

$$T_o = \frac{L}{S_B B_{\kappa} n_{\delta}} \times \frac{a}{S_2},$$

где L=10 мм; $\overset{\text{в}}{S}=0,3$ мм/об; $\overset{\text{к}}{B}=12$ мм; $\overset{\text{д}}{n}=3000$ об/мин; a=0,1 мм;

 $S^2 = 1,31$ мм/мин.

$$T_o = \frac{10}{0,003 \times 12 \times 3000} \times \frac{0,1}{1,31} = 0,1$$
мин,

Вспомогательное время:

$$T_{\scriptscriptstyle B} = T_{\acute{o}\~{n}} + \grave{O}_{\varsigma\~{i}} + \grave{O}_{\acute{o}\~{i}} + \grave{O}_{\grave{e}\varsigma}$$

где T_{yc} =0,24 мин [12]; T_{30} =0,04 мин [12]; $T_{y\pi}$ =0,21мин [12]; T_{u3} =0,1 мин [12].

$$T_{\rm g} = 0.24 + 0.04 + 0.21 + 0.1 = 0.59$$
 мин.

Время обслуживания на всю операцию:

$$T_{ob} = T_{mex} + T_{ope}$$

где $T_{mex} = 0,9$ мин [12]; $T_{ope} = 0,05$ мин [12].

$$T_{o6} = 0.9 + 0.05 = 0.95$$
 MuH,

Время на перерыв по [12] принимаем

 $T_{nep} = 0.02$ мин.

$$T_{um} = 0.1 + 0.59 + 0.95 + 0.02 = 1.66$$
 мин.

$$T_{u\kappa} = T_{um} + \frac{T_{n3}}{n},$$

где $T_{n3} = 7$ мин [12]; n = 473 шт.

$$T_{u\kappa} = 1,66 + \frac{7}{473} = 1,67 \,\text{MuH}$$

Операция 040. Круглошлифовальная.

Переход 1.

$$T_o = \frac{L}{S_B B_{\kappa} n} \times \frac{a}{S_2} ,$$

$$T_o = \frac{35}{0,009 \times 25 \times 315} \times \frac{0,15}{0,98} = 0,15$$
мин

Переход 2.

$$T_o = \frac{L}{S_B B_{\kappa} n} \times \frac{a}{S_2},$$

где L=57 мм; n =315 об/мин;

 $\stackrel{\text{в}}{S}$ – поперечная подача, мм/об; $\stackrel{\text{в}}{S}$ =0,008 мм/об;

 S^{2} =1,75 мм/мин; B^{κ} =30 мм; a = 0,25 мм.

$$T_o = \frac{57}{0,008 \times 30 \times 315} \times \frac{0,25}{1,75} = 0,21$$
мин

Вспомогательное время:

$$T_{\scriptscriptstyle B} = T_{\acute{o}\~{n}} + \grave{O}_{\varsigma\~{i}} + \grave{O}_{\acute{o}\~{i}} + \grave{O}_{\grave{e}\varsigma} \, ,$$

где T_{yc} =0,1 мин [12]; T_{30} =0,034 мин [12]; $T_{y\pi}$ =0,15мин [12];

 $T_{\text{из}}$ =0,28 мин [12].

$$T_{e} = 0,1+0,034+0,15+0,28=0,564$$
 мин.

Время обслуживания на всю операцию:

$$T_{o6} = T_{mex} + T_{ope}$$

где $T_{mex} = 3$ мин [12]; $T_{ops} = 0.05$ мин [12].

$$T_{ob} = 3 + 0.05 = 3.05$$
 мин

Время на перерыв по [12] принимаем

 $T_{nep} = 0.02$ мин.

$$T_{um} = 0.21 + 0.564 + 3.05 + 0.02 = 3.84$$
 мин.

$$T_{u\kappa} = T_{um} + \frac{T_{n3}}{n},$$

где $T_{n3} = 7$ мин [12]; n = 473 шт.

$$T_{\text{wk}} = 3,84 + \frac{7}{473} = 3,86 \text{мин}$$

Операция 045. Резьбошлифовальная.

$$T_o = \frac{1.5L}{S_{pad}n},$$

где L=1,5 мм; n =315 об/мин;

 $S^{pag} = 0,003$ мм/об.

$$T_o = \frac{1,5 \times 1,5}{0.003 \times 315} = 2,3$$
мин

Вспомогательное время:

$$T_{\scriptscriptstyle B} = T_{\acute{o}\~{n}} + \grave{O}_{\varsigma\^{i}} + \grave{O}_{\acute{o}\~{i}} + \grave{O}_{\grave{e}\varsigma}$$

где T_{yc} =0,08 мин [12]; T_{30} =0,034 мин [12]; T_{yn} =0,06мин [12];

 $T_{\text{из}} = 0,24$ мин [12].

$$T_{s} = 0.08 + 0.034 + 0.06 + 0.24 = 0.414$$
 мин.

Время обслуживания:

$$T_{o6} = T_{mex} + T_{ope}$$

где $T_{mex} = 1,5$ мин [12]; $T_{ope} = 0,18$ мин [12].

$$T_{o6} = 1.5 + 0.18 = 1.68$$
 muh,

Время на перерыв по [12] принимаем

 $T_{nep} = 0,07$ мин.

$$T_{um} = 2,3 + 0,414 + 1,68 + 0,07 = 4,46$$
мин.

$$T_{u\kappa} = T_{um} + \frac{T_{n3}}{n},$$

где $T_{n_3} = 7$ мин [12]; n = 473 шт.

$$T_{uik} = 4,46 + \frac{7}{473} = 4,48$$
 muh

Операция 050. Шлифовальная чистовая.

$$T_o = \frac{3}{n_o S_{pao}},$$

где L=3 мм; n =320 об/мин;

 $S^{pag} = 0.009 \text{ mm/of.}$

$$T_o = \frac{3}{0,009 \times 320} = 1,04$$
мин

$$T_{B} = T_{\acute{o}\acute{n}} + \grave{O}_{\varsigma \hat{i}} + \grave{O}_{\acute{o}\ddot{i}} + \grave{O}_{\grave{e}\varsigma}$$

где T_{yc} =0,08 мин [12]; T_{so} =0,034 мин [12]; $T_{y\pi}$ =0,08мин [12];

 $T_{\text{из}} = 0,28$ мин [12].

 $T_{e} = 0.08 + 0.034 + 0.08 + 0.28 = 0.474$ мин.

$$T_{o6} = T_{mex} + T_{ope},$$

где $T_{mex} = 1,6$ мин [12]; $T_{ope} = 0,03$ мин [12].

$$T_{o6} = 1.6 + 0.03 = 1.63$$
 muh,

Время на перерыв по [12] принимаем

 $T_{nep} = 0,01$ мин.

 $T_{um} = 1,04 + 0,474 + 1,63 + 0,01 = 3,15$ мин.

$$T_{u\kappa} = T_{um} + \frac{T_{ns}}{n},$$

где $T_{n3} = 7$ мин [12]; n = 473 шт.

$$T_{uik} = 3,15 + \frac{7}{473} = 3,17 MuH$$
.

3 ПРОЕКТИРОВАНИЕ СТАНОЧНОГО ПРИСПОСОБЛЕНИЯ

3.1 Описание устройства приспособления для шпоночно-фрезерной операции.

На плиту 1 устанавливаются призмы 7 и закрепляются штифтами 8 и винтами 9. Для предотвращения перемещения вала вдоль оси на плиту 1 закрепляется упор 5. Этот упор соединяется со штоком цилиндра, обеспечивая необходимые усилия крепления через прихват 2, прижимающий деталь к опорным поверхностям призм.

Плита приспособления 1 вместе с вспомогательной плитой устанавливается на стол станка, расположив его шпонки над станочным пазами.

На призмы 7 приспособления устанавливается деталь до соприкосновения с торцом упора 5. В полость пневмоцилиндра подается воздух и шток с опорой 4 движется вверх, надавливая на прихват 2, который закрепляет деталь. Обрабатывают паз. Отключают пневмоцилиндр. Шток под действием пружины опускается вместе с прихватом 2, деталь раскрепляется.

Для снятия изгибающего момента при обработке шпоночного паза устанавливаем дополнительную регулируемую опору, обеспечивающую жесткость системы при обработке.

Станочное приспособление позволяет уменьшить вспомогательное время, благодаря использованию пневмопривода.

3.2 Расчет силы вдавливания рифленого центра в деталь.

На чистовой токарной операции применяем рифленый поводковый центр, чтобы обработать деталь в один установ. Для этого необходимо рассчитать силу вдавливания. [13, 14]

Осевая сила зажима обрабатываемой детали с механизированным приводом пиноли задней бабки станка Q:

$$Q = K \sqrt{P_z^2 + (P_y - P_x \frac{D}{2L})^2} \times \frac{1 - tg(\beta + \varphi_1)(3l/a)tg\varphi_2}{tg(\beta + \varphi_1)}, \qquad (3.1)$$

где К – коэффициент запаса; К=1,5;

 P_{x} , P_{y} , P_{z} – составляющие сил резания, H;

D – диаметр обрабатываемой поверхности детали, мм;

L – длина обрабатываемой детали, мм;

 β — угол между образующей конуса центра задней бабки и осью суппорта, град; β =60°;

 ϕ_1 – угол трения на поверхности конуса центра, град; ϕ_1 =3°;

 ϕ_2 — угол трения на поверхности пиноли задней бабки станка, град; ϕ_2 =3°;

l — расстояние от середины центрового отверстия до середины пиноли, мм; l=100 мм;

а – длина пиноли задней бабки, мм; а=120 мм.

Составляющие сил резания P_x , P_y , P_z рассчитываем по справочнику [13]. Получаем P_z =1,75 H; P_y =0,343 H; P_x =1153,79 H.

$$Q = 1.5 \times \sqrt{1.75^2 + (0.343 - 1153.79 \times \frac{35}{2 \times 28})^2} \times \frac{1 - tg(60 + 3)(3 \times 100/120)tg3}{tg(60 + 3)} = 58.9H$$

Проверим данную силу по следующим формулам:

$$Q \ge \pi P_{y} t g \frac{\beta'}{2} \times \frac{D}{D_{1}}, \tag{3.2}$$

$$Q \ge \frac{2P_z tg(\gamma/2)}{\sin(\alpha/2)} \times \frac{D}{D_1},\tag{3.3}$$

где D_1 – диаметр окружности расположения поводков, мм; D_1 =10 мм;

 β' – угол при вершине поводка, град; β' =60°;

 α – угол при вершине центра, град; α =60°;

 γ – угол при вершине сечения рифа, град; γ =90°.

При $\beta' = 60^{\circ}$, $\alpha = 60^{\circ}$, $\gamma = 90^{\circ}$ формулы имеют следующий вид:

$$Q \ge 1.8P_{\bar{y}} \frac{D}{D_{1}},\tag{3.4}$$

$$Q \ge 4P_{\bar{y}} \frac{D}{D_{1}}.\tag{3.5}$$

$$Q \ge 1.8 \times 1.75 \times \frac{35}{10}$$
; $Q \ge 4 \times 1.75 \times \frac{35}{10}$

 $58,9H \ge 11,03H$; $58,9H \ge 24,5H$

Условия неравенства выполняются, значит можно использовать рифленый центр.

4 ПРОЕКТИРОВАНИЕ РЕЖУЩЕГО ИНСТРУМЕНТА

Спроектируем режущий инструмент для зубофрезерной операции – резцовую чистовую двухстороннюю головку для нарезания конических колес с круговыми зубьями.

Зуборезная резцовая головка представляет собой торцовую фрезу специального назначения. Двухсторонние головки снабжены чередующимися наружными и внутренними резцами. Каждый резец обрабатывает соответствующую боковую сторону и часть впадины зуба. вершины режущих кромок наружного и внутреннего резцов находятся на различных расстояниях от оси головки, называемых образующими радиусами, разность между которыми будет разводом резцов. [15]

Основной частью резцовой головки является цилиндрический корпус, в пазы которого вставляются резцы, закрепляемые винтами. Резец в радиальном направлении регулируется прокладкой и клином. Перемещение клина производится винтом. Два соседних клина не имеют регулировки. В этих пазах устанавливаются базовые резцы, и относительно них производится выверка остальных резцов головки. В качестве опорной базы у резцов используется выступ с противоположной стороны режущей кромки, которым резец опирается на торец корпуса. Количество резцов в резцовой головке зависит от диаметра головки и ее назначения.

Корпус головки имеет отверстие для центрирования при посадке на шпиндель станка конусностью 1:24. Крепление производится четырьмя винтами. С целью повышения точности на корпусе головки выполняют кольцевую выточку, используют закрепление головки одним центральным винтом с откидной планкой, что уменьшает деформации корпуса при закреплении головки на шпинделе станка. Винты для крепления резцов располагаются под углом 10° к торцовой плоскости корпуса, что способствует лучшему прилеганию заплечиков резцов к опорному торцу корпуса.

Режущие кромки резцов в процессе обкатного движения головки копируют зуб производящего вала и образуют впадину нарезаемого колеса.

4.1 Расчет режущей части.

Основным размером головки, характеризующим ее, является номинальный диаметр d_0 — диаметр окружности, проходящей через середину расстояния между вершинами наружных и внутренних резцов. Ориентировочно у головок для колес с равнопонижающими зубьями

$$d_0 = L/\sin\beta, \tag{4.1}$$

где L – длина образующей начального конуса до средней точки зуба;

β – угол наклона зуба нарезаемого колеса в его средней точке.

Номинальный диаметр d₀ выбираем по ГОСТ 11902-77:

$$d_0 = 160 \text{ MM}.$$

Настроечными рабочими размерами головок являются:

- диаметры: образующие наружные d_{0e} и внутренние d_{0i} ;
- развод резцов W;
- размеры профиля режущей кромки K: высота профиля h_0 и углы профиля наружных α_{0e} и внутренних α_{0i} резцов, ширина вершины резца s_{a0} ;
 - диаметры: производящий наружный D_{enp} и внутренний D_{inp} и др.

Развод резцов W – расстояние между вершинами наружных и внутренних резцов, определяет ширину дна впадины у нарезаемого вала-шестерни. По ГОСТ 11902-77 принимаем:

$$W = 2,6 \text{ MM}.$$

Диаметры, образующие наружные d_{0e} и внутренние d_{0i} — диаметры окружностей, проходящие через вершины соответственно наружных и внутренних резцов, при симметричном расположении резцов:

$$d_{0e} = d_0 + W;$$
 (4.2)

$$d_{0i} = d_0 - W. (4.3)$$

 $d_{0e} = 160 + 2,6 = 162,6 \text{ MM};$

$$d_{0i}$$
 = 160 $-$ 2,6=157,4 mm.

Производящие диаметры наружный D_{enp} и внутренний D_{imp} определяют кривизны продольной формы нарезанных зубьев вала в сечении делительным конусом; условия контакта сопряженных зубьев колес пары в средних точках по длине зубьев определяются величинами:

$$D_{emp} = d_{0e} + 2htg\alpha_{oe}; \tag{4.4}$$

$$D_{inp} = d_{0i} - 2htg\alpha_{oi}, \qquad (4.5)$$

где h – высота ножки зуба нарезаемого вала; h =7,96 мм.

По ОСТ 2 И45-5-79 принимаем:

$$\alpha_{oe}=10^{\circ}; \alpha_{oi}=30^{\circ}.$$

$$D_{emp} = 162,6+2\times7,96\times tg10^{\circ} = 165,4 \text{ MM};$$

$$D_{imp} = 157,4 -2 \times 7,96 \times tg30^{\circ} = 148,2 \text{ MM}.$$

Регулирование (настройка) d_{0e} , d_{0i} , D_{emp} , D_{imp} производится сменными подкладками и клиньями с помощью винтов.

4.2 Выбор хвостовой части.

Крепление и базирование резцов в пазах головки осуществляется с помощью хвостовика прямоугольного сечения. Плоскость хвостовика резца, обращенную к оси головки, называют базовой. Рабочая (режущая) часть резца имеет трапецеидальную форму с двумя режущими кромками боковой (рабочей, профилирующей) и на вершине резца; вторая боковая сторона головки резца в работе не участвует.

Так как направление линии зуба вала-шестерни — левое, проектируем леворежущую зуборезную головку.

Составные резцы головки изготавливаются из быстрорежущей стали.

Остальные данные и размеры для проектирования берем из ГОСТ 11902-77, ГОСТ 11903-77, ГОСТ 11906-77, ОСТ 2 И45-4-79, ОСТ 2 И45-5-79.

5 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА

Пользуясь [7] проведем анализ безопасности и экологичности технического объекта.

Тема выпускной квалификационной работы: «Разработка технологического процесса изготовления вала-шестерни редуктора насоса».

5.1 Конструктивно-технологическая характеристика объекта.

Таблица 5.1 - Технологический паспорт объекта

No	Технологиче	Технологичес	Наименование	Оборудование	Материал
п/п	ское	кая операция,	должности	, устройство,	ы,
11/11	устройство	вид	работника,	приспособлен	вещества
	устронство	выполняемых	выполняющего	ие	Вещества
		работ	технологически	ric .	
		paooi			
			F ,		
	<u> </u>	000	операцию	TTT	
1	Фрезеровани	Операция 020	Станочник-	Шпоночно-	Сталь
	e	Шпоночно-	фрезеровщик	фрезерный	40X;
	шпоночного	фрезерная		станок модели	быстроре
	паза			692Д;	ж. сталь
				приспособлен	P6M5;
				ие	СОЖ-
				автоматизиро	НГЛ-205
				ванное с	
				призмами	
2	Фрезеровани	Операция 025	Станочник-	Зубофрезерны	Сталь
	е зубьев	Зубофрезерна	зубообработчик	й станок	40X;
		Я		модели 525;	быстроре
				приспособлен	ж. сталь
				ие	P6M5;
				специальное	СОЖ-
				·	НГЛ-205

5.2 Идентификация производственно-технологических и эксплуатационных профессиональных рисков.

Таблица 5.2 – Идентификация профессиональных рисков.

No	Производственно-	Опасный и /или	Источник опасного или
п/п	технологическая	вредный	вредного
	и/или	производственный	производственного
	эксплуатационно-	фактор	фактора
	технологическая		
	операция, вид		
	выполняемых работ		
1	Операция 020	1) Повышенный	Шпоночно-фрезерный
	Шпоночно-	уровень шума на	станок модели 692Д
	фрезерная	рабочем месте.	
		2) Повышенный	
		уровень вибрации.	
		3) В связи с	
		использование	
		СОЖ повышенная	
		загазованность на	
		рабочем месте.	
2	Операция 025	1) Повышенный	Зубофрезерный станок
	Зубофрезерная	уровень шума на	модели 525
		рабочем месте.	
		2) Повышенный	
		уровень вибрации.	
		3) В связи с	
		использование	
		СОЖ повышенная	
		загазованность на	
		рабочем месте.	

5.3 Методы и технические средства снижения профессиональных рисков.

Таблица 5.3 – Методы и средства снижения воздействия опасных и вредных производственных факторов (уже реализованных и дополнительно или альтернативно предлагаемых для реализации в рамках выпускной работы).

No	Опасный или вредный	Организационные	Средства
п/п	производственный	методы и технические	_
	фактор ¹	средства защиты,	защиты работника ³
	T T	снижения, устранения	
		опасного и / или	
		вредного	
		производственного	
		фактора ²	
1	Повышенный уровень	Станочник работает за	Костюм хлопчато-
	шума на рабочем	станком, надев	бумажный или
	месте на шпоночно-	защитные наушники	вискозно-
	фрезерной и		лавсановый.
	зубофрезерной		Наушники
	операции		защитные
2	Повышенный уровень	Станок установлен на	Костюм и брюки
	вибрации на	демпфирующие	хлопчато-
	шпоночно-фрезерной	опоры	бумажные или
	и зубофрезерной		вискозно-
	операции		лавсановый;
			ботинки кожаные;
			рукавицы
			хлопчатобумажные.
3	В связи с		Респиратор
	использование СОЖ	1	защитный
	повышенная	быть одет в	
	загазованность на	респиратор	
	рабочем месте.		

- 5.4 Обеспечение пожарной и техногенной безопасности рассматриваемого технического объекта (производственно-технологических эксплуатационных и утилизационных процессов).
 - 5.4.1 Идентификация опасных факторов пожара.

Таблица 5.4 – Идентификация классов и опасных факторов пожара.

N₂	Участок,	Оборудование	Кла	Опасные факторы	Сопутствующие
п/п	подраздел		CC	пожара	проявления
	ение		жоп		факторов пожара
			ара		
1	Цех	Шпоночно-	E	1) пламя и искры;	1) вынос
	механичес	фрезерный		2) тепловой	(замыкание)
	кой	станок		поток;	высокого
	обработки	модели 692Д;		3) пониженная	электрического
		Зубофрезерны		концентрация	напряжения на
		й станок		кислорода;	токопроводящие
		модели 525		4) снижение	части
				видимости в дыму	технологических
				(задымленных	установок,
				пространственных	оборудования,
				зонах).	агрегатов,
					изделий и иного
					имущества;
					2) образующиеся
					в процессе
					пожара осколки,
					части
					разрушившихся
					производственног
					о и инженерно-
					технического
					оборудования.

5.4.2. Разработка технических средств и организационных мероприятий по обеспечению пожарной безопасности технического объекта.

Таблица 5.5 - Технические средства обеспечения пожарной безопасности.

Первич	Мобил	Стацион	Средства	Пожар	Средств	Пожарн	Пожарн
ные	ьные	арные	пожарной	ное	a	ый	ые
средств	средст	установ	автомати	оборуд	индивид	инструм	сигнали
a	ва	КИ	ки	ование	уальной	ент	зация,
пожаро	пожар	системы			защиты	(механи	связь и
тушени	отуше	пожарот			И	зирован	оповеще
Я	ния	ушения			спасени	ный и	ние.
					я людей	немехан	
					при	изирова	
					пожаре	нный)	
Огнету	Пожар	Пожарн	Автома-	Напор	Респира	Лопаты,	Автомат
шители	ные	ые гид-	тизиро-	ные	торы,	ломы,	ические
, ящики	автомо	ранты	ваные	пожар-	противо	ведра	датчики
С	били,		средства	ные	газы		И
песком	пожар		пожаро-	рукава			извещат
	ные		оповещен	,			ели
	лестни		ия	гидран			
	цы			ты			

5.4.3 Организационные (организационно-технические) мероприятия по предотвращению пожара.

Таблица 5.6 – Организационные (организационно-технические) мероприятия по обеспечению пожарной безопасности.

Наименование	Наименование	Предъявляемые
технологического	видов	требования по
процесса,	реализуемых	обеспечению
оборудования	организационных	пожарной
технического объекта	(организационно-	безопасности,
	технических)	реализуемые эффекты
	мероприятий	
Шпоночно-фрезерный	Проведение	Запрет на курение и на
станок модели 692Д	инструктажа по	применение открытого
	пожарной	огня в цехе. Применение
	безопасности.	средств автоматического
	Применение	оповещения и
	автоматических	пожаротушения в цехе.
	приборов	
	оповещения.	
	Контроль правильной	

Продолжение табл. 5.6

		эксплуатации	
		оборудования.	
Зубофрезерный	станок	Проведение	Запрет на курение и на
модели 525		инструктажа по	применение открытого
		пожарной	огня в цехе. Применение
		безопасности.	средств автоматического
		Применение	оповещения и
		автоматических	пожаротушения в цехе.
		приборов	
		оповещения.	
		Контроль правильной	
		эксплуатации	
		оборудования.	

5.5 Обеспечение экологической безопасности рассматриваемого технического объекта.

Таблица 5.7 – Идентификация экологических факторов технического объекта.

Наименовани	Структурные	Воздейств	Воздейст	Воздействие
e	составляющие	ие	вие	технического
технического	технического	техническ	техническ	объекта на
объекта,	объекта,	ого	ого	литосферу
технологичес	технологического	объекта на	объекта	(почву,
кого процесса	процесса	атмосферу	на	растительный
	(производственного	(вредные	гидросфе	покров, недра)
	здания или	и опасные	рy	(образование
	сооружения по	выбросы в	(образую	отходов,
	функциональному	окружающ	щие	выемка
	назначению,	ую среду)	сточные	плодородного
	технологические		воды,	слоя почвы,
	операции,		забор	отчуждение
	оборудование),		воды из	земель,
	энергетическая		источник	нарушение и
	установка		ОВ	загрязнение
	транспортное		водоснаб	растительного
	средство и т.п.		жения)	покрова и т.д.)
Фрезерование	Шпоночно-	Газ от	Исполь-	Возможно
шпоночного	фрезерный станок	испарения	зованная	попадание
паза	модели 692Д	СОЖ	СОЖ	использованной
				СОЖ а почву.
				Возможно

Продолжение табл. 5.7

тродолжение з	40011 517			
				попадание
				стружки в
				почву.
Фрезерование	Зубофрезерный	Газ от	Использо	Возможно
зубьев	станок модели 525	испарения	ванная	попадание
1		СОЖ	СОЖ	использованной
				СОЖ а почву.
				Возможно
				попадание
				стружки в
				почву.

Разработка мероприятия по снижению негативного антропогенного воздействия на окружающую среду рассматриваемого технического объекта.

Таблица 5.8 – Разработанные организационно-технические мероприятия по снижению негативного антропогенного воздействия технического объекта на окружающую среду.

Наименование технического объекта	Фрезерование шпоночного паза, фрезерование зубьев
Мероприятия по снижению негативного антропогенного воздействия на атмосферу	Применение герметичной камеры на шпоночно-фрезерном станке. Применение герметичной камеры на зубофрезерном станке.
Мероприятия по снижению негативного антропогенного воздействия на гидросферу	Применение централизованного сбора и утилизации стружки.
Мероприятия по снижению негативного антропогенного воздействия на литосферу	Соблюдение на предприятии хранения и регулярности утилизации отходов. Возможность использования стружки для производства сырья.

5.6 Заключение.

В результате анализа на безопасность и экологичность технического объекта были разработаны меры по предупреждению возникновения травм

от опасных и вредных производственных факторов на участке механической обработки. Выполнено оснащение модернизированных операций средствами пожаротушения и пожарооповещения. Для предупреждения загрязнения экологичности разработаны мероприятия по снижению антропогенного воздействия технических объектов участка на окружающую среду.

6 ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ РАБОТЫ

Цель раздела – рассчитать технико-экономические показатели проектируемого технологического процесса и произвести сравнительный анализ с показателями базового варианта, определить экономический эффект от предложенных в работе технических решений.

Рассмотрим предлагаемые совершенствования на предмет экономической обоснованности внедрения изменений в ТП изготовления детали «вал-шестерня». Подробная информация, касающаяся технологического процесса, рассмотрена в предыдущих разделах, поэтому считаем необходимым указать только отличия между вариантами процесса изготовления детали.

Базовый вариант.

Операция 020 — Шпоночно-фрезерная. Заготовка обрабатывается на шпоночно-фрезерном станке 692Д. Детали закрепляется в приспособление с призмами. Обработка ведется шпоночной фрезой из быстрорежущей стали P6M5.

Проектный вариант.

Отличительной особенностью выполнения представленной операции 020 в проектном варианте является применяемое приспособление. В данном случае закрепление осуществляется автоматизированным приспособлением с призмами.

Представленные изменения позволяют сократить вспомогательное время выполнения операции с 0,82 мин. до 0,51 мин. Благодаря этим изменениям достигли снижения и общей трудоемкости выполнения всей операции с 1,72 мин до 1,46 мин.

Учитывая описанные изменения, осуществим экономические расчеты, которые позволят сделать обоснованное заключение о целесообразности внедрения данного процесса.

Представив краткое описание предлагаемых изменений, возникает необходимость рассчитать капитальные вложения в проектируемый вариант

технологического процесса. Используя методику расчета капитальных вложений [20] мы определили данную величину, которая составляет $K_{BB,\Pi P} = 38970,05$ руб. Эти денежные средства потребуются нам на приобретение нового приспособления, объемов незавершенного производства и затрат, связанных с проектированием технологического процесса.

Учитывая то, что метод получения заготовки и ее материал по вариантам не изменились, поэтому расчет технологической себестоимости будем осуществлять без затрат на материал, т.к. эти значения существенного влияния на конечный результат не оказывают. На базе полученных данных и с применением методики составления калькуляции полной себестоимости [20] мы рассчитываем ее значения для выполнения операции 020.

Согласно расчетам по базовому варианту полная себестоимость без учета затрат на материал, как обосновывалось ранее, составила 35,05 руб.; а по проектному варианту – 32,98 руб.

Далее проведем экономическое обоснование предложенных изменений. Для этого будем использовать методику расчета показателей экономической эффективности [20], согласно которой мы получаем следующие данные.

$$\Pi_{P.OK} = \mathcal{O}_{Y\Gamma} = \left(C_{\Pi O \Pi (EA3)} - C_{\Pi O \Pi (\Pi P)} \right) \cdot \Pi_{\Gamma} \quad py6. \tag{6.1}$$

 $\Pi_{\text{\tiny P.O.M}} = \mathcal{O}_{\text{\tiny YT}} = (35,05 - 32,98) \cdot 5000 = 10350 \ \text{py6.}$

$$H_{\text{приб}} = \Pi_{\text{P.ОЖ}} \cdot K_{\text{HAЛ}} \text{ руб.}$$
 (6.2)

$$\Pi_{P.YUCT} = \Pi_{P.OЖ} - H_{\Pi P U B} \quad py 6. \tag{6.3}$$

 $\Pi_{P,YUCT} = 10350 - 2070 = 8280$ py6.

$$T_{OK.PACY} = \frac{K_{BB.\Pi P}}{\Pi_{P.YMCT}} + 1, \quad zoda$$
 (6.4)

$$T_{OK.PAC4} = \frac{38970,05}{8280} + 1 = 5,71 = 6$$
 лет

$$\mathcal{A}_{\mathcal{A}UCK.OBIU} = \Pi_{P.YUCT.\mathcal{A}UCK}(T) = \sum_{1}^{T} \Pi_{P.YUCT} \cdot \frac{1}{(1+E)^{t}}, \text{ py6.}$$
(6.5)

$$\mathcal{A}_{OBIJI,\mathcal{D}ICK} = \Pi_{P.ЧИСТ.\mathcal{D}ICK}(T) = 8280 \begin{bmatrix} \frac{1}{\left(1+0,2\right)^{1}} + \frac{1}{\left(1+0,2\right)^{2}} + \frac{1}{\left(1+0,2\right)^{3}} + \frac{1}{\left(1+0,2\right)^{4}} + \frac{1}{\left(1+0,2\right)^{5}} + \\ \frac{1}{\left(1+0,2\right)^{6}} \end{bmatrix} = 0$$

= 4143472 руб

$$\Theta_{\text{ИНТ}} = \Psi \mathcal{I} \mathcal{I} \mathcal{I} = \mathcal{I}_{\text{ОБЩ.ДИСК}} - K_{\text{BB.ПР}} \text{ руб.}$$
 (6.6)

 $\Theta_{\mathit{ИHT}} = \mathit{ЧДД} = 41434,72 - 38970,05 = 2464,67$ руб.

$$И\!\mathcal{I} = \frac{\mathcal{I}_{OBIII.JUCK}}{K_{BB.\Pi P}} py6.$$
 / руб. (6.7)

$$UU = \frac{41434,72}{38970,05} = 1,06 \quad py6./py6.$$

Предлагаемые изменения по операции 025 — Шпоночно-фрезерная, технологического процесса изготовления детали «Вал-шестерня», можно считать экономически обоснованными. Данное заключение можно сделать основываясь, во-первых, на том, что достигнуто снижение себестоимости выполнения данной операции на 15,13%. А во вторых, интегральный экономический эффект от изменений, согласно расчетам, составил 2464,67 руб., что также свидетельствует эффективности работы. Кроме того окупаемость вложенных средств будет достигнута в течение шести лет, что тоже подтверждает наше заключение.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы нами разработан технологический процесс изготовления вала-шестерни редуктора насоса. Техпроцесс оснащен современным оборудованием и технологическими средствами.

На две операции техпроцесса разработаны технологические наладки.

Для зубофрезерной операции спроектирована конструкция зуборезной головки.

Для шпоночно-фрезерной операции спроектировано автоматизированное станочное приспособление.

Технологический процесс сопровождается технологической документацией.

В работе выполнен анализ безопасности и экологичности технического объекта.

Экономический расчет показал эффективность выполненной работы. Интегральный экономический эффект составил 2464,67 рублей, срок окупаемости – 6 лет.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Марочник сталей и сплавов / сост. А. С. Зубченко [и др.]; под ред. А. С. Зубченко. 2-е изд., перераб. и доп. Москва: Машиностроение, 2003. 782 с.
- 2. Лебедев, В. А. Технология машиностроения : Проектирование технологий изготовления изделий : учеб. пособие для вузов / В. А. Лебедев, М. А. Тамаркин, Д. П. Гепта. Гриф УМО. Ростов-на-Дону : Феникс, 2008. 361 с.
- 3. Суслов, А. Г. Технология машиностроения: учеб. для вузов / А. Г. Суслов.
- 2-е изд., перераб. и доп. ; Гриф MO. Москва : Машиностроение, 2007. 429 с.
- 4. ГОСТ 7505 89. Поковки стальные штампованные. Допуски, припуски и кузнечные напуски. 36 с.
- 5. Боровков, В.М. Заготовки в машиностроении : учеб. пособие для вузов по спец. 1201 "Технология машиностроения" / В. М. Боровков [и др.] ; ТГУ. Гриф УМО; ТГУ. Тольятти : ТГУ, 2007. 67 с.
- 6. Афонькин, М.Г. Производство заготовок в машиностроении. / М.Г. Афонькин, В.Б. Звягин 2-е изд., доп. и пер.ера. СПб: Политехника, 2007 380c.
- 7. ГОСТ 2590-2006. Прокат сортовой стальной горячекатаный круглый. 12 с.
- 8. Справочник технолога-машиностроителя. В 2 т. Т. 1 / А. М. Дальский [и др.]; под ред. А. М. Дальского [и др.]. 5-е изд., испр. Москва: Машиностроение-1, 2003. 910 с.
- 9. Справочник технолога-машиностроителя. В 2 т. Т. 2 / А. М. Дальский [и др.]; под ред. А. М. Дальского [и др.]. 5-е изд., испр. Москва: Машиностроение-1, 2003. 941 с.
- 10. Режимы резания металлов : справочник / Ю. В. Барановский [и др.] ; под ред. А. Д. Корчемкина. 4-е изд., перераб. и доп. Москва : НИИТавтопром, 1995. 456 с.

- 11. Прогрессивные режущие инструменты и режимы резания металлов : справочник / под общ. ред. В. И. Баранчикова. Москва : Машиностроение, 1990. 399 с.
- 12. Горбацевич, А.Ф. Курсовое проектирование по технологии машиностроения: учебное пособие для вузов/ А.Ф. Горбацевич, В.А. Шкред. М: ООО ИД «Альянс.», 2007 256 с.
- 13. Станочные приспособления : справочник. В 2 т. Т. 1 / редсовет: Б. Н. Вардашкин (пред.) [и др.] ; ред. тома Б. Н. Вардашкин [и др.]. Москва : Машиностроение, 1984. 592 с.
- 14. Станочные приспособления : справочник. В 2 т. Т. 2 / редсовет: Б. Н. Вардашкин (пред.) [и др.] ; ред. тома Б. Н. Вардашкин [и др.]. Москва : Машиностроение, 1984. 655 с.
- 15. Булавин, В.В. Режущий инструмент [Электронный ресурс] : учебнометодическое пособие. Электрон. дан. Пенза : ПензГТУ (Пензенский государственный технологический университет), 2009. 100 с.
- 16. Справочник конструктора-инструментальщика / В. И. Баранчиков [и др.]; под общ. ред. В. А. Гречишникова, С. В. Кирсанова. 2-е изд., перераб. и доп. Москва: Машиностроение, 2006. 541 с.
- 17. Козлов, А. А. Проектирование механических цехов [Электронный ресурс] : электрон. учеб.-метод. пособие / А. А. Козлов ; ТГУ ; Ин-т машиностроения ; каф. "Оборудование и технологии машиностроит. пр-ва". Тольятти : ТГУ, 2015. 47 с.
- 18. Бычков, В.Я. Безопасность жизнедеятельности. Учебное пособие. [Электронный ресурс] : учебное пособие / В.Я. Бычков, А.А. Павлов, Т.И. Чибисова. Электрон. дан. М. : МИСИС, 2009. 146 с.
- 19. Горина, Л. Н. Раздел выпускной квалификационной работы «Безопасность и экологичность технического объекта». Уч.-методическое пособие. / Л. Н. Горина Тольятти: изд-во ТГУ, 2016. 33 с.
- 20. Зубкова, Н.В. Методические указания по экономическому обоснованию курсовых и дипломных работ по совершенствованию технологических

процессов механической обработки деталей / Н.В. Зубкова — Тольятти : ТГУ, $2005.-39~\mathrm{c}.$

ПРИЛОЖЕНИЯ

Взам. Подп.							Изм.	Лист	№ докц	ум Пос	Япись	Дата .	Изм. Лисі	т № докц	м Подпи	сь Д
	работал Пестов Верил Логина		+				ТГУ Кац	фeō	ра о	OTM	1/7					
Утве Н. ко	ердил		#			Вал-и	иестерня					<u> </u>			<i>Д</i> /7	
<i>п. ки.</i> Мо1	ІНПІ		\$ \$		90	40X F0C1	escrementarion per a series									
1101	Код	EB	МД	EH	Н. расх.	КиМ	Код заготовк	ĵ.		Профиль	ь и размер	Ы	КД	МЗ	-	
M02		166	1,2	1		0,63				ø65	×210		1	1,73		
Α	Цех Уч PM						Обозначение	е документа								
Б			именование				:М проф.	Р	YT.	KP	КОИД	EH	ОП	Kwm	Тпоз	Tω
A03	XX XX XX	20000		товител °		M	<i>T 1137.101.7034</i>	<i>-98</i>								
Б04		1 ори	<i>30HMQ/I</i> Ы	HD-KDDD41	ная машина											
05		75. SS 555.		968	800			I SICK							12.5	
A06	XX XX XX					ная ИС	<i>T 1137.101.7034</i>	-04	- 2		102	702	12892553	84.0	8	2,.
5 07	381101 Центров					2	? <i>18217</i>		1p	3	1	1	473	1		
008	Центровать и		0.5% X				/O.T. / /	-OCT 1	050 5	5 D/M5		024	2/ 5/2/ /5	0/ 5/ 50	CT 10050	00 T
T09	396131 Призмы												24. 7.2.4.15.	.04.5.110	LT 19052-	-80 15
T10	Пластина 0512.	3.7.2.15.0	U4.5.1 Ol	. 1 19057	-80 15K10; .	393311 i	штангенцирку/.	ъ ШЩ-	-1–15U–i	<i>1,110</i> 0.	1 166-8	U.				
11																
A12	XX XX XX	010	4110 Ta	карная		M	OT 1137.101.7001	-93							8	6,
Б13	381101 Токарны	<u>и</u> стан	ok c 4779	16516TM	1	2	? <i>1821</i> 7		<i>1</i> p	3	1	1	473	1		
- 1-				1855 BY 1855	28		в <i>размер 162; п</i>	-						_		

<u>Дубл.</u> Взам.				+	-						Γ	Т	ſ					+	+			
Подп.			3								1	13M. V	Лист і	№ доки	IM По	дпись	Дата	VI3I	1. <i>Nuci</i>	п№ докц	м Подпис	ь Даг
	Из	м Лист	№ докцг	ı Hadai	UCH /	lama	Изм	Auco	7 \/O	Эпким	Hodol	ICH	Лата	-								
Α		94 PM			наименов			TULII	100	тыкціт	ribbile	ILD	дини				Обазна-	ение док	кумента			
Б	20245			именовани				2022		CM	проф		Р	<u> </u>	KP	KONE		2 3	ОП	Кшт	Tnos	Twm
T17	392115	резец і	канавочны	ый 15К1	0 1 OL 1	1888	4-73;	3933	11 шп	пангеі	нцирку	ль Ш	<u> </u>	5 <i>0-0,1</i>	1 OL 1	166-8L	!					
18																						
A19		XX X		4110					ИС	OT 113.	7.101.7L	-00	13			89	56			50	7	2,9,
			<u>ый стана</u>							?	18217			<i>1p</i>	3	1	1	4	473	1		
			и 9, в ра															, , , , , ,	2 0 4 5	OCT 4	22	
T22	396110	Центр	ΓΟCT 132	(14–6/;	39210	4 резе	ч про	<i>TXOOHO</i>	ולו עו	KIU I	UL 1 18	868-	/3; 39	3311 и	ІТОН26	<u> НЦИРКі</u>	уль ШЩ	-1-150	J-U,111	UL 1 166-	<i>8U.</i>	
23	- Principos P		2007 5002000	en tilleratur saveetre	e orași				POLICIES			CK01007F258 - 10	PARTIE I								40003100K	10 10
A24	XX X	(X X)	X 020	XXXX	<i>Шпон</i> и	7 <i>4H0-</i> 4	резер	оная	MC	OT 113.	7.101.7L	126-L	72		2000	97			100		12	4,6
A.			<u> НО-ФРЕЗИ</u>						2	<u>'</u>	18632			1p	3	1	1	4	.73	1		
026	Фрезер	овать і	паз 16, в	размер	6,3 и	18; фр	езеро	вать	паз Т	14, B p	пазмер	8-0015	и 40°.									
T27	396131	Призмы	опорные	ΓΟCT 12	2 <i>195–6</i>	6; 391	1826 q	фреза	ШПОН	ночна	я ГОСТ	9140	7-78;3	91826	фрези	т шпон	очная /	OCT 9	7140-70	<i>S;</i>		
T28 .	393311	штанге	нциркуль	ШЩ-1-	150-O,	1	166-	80; 3:	93181	1 кали	бр-при	13MQ	TOCT 2	24114-	80							
29																						
A30	XX	XX X	X 025	4153	Зубофр	резерн	ая		NC	OT 113.	7.101.7	111.1-0	74								15	27,
5 31	381523	Зубоф)	оезерный	полуав	томат	5K25			2)	1228	7		<i>1p</i>	3	1	1	4	73	1		
032	Нарези	ть зубы	ья т=2,87	178, z=1.	3.																	
0.02													OWN 07/20/2004	39452	10407					NAME OF THE PARTY		

Взам. Подп.								Изм.	Лист	№ докц	ум Пос	Ппись	Дата	Изм. Лис	т № доку	м Подпи	сь Да
		1		Ι				Ι	Τ	1					Τ		
	Man Aug	п № докум	Подпись	Дата	Изм	Aucm	ND JOYUM	Подпись	Дата	1							
Α	TIPX 44 P			<i>дити</i> енование оп		/ IULIII i	T DUNGIN	TIUUTIULB	Дити				Обазначен	ие докимента	_		
Б		. Unicp	тенование обор				CM	проф.	Р	Y T	KP	КОИД	EH	00	Kwm	Tnos	Twn
35	XX XX X	X 030	Термо	обработ	ка		ИОТ ИЗ	7.101.7071.	<i>5-07</i>								
36																	
A37	XX XX X	X 035	XXXX L	<i>Центрош</i>	лифова	альная	иот из	7.101.74 <i>19</i> .	1-00							7	1,6
Б 38	381839 Цент	оошлифова.	льный ста	лнок 3 <i>92</i> .	2		2	18873		<i>1p</i>	3	1	1	473	1		
039	Шлифовать п	ob. 21.															
T40	396181 Присп	особление и	СПЕЦИОЛЬН	oe; 3970	100 кр	уг шли	фовальн	ый ГОСТ 5.	2781-20	107; 39	93181 к	алибр-	-εκοδα Γ	OCT 18360	1-93		
41	,							900 mg 100 mg	and the second second				7,700,000,000,000,000,000	And the control of the section of th			
A42	XX XX X	X 040	4 131 Kr	пцглошль	เสกหิสก	гыпа	ипт из	7.101.7419.	1_00							7	3.8
Б 43	381311 Кругл		,			Billeri	2	18873	, 00	10	3	1	1	473	1	/	ع, د
	Шлифовать п					вать г			7	'n			-	7/3	,		
044	<i>396110 Цент</i> р	- 98		- 20			- 40	800 KK		1 200'	7 2021	Q1 vaai	וצט כמטו	Sa FOCT 19	2260 02		
	элоно ценир	1 1100001001	DIU I UL I Z)/I=/I; J	77000	ι κμ <u>υ</u> Ζ	шлифийи	/IDHBIU I UC	1 32/0	1-2007	ו בכב י	JI NU/IL	ιυμ-ικυι	JU TULT 10	700-73		
T45			W-10+19+19+64460000	9900	4000		Note: and Chapters Marie Sarri		200 - VIII (2005)							10000	100
T45 46	A00000000 A00000000 A00	navas nama tan arawa		<u></u>	Makan	ьная	ИОТ ИЗ	7.101.7419.	1-00							7	4,4
		X 045	4135 Pe							10	3	1	1	177	1		
46	XX XX X 381316 Резьё						2	18873		īμ)	/	/	473	1		
46 A47 Б 48		ошлифовал	ьный стан	юк 5822	PM		2	18873		ıμ		/	/	4/3	/		

<u>Взам.</u> Подп.	_									Изм	. / <i>1ucm</i>	№ докуі	м Поо	Ппись	Дата	Изм.	Лист	№ докум	Подпись	7
												•						Te.		
	\vdash		+								1	-								
	 	эм. /Іис			Подпись		•	Лист	№ докум	Подпись	Дата	7						8		
Б	Цех	94	PM L	Onep (o3. uauwa	Код, наиме энование обор	енование оп	ерации		cM	poot	Р	ЧТ	KP	КОИД	Обозначен	T		V.u.e.	Tene	Too
A53	XX	XX	10.7 (April 17.7)	<u>100, наиме</u> 1050		лифовалі	L <i>H</i> ПЯ			проф. 7.101.7019.		JI	rΥ	VONT	EH	0		Кшт	Tno3 7	<u>Тш</u> 3
Б 54			11,75,1 (1)	10071.44497	овальный			' <i>T</i>	2	18873	, 00	10	3	1	1	47	73	1	£	٠, ١
055					овальный В размер 4			7		10013		ıρ		,		7.7				
T ₅₆								овальн	ωί ΓΩΓΤ	52781-20	107. 394	621 Uzi	мепите	-льнпя	20/10вкі	7 NKF-	-1456			
156	27011	421111	proc	1 2371	11, 3710	oo npgc	ω, 10φ.	JOU/IDIT	יים ו	32707 20	01, 57	0217131	reponne	-/IDITIO/I	20/100/10	CITE	1120			
57			/Y	NSS	Морица	7														
A58		XX ,	(X	055	Моечная	7														
A 58	XX .	XX ,				***														
A58	XX .			055 060	Моечная Контро	***														
A 58	XX .	XX ,				***														
A58 59 A60	XX .	XX ,				***														
A58 59 A60 61	XX .	XX ,				***														
A58 59 A60 61	XX .	XX ,				***														
A58 59 A60 61 62 63	XX .	XX ,				***														
A58 59 A60 61 62 63 64	XX .	XX ,				***														
A58 59 A60 61 62 63 64	XX .	XX ,				***														