МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт химии и энергетики

(наименование института полностью)

Кафедра <u>«Электроснабжение и электротехника»</u> (наименование)

13.03.02 «Электроэнергетика и электротехника»

(код и наименование направления подготовки, специальности)

Электроснабжение

(направленность (профиль)/специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему <u>«Проектирование системы электроснабжения предприятия повыпуску станочного оборудования»</u>

 Студент
 A.О. Сурнин
 (И.О. Фамилия)
 (личная подпись)

 Руководитель
 к.т.н., А.Н. Черненко

(ученая степень, звание, И.О. Фамилия)

Аннотация

В бакалаврской работе спроектирована система электроснабжения предприятия по выпуску станочного оборудования. В ходе выполнения работы были определены расчетные нагрузки по всем корпусам предприятия. Выполнен расчет системы внутреннего освещения производственных корпусов и системы наружного освещения территории предприятия. Определены координаты центра электрических нагрузок по предприятию в Выбрано целесообразное напряжение целом. внутрицеховых Произведен выбор числа, мощности цеховых трансформаторов компенсирующих устройств и определены потери активной и реактивной трансформаторах. Для мощности системы внутризаводского электроснабжения выбрано напряжение 10 кВ как наиболее экономичное, позволяющее получить высокое качество электроэнергии, возможность роста электрических нагрузок. Произведён выбор типа кабеля и расчет сечений кабельных линий распределительной сети 10 кВ. Выполнена техникосравнение экономическое двух вариантов схем внутреннего электроснабжения. Выбраны число и мощность трансформаторов ГПП. Определено напряжение системы внешнего электроснабжения и выбрана ее схема. Произведен расчет токов короткого замыкания, выбрано и проверено на устойчивость к токам КЗ электрооборудование на ГПП. Определены требования к автоматизированной системе контроля и учета электроэнергии. Выполнен расчет заземляющего устройства.

Бакалаврская работа состоит из пояснительной записки объемом 76 страниц текста, который дополняют 14 таблиц и графической части, состоящей из 6 листов формата A1.

Содержание

Введение	5
1 Характеристика предприятия	7
1.1 Техническое задание на проектирование электроснабжения	
станкостроительного завода	7
1.2 Краткая характеристика завода	12
2 Расчет электрических нагрузок. Определение центра	
электрических нагрузок. Выбор места расположения ГПП	14
2.1 Методы определения расчетных силовых электрических нагрузок	14
2.2 Расчет электрических нагрузок осветительной сети	25
2.3 Определение центра электрических нагрузок предприятия	
и местоположения питающей подстанции	27
3 Система внутреннего электроснабжения	29
3.1 Обоснование напряжения внутрицеховых сетей	29
3.2 Выбор числа, мощности цеховых трансформаторов и	
компенсирующих устройств в сети напряжением 380 В	30
3.3 Определение потерь мощности в цеховых трансформаторах	31
3.4 Выбор рационального напряжения внутризаводского	
электроснабжения	34
3.5 Выбор кабельных линий распределительной сети 10кВ	35
3.6 Расчет токопровода (II вариант схемы внутреннего	
электроснабжения)	44
3.7 Технико-экономическое сравнение вариантов схем	
внутреннего электроснабжения	45
4 Система внешнего электроснабжения	46
4.1 Выбор числа и мощности трансформаторов ГПП	46
4.2 Определение напряжения системы внешнего электроснабжения	
и выбор его схемы	47
5 Расчет токов короткого замыкания. Выбор электрооборулования	56

5.1 Расчет токов короткого замыкания	56
5.2 Выбор электрооборудования	62
6 Автоматизированная система контроля и учета электроэнергии	67
6.1 Назначение и состав системы	67
6.2 Функции, выполняемые системой	67
6.3 Технические данные системы	68
7 Расчет заземляющего устройства	69
Заключение	73
Список используемых источников	74

Введение

«По мере развития электропотребления усложняются и системы электроснабжения промышленных предприятий. В них включаются сети высоких напряжений, возникает необходимость внедрять автоматизацию систем электроснабжения промышленных предприятий и производственных процессов» [1].

Главной задачей в настоящее время является создание рациональных систем электроснабжения промышленных предприятий, которое связано с решением следующих вопросов:

- 1. «Снижение числа трансформаций, что сократит потери электроэнергии и затраты на компенсацию реактивной мощности.
- 2. Выбором и применением рациональных напряжений, что приводит к значительному снижению потерь электроэнергии в системах электроснабжения.
- 3. Правильным выбором места размещения цеховых и главных понизительных подстанций. Расположение питающих подстанций в соответствующих центрах электрических нагрузок обеспечивает снижение годовых затрат.
- 4. Дальнейшим совершенствованием методик определения электрических нагрузок.
- 5. Рациональным выбором числа и мощности трансформаторов, а также схем электроснабжения и их параметров.
- 6. Совершенствованием стандарта номинальных мощностей силовых трансформаторов.
- 7. Созданием эффективного математического обеспечения автоматизированных систем управления электроснабжением» [2].

Решение этих задач должно производиться в комплексе с применением систематизированного подхода. Систематизированный подход включает в себя решение вопросов управление качеством электрической энергии, которое направлено на снижение ее потерь в СЭС предприятия и на рост общей производительности промышленного производства.

«Решение вопросов электроснабжения предприятий неразрывно связано с охраной труда обслуживающего персонала, производственной санитарией помещений и выполнением мероприятий по технике безопасности и правил эксплуатации электрооборудования» [2].

Целью работы является проектирование надежной системы электроснабжения предприятия по выпуску станочного оборудования.

1 Характеристика предприятия

1.1 Техническое задание на проектирование электроснабжения станкостроительного завода

Перечень электроприемников предприятия приведен в таблице 1.1.

Таблица 1.1 - Ведомость установленной мощности электроприемников по цехам предприятия

No	Наименование узлов питания и групп	Количество	Установлени	ная мощность,
No	электроприемников по генплану.	электроприе		я к ПВ=100%
ПП	J 1	МНИКОВ	-	Вт
		шт.	Одного	Общая
			приемника	1
1	2	3	5	
1.	Электроприемники 0,38 кВ			
	Главный корпус:			
	- Электродвигатели (эд)			
	транспортеров не	53	30	1590
	сблокированные			
	- ЭД конвейеров не	5	15	75
	сблокированные	30	30	900
	- ЭД сблокированные	53	30	1590
	- ЭД транспортеров	5	15	75
	- ЭД конвейеров	30	900	
	- ЭД станков (крупносерийное			
	Производство)	20	45	900
		35	37	1295
		50	22	1100
		40	40	1600
	- ЭД автоматических линий	40	30	1200
	- ЭД поточных линий	60	30	1800
	- ЭД многоподшипниковых			
	прутковых автоматов	150	15	2250
	- ЭД шлифовальных станков	20	37	740
		80	22	1760
	- Электрооборудование			
	испытательных стендов	60	11	660
		90	7,5	675
	- ЭД кранов	10	10	100
	- ЭД кран-балок	25	18,5	462,5
	- ЭД тельферов	14	18,5	259
	- ЭД вентиляторов	30	18,5	555
		20	15	300

1	2	3	4	5
	- Сушильные шкафы с			
	непрерывной загрузкой	10	35	350
	1 1 12	10	30	300
		30	20	600
	- Мелкие нагревательные			
	приборы	40	4	160
	1	20	1,5	30
		40	3	120
	- Электроинструмент			
	переносной	180	2,2	396
	 Двигатель-генератор ТВЧ 	20	125	2500
	- Ламповые генераторы	25	100	2500
	Итого по цеху:			27742
2.	Вспомогательный корпус:			
	- ЭД кранов	6	15	90
		3	22	66
	- ЭД тельферов	3	15	45
	_	5	30	150
	- Станки мелкосерийного			
	производства	10	4	40
		10	15	150
		9	30	270
		15	37	555
	0.77	4	45	180
	- ЭД прессов	10	75	750
	D.H.	10	37	370
	- ЭД ножниц	10	30	300
	- ЭД гибочных машин	10	80	800
		10	45	450
	- Сварочные трансформаторы	20	200	2000
	ручной сварки	20	200	2000
	- Гальванические ванны	8	20	160
	- Зарядные устройства	3	20,5	61,5
	- Печи сопротивления	16	30	480
	Итого на мачи	3	50	150
	Итого по цеху:			7067
3.	Блок вентиляционных цехов:			
	- ЭД вентиляторов	50	30	1500
	 ЭД дутьевых компрессоров 	10	150	1500
	- ЭД компрессоров	10	150	1500
	Итого по цеху:			4500

1	2	3	4	5
4.	Сборочный цех			
	- ЭД конвейеров не			
	сблокированные	25	30	750
	- ЭД конвейеров	25	7	175
	сблокированные	15	18,5	277,5
	Contamposaminsic	6	22	132
	- Печи сопротивления с			132
	автоматической загрузкой	10	40	400
	- Сушильные шкафы	10	1	400
	периодической загрузки	10	3	30
	периодической загрузки	6	9	54
	ОП	10	7,5	75
	- ЭД станков серийного	10	0.6	
	производства	10	0,6	6
		10	2,5	25
		50	11,5	550
		30	45	1350
		32	37	1184
		18	55	990
	- ЭД прутковых автоматов	40	20	800
	1, 13	50	15	750
		60	10	600
	- Электросварочные автоматы	16	30	480
	- Двигатель-генератор ТВЧ	21	125	2625
	- Электроинструмент	21	123	2023
	переносной	30	2,5	75
	переносной	70	4	280
	Роугруппиномую	70	4	200
	- Вентиляционное	10	15	150
	оборудование	10	15	150
		10	18,5	185
	***	5	22	110
	Итого по цеху:			12053
5.	Литейный цех:	10	22	220
	- ЭД формовочных машин	10	22	220
		30	30	900
		10	37	370
	- ЭД бегунов	10	63	630
		25	75	1875
	- ЭД очистных барабанов	25	90	2250
	- ЭД транспортеров	10	22	220
		10	30	300
	- Сварочные трансформаторы	25	15	375
	ручной сварки	20	50	1000
	- Магнитные сепараторы	4	40	160
	- ЭД вентиляторов	10	30	300
	SA Benthamtopob	5	22	110
	- ЭД воздухозадувок	12	30	360
	- Эд воздухозадувок			
	Hanna wa wassa	3	22	66
	Итого по цеху:			9136

1	2	3	4	5
6	Кузнечный цех			
	- ЭД кранов	6	11	66
	_	4	30	120
	- ЭД кран-балок	5	22	110
	- ЭД тельферов	6	22	132
	- Электропечи сопротивления	30	30	900
		15	50	750
	- ЭД ковочных машин	12	75	900
		10	110	1100
		5	90	450
		50	63	3150
	- ЭД кузнечно-прессового	24	22	528
	оборудования	44	45	1980
		15	37	555
	- многопостовые двигатель-			
	генераторы ТВЧ	8	125	100
	- сварочные трансформаторы			
	автоматической и			
	полуавтоматической сварки	11	30	330
	- ЭД вентиляторов	4	22	88
	- ЭД воздушных завес	1	30	30
	Итого по цеху:			12189
7.	Деревообрабатывающий цех			
	- ЭД деревообрабатывающих			
	станков	38	22	836
		10	15	150
	- Сушильные станки	10	5,5	55
		8	7,5	60
		10	3	30
	- Нагревательные			
	электроприборы	10	1,5	15
		4	3	12
		5	4	20
	- Вспомогательное			
	оборудование	10	15	150
		19	11	209
		5	7	35
		15	18	270
	Итого по цеху:			1842
8.	Склад сжатых газов			
	- ЭД компрессоров	9	75	675
		5	90	450
	- Вспомогательное			
	оборудование	9	15	135
	Итого по цеху:			1260

1	2	3	4	5
9.	Компрессорная станция:			
	- ЭД кранов	2	22	44
	- ЭД кран-балок	$\frac{1}{2}$	18,5	37
	- ЭД тельферов	1	4	4
	- ЭД насосов низкого давления	10	75	750
	- Вспом. Оборудование	10	15	150
	Итого по станции:	10	13	985
10.	*			963
10.	Локомотивное депо:		25	50
	- ЭД кранов	2		
	- ЭД кран-балок	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	10	10
	- ЭД тельферов	3	7	21
	- ЭД металлорежущих станков	5	4	20
		5	10	50
		20	22	440
	- Сварочные трансформаторы			
	ручной сварки	7	30	210
	Итого по депо:			801
11.	Градирня:			
	- Нагревательные приборы	1	15	15
	- Сушильные шкафы	3	4	12
	Итого:			27
12.	Насосная станция:			
	- ЭД насосов низкого давления	10	75	750
	- Вспом. Оборудование	5	18,5	92,5
	13	4	11	44
	Итого по станции:			886
13.	Склад ГСМ			
	- ЭД кранов	2	30	60
	- ЭД кран-балок	4	15	60
	- ЭД тельферов	3	7,5	22,5
	- ЭД насосов электропомп	10	30	300
	эд насосов электрономи	9	15	135
	Итого по складу:			577
14.	Цех регенерации масла:			311
14.	- ЭД насосов	5	30	150
	· '	$\begin{vmatrix} 3 \\ 10 \end{vmatrix}$	15	150
	- ЭД сепараторов			
	- ЭД очистителей	10	15	150
	- Вспомогательное	5	7.5	27.5
	оборудование	5	7,5	37,5
	Hanna wa wassa	4	22	88
1.7	Итого по цеху:			575
15.	Склад тарных химикатов:		1.5	4.5
	- ЭД кранов	3	15	45
	- ЭД кран-балок	4	18,5	74
	- ЭД тельферов	3	11	33
	- ЭД ленточных транспортеров	10	4	40
	Итого по складу:	8	5,5	44
				326

Продолжение таблицы 1.1

1	2	3	4	5
16.	Заводоуправление:			
	- Электрооборудование			
	счетных машин	20	0,6	12
		20	1,5	30
	- Электрооборудование АСУ	20	0,4	8
	- ЭД вентиляторов	2	30	60
	- Кондиционеры	2	15	30
	Итого по заводоуправлению:			140
Итого	о по заводу НН			80109
Элект	гроприемники 6-10 кВ			
5. лит	ейный цех			
, ,	с трансформаторами S _{тм} =5000 кВА	4	5000	20000
9. ком	прессорная станция			
СД ти	ипа СДТ-630	8	630	5040
12. на	сосная станция			
СД ти	ипа СДТ-630	5	630	3150
Итого	о по заводу ВН			28190
Всего	по заводу			108299

1.2 Краткая характеристика завода

Станкостроительный завод в комплекс станкостроительного объединения и выпускает станки нескольких модификаций.

Завод максимально приближен к источникам сырья, топлива, водных ресурсов, что позволяет достаточно эффективно использовать их, а также позволяет регулировать занятость населения данного района.

К основным цехам предприятия относятся: главный производственный корпус, литейный цех, кузнечный цех и цех по сборке готовых изделий.

«Остальные цеха играют вспомогательную роль- обеспечивают необходимый технологический процесс по изготовлению станков» [3].

По условию технического задания на проектирование завод работает в две смены. По отдельным цехам это выглядит следующим образом: главный корпус, блок вентиляционных цехов, сборочный и кузнечный цеха, локомотивное депо и компрессорная станция — работают в две смены; вспомогательный корпус, деревообрабатывающий цех, склады сжатых газов,

ГСМ, тарных химикатов, градирня, цех регенерации масла, заводоуправление работают в одну смену.

Водонасосная станция работает в три смены; третья смена состоит из дежурного персонала для наблюдения за работой пожарных насосов.

Литейный цех работает в три смены, в ночную смену загрузка ДСП составляет 50% от полной.

Общая площадь территории завода равна 1215000 м 2 или 121,5 Га. Площадь цехов указана в таблице 1.2.

Таблица 1.2 – «Краткая характеристика электроприемников по надежности снабжения электроэнергией и среды производственных помещений» [2]

N_0N_0	Наименование объекта по	Площадь,	Категор	РИЯ		Среда
ПП	генплану	M^2	электро	снабжения	ЭЛ	производс
			приёмн	иков по ПУ	/Э	твенных
			Установленная мощность,			помеще-
				кВт		ний
			I	II	III	-
1	2	3	4	5	6	7
1.	Главный корпус	122400		27742		Норм.
2.	Вспомогательный корпус	13104			7067	Норм.
3.	Блок вентиляционных цехов	2300		4500		Норм.
4.	Сборочный цех	53860		12053		Норм.
5.	Литейный цех	83230		9136		жаркая
6.	Кузнечный цех	95040		12189		жаркая
7.	Деревообрабатывающий					
	цех	15550			1842	пыльная
8.	Склад сжатых газов	13820			1260	норм
9.	Компрессорная станция	9220		985		норм
10.	Локомотивное депо	27650			801	норм
11.	градирня	6910			27	Особо
						сырая
12.	Насосная станция	2300	3150	886		норм
13.	Склад ГСМ	11090			577	норм
14.	Цех регенерации масла	8640			575	норм
15.	Склад тарных химикатов	32830			326	Хим
						активна
16.	Заводоуправление	4320			140	норм
	Итого		3150	67492	12616	

Вывод: приведена краткая характеристика предприятия и номинальных мощностей по цехам.

2 Расчет электрических нагрузок. Определение центра электрических нагрузок. Выбор места расположения ГПП

2.1 Методы определения расчетных силовых электрических нагрузок

2.1.1 Общие положения

«Правильное определение электрических нагрузок для проектирования является основной рационального построения и эксплуатации систем электроснабжения промышленных предприятий, так как электрические нагрузки являются исходными данными для выбора всех элементов электрической сети. Завышение, допущенное при определении потребляемой мощности, может привести к необоснованному перерасходу средств и материалов, снижение — к сокращению срока службы элементов системы электроснабжения. В практике проектирования систем электроснабжения применяют различные методы определения электрических нагрузок» [3].

Применение того или иного метода обуславливается наличием сведений о электроприемниках и допустимой погрешности расчетов. В зависимости от стадии проектирования и места расположения расчетного узла нагрузок в схеме электроснабжения используются упрощенные или более точные методы расчета. Все методы определения расчетных нагрузок делятся на две группы: основные, т.е. методы, основанные на использовании данных о единичных приемниках, или - о суммарной установленной мощности отдельных приемников, и вспомогательные, т.е. методы, основанные на использовании данных об удельных показателях производства [1-3].

2.1.2 Расчет силовых нагрузок

 ${\rm Э\Pi}$ разбиваются на подгруппы со схожими коэффициентами использования ${\rm K}_{\scriptscriptstyle H}$ и мощности ${\rm cos}\phi.$

Расчеты производим по методике, изложенной в пособиях [4, 5].

Результаты расчетов заносим в таблицу 2.1.

Таблица 2.1 - Определение расчетных низковольтных и высоковольтных нагрузок

<u>№№</u> ПП	Наименование цехов и групп электроприемников	Установле мощность приведенн к ПВ=1000 Одного Р _н кВт	ая	Количес эл. прис шт. В груп пе		Коэфф. использ	cosφ tgφ	Средняя нагрузка макс загусмену Р _{см} кВт	3a	Эффективное число эл. прием.	Коэфф. макс.	Расчет. нагрузка Р _{р,} кВт	Q _{p,} квар
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Низковольтная нагрузка												
1.	Главный корпус:												
	Электродвигатели												
	транспортеров	15	75	5			0,75						
	несблокированные	30	2490	83	88	0,4	0,88	1026	902	87	1,1	1128	902
	Эд транспортеров	30	2490	83			0,75						
	сблокированные	15	75	5	88	0,55	0,88	1410	1241	87	1,08	1523	1241
	Эд станков	45	900	20									
		37	1295	35			0,5						
		22	1100	50			1,73						
		40	1600	40	145	0,16		783	1354	136	1,15	901	1355
	Эд автоматических и	30	1200	40			0,7						
	поточных линий	30	1800	60	100	0,55	1	1650	1650	100	1,08	1782	
	Двигатель- генератор						0,7						
	ТВЧ	125	2500	20	20	0,5	1	1250	1250	20	1,08	1350	1250
	Прутковые автоматы						0,5						
		15	2250	150	150	0,2	1,73	570	986	150	1,1	627	986
	Шлифовальные станки	37	740	20			0,65						
		22	1760	80	100	0,35	1,17	875	1023	95	1,2	1050	1023

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Электрооборудова												
	ние испытательных												
	стендов	11	660	60			0,5						
		7,5	675	90	150	0,35	1,73	467	808	144	1,08	504	808
	Эд кранов	10	100	10									
	Эд кран-балок	18,5	462	25			0,5						
	Эд тельферов	18,5	259	14	49	0,1	1,73	82	142	47	1,22	104	142
	Мелкие нагревательные	4	160	40									
	приборы	1,5	30	20			1						
		3	120	40	100	0,6	0	186	0	91	1,07	199	0
	Электро												
	Инструмент переносной						0,5						
		2,2	396	180	180	0,06	1,73	24	41	180	1,16	28	41
	Ламповые генераторы						0,85						
		100	2500	25	25	0,7	0,62	1750	1085	25	1,1	1925	1085
	Эд вентиляторов	18,5	555	30			0,8						
		15	300	20	50	0,65	0,75	556	389	49	1,1	612	389
	Сушильные шкафы	35	350	10									
	непрерывной загрузки	30	300	10			0,95						
		20	600	30	50	0,7	0,33	875	289	47	1,07	936	289
	Итого по цеху:		27742			,		11504	11163		,	12669	11163
2,3	Вспомогательный												
	корпус. Блок												
	вентиляционных												
	цехов												
	Эд кранов	15	90	6									
		22	66	3									
	Эд тельферов	15	45	3			0,5						
		30	150	5	17	0,1	1,73	35	61	15	2,24	78	61

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Станки мелкосерийного	4	40	10									
	производства	15	150	10									
		30	270	9									
	Эд прессов	37	555	15									
	Эд ножниц	45	180	4									
	Эд гибочных машин	75	750	10									
		37	370	10									
		30	300	10									
		80	800	10			0,4						
		45	450	10	98	0,12	2,31	464	1071	74	1,75	812	1071
	Сварочные												
	трансформаторы ручной						0,35						
	сварки	100	2000	20	20	0,3	2,68	600	1608	20	1,34	809	1608
	Гальванические ванны												
	Зарядные устройства												
		20	160	8			0,8						
							0,75						
		20,5	61,5	3	11	0,7		155	116	11	1,16	180	116
	Печи сопротивления	50	150	3			0,95						
	-	30	480	16	19	0,7	0,33	441	145	18	1,1	485	145
	Вентиляторы	30	1500	50									
	Эд дутьевых насосов												
	Эд компрессоров												
	1 1	150	1500	10			0,8						
		150	1500	10	70	0,65	0,75	2925	2194	41	1,12	3276	2194
	Итого по цехам:		11567				,	4620	5195		Í	5640	5195

1	2	3	4	5	6	7	8	9	10	11	12	13	14
4.	Сборочный цех:	0,6	6	10									
	Эл. двиг. станочного	2,5	25	10									
	оборудования	11,5	550	50									
		45	1350	30									
		37	1148	32			0,5						
		55	990	18	150	0,16	1,73	656	1135	102	1,18	774	1135
	Эл. двиг. автоматич.	20	800	40									
	линий по выпуску	15	750	50			0,5						
	прутков	10	600	60	150	0,2	1,73	430	744	140	1,18	507	744
	Электросварка						0,7						
		30	480	16	16	0,25	1	120	120	16	1,5	180	120
	Электроинструменты	2,5	75	30			0,5						
	переносные	4	280	70	100	0,06	1,23	21	37	96	1,21	25	37
	Эл. двиг. конвейерные	30	750	25			0,75						
	не сблокиров.	7	175	25	50	0,4	0,89	370	329	36	1,12	414	329
	Эл. двиг. конвейерные	18,5	277	15			0,75						
	сблокиров.	22	132	6	21	0,55	0,88	225	198	21	1,12	252	198
	Электрические печи												
	сопротивления с						0,95						
	автозагрузкой	40	400	10	10	0,7	0,33	280	92	10	1,12	313	92
	Сушильные шкафы	3	30	10									
		9	54	6			0,85						
		7,5	75	10	26	0,5	0,62	79	49	22	1,11	88	49
	Двигатель генератор						0,7						
	ТВЧ	125	2625	21	21	0,5	1	1312	1312	21	1,12	1470	1312
	Вентиляционное	15	150	10									
	оборудование	18,5	185	10			0,8						
		22	110	5	25	0,65	0,75	290	218	24	1,12	325	218

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Итого по цеху:		12053					3783	4234			4348	4234
5.	Литейный цех: Формовочные машины	22 30 37	220 900 370	10 30 10	50	0,3	0,65 1,17	447	523	49	1,2	536	523
	Бегуны Очистные барабаны	63 75 90	630 1875 2250	10 25 25	60	0,2	0,5 1,73	951	1645	59	1,25	1189	1645
	Эл. двиг. транспортеров	22 30 15	220 300 375	10 10 25	45	0,55	0,75 0,88	492	433	41	1,12	551	433
	Сварочные трансформаторы для выполнения ручной сварки	50	1000	20	20	0,3	0,35 2,68	300	804	20	1,45	435	804
	Магнитные разделители	40	160	4	4	0,8	0,8 0,75	128	84	4	1,12	144	84
	Вентиляторы Воздуходувки	30 22 30 22	300 110 360 66	10 5 12 3	30	0,65	0,8 0,75	543	407	29	1,12	608	407
	Итого по цеху:		9136			Í		2861	3896		Í	3463	3896
6.	Кузнечный цех: Эл. двиг. кранов Эл. двиг. кран-балок Эл. двиг. тельферов	11 30 22	66 120 110	6 4 5			0,5						
	эл. двиг. тельферов	22	132	6	21	0,1	1,73	43	74	19	2,24	96	74

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Эл. двиг. ковочных	75	900	12									
	машин	110	1100	10									
		90	450	5			0,65						
		63	3150	50	77	0,2	1,17	1120	1310	73	1,23	1377	1310
	Сварочные тр-ры												
	автоматической и												
	полуавтомат. сварки												
							0,6						
		30	330	11	11	0,3	1,33	99	132	11	1,6	158	132
	Кузнечно-прессовое	22	528	24									
	оборудование	45	1980	44			0,65						
		37	555	15	83	0,17	1,17	521	609	77	1,2	625	609
	Электрические печи												
	сопротивления	30	900	30			0,95						
		50	750	15	45	0,7	0,33	1155	388	42	1,12	1294	388
	Многопостовые												
	двигатель-генераторы						0,7						
	ТВЧ	125	1000	8	8	0,5	1	500	500	8	1,12	560	500
	Вентиляторы	22	88	4			0,8						
	воздушные завесы	30	33	1	5	0,65	0,75	77	58	4	1,12	87	58
	Итого по цеху:		12189					3515	3064			4197	3064
7.	Деревообратыва-												
	ющий цех:						0,65						
	деревообраб. станки	22	836	38			1,17						
		15	150	10	48	0,12		118	138	47	1,45	171	138
	Сушильные станки	5,5	55	10									
		7,5	60	8			0,85						
		3	30	10	28	0,5	0,75	72	54	25	1,12	88	54

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Нагревательные	1,5	15	10									
	электроприборы	3	12	4			1						
		4	20	5	19	0,6	0	28	0	16	1,12	32	0
	Вспомогательное	15	150	10									
	оборудование	11	209	19									
		7	35	5			0,8						
		18	270	15	49	0,7	0.75	465	349	46	1,08	502	349
	Итого по цеху:		1842					683	541			786	541
8.	Склад сжатых газов												
	Эл. двиг. компрессоров												
	Прочее вспомогательное												
	электрооборудование	75	675	9									
		90	450	5			0,8						
		15	135	9	23	0,7	0,75	882	661	37	1,14	1005	661
	Итого по складу:		1260					882	661			1005	661
9.	Компрессорная												
	станция:												
	Эл. двиг. кранов												
	Эл. двиг. кран-балок	22	44	2									
	Эл. двиг. тельферов	18,5	37	2			0,5						
		4	4	1	5	0,1	1,73	8,5	15	4	3,43	29	16
	Вспомогательное												
	электрооборудование												
	Эл. двиг. насосов	15	150	10									
	низкого давления						0,8						
		75	750	10	20	0,7	0,75	630	473	14	1,12	706	473
	Итого по станции:		985					638	487			735	489

1	2	3	4	5	6	7	8	9	10	11	12	13	14
10.	Локомотивное депо:												
	Эл. двиг. кранов												
	Эл. двиг. кран-балок												
	Эл. двиг. тельферов	25	50	2									
		10	10	1			0,5						
		7	21	3	6	0,1	1,73	8,1	14	4	3,43	28	15
	Эл. двиг.	4	20	5									
	металлорежущих	10	50	5			0,65						
	станков	22	440	20	30	0,12	1,17	61	72	25	2,15	132	72
	Сварочные тр-ры						0,35						
	ручной сварки	30	210	7	7	0,3	2,68	63	169	7	2,2	139	186
	Итого по депо:		801					132	255			299	273
11.	Градирня:												
	Нагревательные												
	приборы												
	Сушильные шкафы	15	15	1			0,85						
		4	12	3	4	0,6	0,75	16	12	4	1,12	18	12
	Итого:		27					16	12			18	12
12.	Насосная станция												
	Вспомогательное												
	оборудование												
	Насосы низкого	18,5	92	5									
	давления	11	44	4			0,8						
		75	750	10	19	0,7	0,75	620	465	13	1,17	725	465
	Итого:		886					620	465			725	465

1	2	3	4	5	6	7	8	9	10	11	12	13	14
13,	Склад ГСМ и цех												
14	регенерации масла												
	Эд кранов												
	Эд кран-балок												
	Эд тельферов	30	60	2									
		15	60	4			0,5						
		7,5	22	3	9	0,1	1,79	14	25	7	3,23	45	27
	Электропомпы	30	300	10									
		15	135	9									
	Насосы												
	Эд сепараторов	30	150	5									
	Очистители	15	150	10									
	Вспомогательное	15	150	10									
	оборудование	7,5	37	5			0,8						
		22	88	4	53	0,7	0,75	707	530	46	1,12	792	530
	Итого:		1153					721	555			837	557
15.	Склад тарных												
	химикатов:												
	Эл. двиг. кранов												
	Эл. двиг. кран-балок	15	45	3									
	Эл. двиг. тельфера	18,5	74	4			0,75						
		11	33	3	10	0,1	0,88	16	14	8	2,72	44	15
	Ленточные	4	40	10			0,75						
	транспортеры	5,5	44	8	18	0,4	0,88	34	30	17	1,26	43	30
	Итого по складу:		240					50	44			88	45

1	2	3	4	5	6	7	8	9	10	11	12	13	14
16.	Заводоуправление												
	Электрооборудова												
	ние счетных машин												
	Эл оборудование АСУ												
		0,6	12	20									
		1,5	30	20			0,75						
		0,4	8	20	60	0,55	0,88	27	24	45	1,13	30	24
	Вентиляторы	30	60	2			0,8						
	кондиционеры	15	30	2	4	0,65	0,75	59	44	3	1,13	90	69
	Итого по												
	заводоуправлению		140					86	68			120	93
	Высоковольтная												
	нагрузка:												
	Насосная станция												
	СТД-630-2						0,9						
		630	3150	5	5	0,8	0,48	2527	0	5	1,1	2780	0
	Компрессорная станция												
	СТД-630-2						0,9						
		630	5040	8	8	0,8	0,48	4032	0	8	1,05	4232	0
	Литейный цех-ДСП						0,9						
		5000	20000	4	4	0,75	0,48	15000	7200	4	1,2	18000	7920
	Итого высоковольтной												
	нагрузки											25010	7920

2.2 Расчет электрических нагрузок осветительной сети

2.2.1 Общие вопросы проектирования

«Источниками света при электрическом освещении являются лампы низкого и высокого давления - люминесцентные, ртутные дуговые типа ДРЛ» [4], натриевые и ксеноновые, а также получившие широкое распространение в последнее время светодиодные. Основной величиной, характеризующей источники света, является световой поток Ф, измеряемый в люменах (лм) световой поток зависит от электрической мощности, потребляемой источниками света.

Интенсивность освещения различных поверхностей характеризуется освещенностью E, т.е. количеством светового потока Ф, приходящимся на единицу освещаемой поверхности

$$E = \frac{d\Phi}{dF}$$

За единицу освещенности принят люкс (лк), равный освещенности площади $F=1 \text{ м}^2$ от светового потока $\Phi=1 \text{ лм}$.

Самой низкой светоотдачей обладают лампы накаливания 10-20 лм на 1 Вт.

Это объясняется тем, что около 5% электроэнергии расходуется на световое излучение, а свыше 95% электроэнергии расходуется на создание невидимого инфракрасного и ультрафиолетового излучения. Ртутные лампы низкого давления имеют светоотдачу 40-45 лм/Вт, а высокого давления 50-60 лм/Вт.

Таким образом по светоотдаче лампы накаливания неэкономичны.

Световой дискомфорт наблюдается при освещенности 30 лк.

Экономичность газоразрядных ламп проявляется при норме освещенности свыше 150 лк. При меньшей освещенности ощущается световой дискомфорт.

Газоразрядные лампы зажигаются, как правило, в диапазоне температур $+5-50^{0}$ С. При включении ламп типа ДРЛ процесс зажигания занимает несколько минут.

Средняя продолжительность горения для различных типов ламп составляет: для ламп накаливания — 1000 ч, для люминесцентных ламп — 4000-5000 ч, для ртутно-дуговых — 7500-10000 ч.

Включение газоразрядных ламп в сеть через пускорегулирующую аппаратуру (ПРА) приводит к снижению коэффициента мощности, для повышения соѕф до значения 0,9-0,95 используются статические конденсаторы.

2.2.2 Расчет осветительной нагрузки

В качестве примера приведем расчет осветительной нагрузки главного корпуса.

По справочным данным и данным завода изготовителя светодиодных светильников:

 $P_{yд}$ =15,4 Bт/м²; $K_{c,o}$ =0,95; K_{npa} =1,2; $\cos\phi/tg\phi$ =0,9/0,48; F=122400 м² «Установленная мощность осветительной нагрузки» [6, 7]:

$$P_{v.0}=1,54\cdot10^{-3}\cdot122400=1885$$
 кВт.

«Расчетная активная нагрузка» [6]:

$$P_{p,o}=1885.0,95.1,2=2149 \text{ kBt}.$$

«Расчетная активная нагрузка с учетом аварийного освещения» [6]:

$$P_{p,o}$$
=1,1·2149=2364 кВт.

«Расчетная реактивная нагрузка» [8]:

$$Q_{p,o}$$
=2149·0,48=1031 квар.

«Полная расчетная осветительная нагрузка» [8]:

$$S_{p,o} = \sqrt{2364^2 + 1031^2} = 2579 \text{ kBA}.$$

Для остальных цехов завода расчет производится аналогично.

Расчет наружного освещения территории предприятия выполняется в следующем порядке:

По справочникам принимается: $P_{va,o} = 0.2 \text{ kBt/m}^2$;

$$K_{c,o}=1$$
; $K_{mpa}=1,1$; $\cos\phi/tg\phi=0.9/0.48$.

Рассчитываем площадь освещения:

$$F_3$$
=121400 м², $F_{\text{u}\Sigma}$ =502260 м²
$$F_{3,o} = F_3 - F_{\text{u}\Sigma},$$
 Где F =1214000-502260=712740 м²;
$$P_{y,o} = 0, 3 \cdot 10^{-3} \cdot 712740 = 214 \text{ кВт}$$

$$P_{p,o} = 214 \cdot 1 \cdot 1, 1 = 235 \text{ кВт}$$

$$P_{p,o} = 235 \cdot 1, 1 = 258 \text{ кВт}$$

$$Q_{p,o} = 258 \cdot 0, 48 = 113 \text{ кВар}$$

$$S_{p,o} = \sqrt{258^2 + 113^2} = 282 \text{ кВА}.$$

2.3 Определение центра электрических нагрузок предприятия и местоположения питающей подстанции

Координаты центра активных и реактивных электрических нагрузок завода определяется по формулам:

$$\begin{split} \boldsymbol{X}_{A} &= \frac{\sum P_{p,u,i} \boldsymbol{X}_{i}}{\sum P_{p,u,i}};\\ \boldsymbol{Y}_{A} &= \frac{\sum P_{p,u,i} \boldsymbol{Y}_{i}}{\sum P_{p,u,i}}. \end{split}$$

где X_A, Y_A – координаты центра нагрузок І-го цеха;

 $P_{p,u,I} \ Q_{p,u,I}$ – расчетная активная и реактивная нагрузки I-го цеха.

Данные расчетов сводим в таблицу 2.2.

Вывод: произведен расчет электрических нагрузок, определены координаты центра электрических нагрузок и выбрано место расположения ГПП.

Таблица 2.2 - Расчет центра активных нагрузок предприятия

№	Наименование цеха	X _i ,	Y _i ,	$P_{p,_{BH,I}}$	$P_{p,hh,}$	P _{p,o}	Р _{р,ц}	$P_{p,\mu}X_i$	$P_{p,q}Y_i$
ПП		m	m	кВт	кВт	кВт	кВт	кВт∙м	кВт∙м
1.	Главный корпус	375	600		12669	2364	15033	5637375	9019800
2.	Вспомогательный корпус	135	607		2364	319	2648	362340	1629188
3.	Блок вентиляционных цехов	150	462		3276	21	3297	494550	1523214
4.	Сборочный цех	835	605		4348	1310	5658	4724430	3423090
5.	Литейный цех	382	120	18000	3463	1866	23392	8935744	2807040
6.	Кузнечный цех	945	120		4197	1682	5879	5555655	705480
7.	Деревообрабатывающий цех	1175	75		786	220	1006	1182050	75450
8.	Склад сжатых газов	1112	482		1005	91	1096	1218752	528272
9.	Компрессорная станция	645	482	4232	735	73	5040	3250800	242980
10.	Локомотивное депо	1375	125		299	490	789	1084875	98625
11.	Градирня	75	212		18	23	41	3075	8692
12.	Насосная станция	80	95	2780	725	18	3523	281840	334685
13.	Склад ГСМ	1520	612		45	73	118	179360	72216
14.	Цех регенерации масла	1520	425		792	137	929	1412080	394825
15.	Склад тарных химикатов	1362	600		88	247	335	456270	201000
16.	Заводоуправление	642	775		120	100	220	141240	170500
	Всего по заводу:						68976	34920436	23421357

3 Система внутреннего электроснабжения

3.1 Обоснование напряжения внутрицеховых сетей промышленного предприятия

«Цеховые электрические сети напряжением до 1000 В выполняются на следующие стандартные напряжения: 220,380,660 В.

Использование напряжения 220 В для питания электродвигателей экономически не оправдано, вследствие больших потерь в сетях и большего расхода цветных металлов. В связи с этим напряжение 220 В используется в осветительных установках, для нагревательных приборов и мелких однофазных двигателей.

Наиболее широкое распространение в системах электроснабжения цехов получило напряжение 380 В, которое также используется в сетях с глухозаземленной нейтралью для питания осветительных установок. Система 380/220 В удовлетворяет следующим основным условиям питания потребителей:

- возможность совместного питания электродвигателей и осветительных установок;
 - относительно низкое напряжение между фазой и землей» [5];
- маломощные электродвигатели на напряжение 380 В стоят дешевле, чем на напряжение 660 В.

Согласно ПУЭ в сетях с напряжением 380 В применяются электродвигатели не выше 250 кВт, в отдельных случаях мощность электродвигателей не должна превышать 320 кВт.

Исходя из условий технологических процессов станкостроительного завода и принимая во внимание, что основную нагрузку завода составляют металлорежущие станки и конвейеры с мощностью электродвигателей, не превышающей 250 кВт, принимаем для питания внутрицеховых сетей напряжение 380/220 В [9, 10].

3.2 Выбор числа, мощности цеховых трансформаторов и компенсирующих устройств в сети напряжением 380 В

Расчет количества трансформаторов и выбора КУ проведем на примере сборочного цеха №4. К нему подключим нагрузку заводоуправления и компрессорной станции, где предусматриваем установку распределительных пунктов РП-0,38 кВ.

$$P_{p,HH} = P_{p,HH4} + P_{p,HH9} + P_{p,HH16} = (P_{p,HH4} + P_{p,o4}) + (P_{p,HH9} + P_{p,o9}) + (P_{p,HH16} + P_{p,o16}) =$$

$$(4348 + 1310) + (735 + 73) + (120 + 100) = 6686 \text{ kBt}.$$

Аналогично определяем реактивную нагрузку:

$$\begin{split} Q_{\text{p,hh}} = Q^{'}_{\text{p,hh4}} + Q^{'}_{\text{p,hh9}} + Q^{'}_{\text{p,hh16}} = &4234 + 489 + 93 = 4816 \text{ квар.} \\ S_{\text{p,hh}} = &\sqrt{6686^2 + 4816^2} = 8240 \text{ кВА.} \\ P_{\text{cm,hh}} = &P_{\text{cm,hh4}} + P_{\text{cm,hh9}} + P_{\text{cm,hh16}} + P_{\text{cm,o}\Sigma}, \\ &\Gamma \text{де } P_{\text{cm,o}\Sigma} = &1483 \text{ кВт} \\ P_{\text{cm,hh}} = &3783 + 638 + 86 + 1483 = &5990 \text{ кВт} \end{split}$$

Так как преобладают приемники 2-ой категории, принимаем K_3 =0,75 Определим плотность нагрузки

$$\sigma = \frac{8240}{67400} = 1{,}12 \text{ kBA}/\text{m}^2$$

выбираем трансформаторы мощностью 1600 кВА

$$N_0 = \frac{5990}{0,75 \cdot 1600} = 6$$
шт.
$$Q_{_{\mathrm{BH}}} = \sqrt{\left(0,75 \cdot 1600 \cdot 6\right)^2 - 6686^2} = 2671 \,\mathrm{квар}.$$

Мощность компенсирующих устройств:

$$Q_{\kappa y} = 4816 - 2671 = 2145$$
 квар

так как данных о наличии в цехе низковольтных СД не имеется, то устанавливаем 7 конденсаторных батарей общей мощностью

$$Q_{\text{бк}} = 280 \cdot 7 = 1960$$
 квар

Определяем величину $Q^{'}_{\ \ \text{вн}}$

$$Q_{\text{вн}}^{,}$$
=4816-1960=2856 квар

Тогда коэффициент загрузки после компенсации

$$K_3 = \frac{\sqrt{6686^2 + 2856^2}}{6.1600} = 0.75$$
,

что допустимо.

Принимаем к установке 6 одно трансформаторных КТП с трансформаторами ТМ-1600/10.

Для других цехов расчеты проводятся аналогично. Результаты расчетов приведены в таблицу 3.1.

3.3 Определение потерь мощности в цеховых трансформаторах

Потери активной $\Delta P_{\scriptscriptstyle T}$ и реактивной $\Delta Q_{\scriptscriptstyle T}$ мощностей в трансформаторах определяются следующими формулами [11, 12]:

$$\begin{split} \Delta Q_{x} &= S_{\text{HOM}} \cdot \frac{I_{xx}}{100}; \\ \Delta Q_{\kappa} &= S_{\text{HOM}} \cdot \frac{u_{\kappa}}{100}; \\ \Delta Q_{\text{T}} &= \Delta Q_{x} + \Delta Q_{k}. \\ \Delta P_{x} &= \Delta P_{x} + K_{\text{MII}} \cdot Q_{x}; \\ \Delta P_{k} &= \Delta P_{k} + K_{\text{MII}} \cdot Q_{k}; \\ \Delta P_{\text{T}} &= \Delta P_{x} + \Delta P_{k}'. \end{split}$$

Результаты расчетов потерь в цеховых ТП сведем в таблицу 3.2.

Таблица 3.1 - Расчет числа и мощности цеховых трансформаторов

№ <u>№</u> ПП	Наименование объектов	σ κBA/м²	Катего рия по ПУЭ	$P_{ m p, HH}$ к B т	Q _{р,нн} квар	S _{р,нн} кВА	Р _{см,нн} кВт	Тип и Мощн Тр-ра	К _{з,н}	N Шт.	Q _{вн} квар	Q _{ку} квар	Q _{бк} квар	Q _{рн} квар	Тип и Мощ КУ	К ₃
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1.	Главный корпус	0,15	II	15033	11163	18724	13869	Тм- 1600	0,75	12	4316	6842	6750	4413	Ук- 0,38- 150нуз	0,74
2.	Вспомогательный корпус; блок вентиляционных цехов	0,16	II	5981	5195	7922	4960		0,75	4	4008	1187	1120	4075	Кку- 0,38	0,75
3.	Литейный цех; градирня; насосная станция	0,16	II	8956	4373	9966	5404		0,75	6	2637	2594	2700	2561	Ук- 0,38- нуз	0,7
4.	Сборочный цех; компрессорная станция; заводоуправление	0,12	II	6686	4816	8240	5990		0,75	6	2671	2145	1960	2856	Ук- 0,38- 300нуз	0,74
5.	Кузнечный цех; локомотивное депо.	0,17	II	6668	3337	7456	5819		0,75	6	2716	621	600	2737	Ук- 0,38	0,75
6.	Склад сжатых газов; склад ГСМ склад тарных химикатов; деревообраб. цех регенерации масла.	0,08	III	3484	1804	3923	3104		0,9	3	1965	187	225	1927	Ук- 0,38- 75-нуз	0,89

Таблица 3.2 - Расчет потерь мощности в цеховых трансформаторах

$N_{\overline{0}}N_{\overline{0}}$	Местоположение	N_0N_0	Кол-во	$S_{\scriptscriptstyle \mathrm{TH}}$	K_3	ΔP_{xx}	ΔP_{κ_3}	I_{xx}	U_{κ_3}	$\Delta P_{\scriptscriptstyle \mathrm{T}}$	$\Delta Q_{\scriptscriptstyle \mathrm{T}}$
ПП	КТП	КТП	и тип тр-ов.	кВА		кВТ	кВТ	%	%	кВт	квар
1.	Главный корпус	1-12	14 TM-	1600	0,74	3,3	18	1,3	5,5	16,6	108,8
			1600/10							199,2	1305
2.	Вспомогательный	13-16	4TM-	1600	0,75					16,9	108,8
	корпус		1600/10							67,6	435,2
3.	Литейный цех	17-22	6TM-	1600	0,7					15,3	108,8
			1600/10							91,8	652,8
4.	Сборочный цех	23-28	6TM-	1600	0,74					16,6	108,8
			1600/10							99,6	652,8
5.	Кузнечный цех	29-34	6TM-	1600	0,75					16,9	108,8
			1600/10							101,4	652,8
6.	Склад тарных	35-37	3TM-	1600	0,89					22,1	108,8
	химикатов		1600/10						_	66,3	326,4
	Итого:									626	4025

3.4 Выбор рационального напряжения внутризаводского электроснабжения

При проектировании системы электроснабжения одновременно с решением вопроса о выборе схемы внутреннего электроснабжения решается задача выбора рационального напряжения внутризаводского питания.

Применение напряжения 35 кВ для системы внутризаводского электроснабжения в данном проекте явно нецелесообразно. Целесообразность его применения определяется возможностью создания, питающей и распределительной сетей на напряжение 35 кВ (сооружение ГПП) или сооружения подстанций глубокого ввода. Такой подход не может быть рационален с экономической точки зрения, т.к. согласно техническому заданию завод может получать электроэнергию на напряжении 110 или 220 кВ.

В связи выше cуказанным системы внутризаводского ДЛЯ 10 кВ электроснабжения принимается напряжение как наиболее экономичное, позволяющее получить высокое качество электроэнергии, возможность роста электрических нагрузок.

Вопрос о выборе схемы распределительной сети не может быть решен отдельно от решения вопроса выбора напряжения электроснабжения, т.к. не могут быть одинаковыми схемы при напряжении 6-10 кВ и 20-35 кВ.

«Так как на заводе большое количество приемников II-ой категории (более 80%), то для обеспечения бесперебойности электроснабжения предусматривается АВР на РУ-10 кВ ГПП и резервирование питания по кабельным перемычкам между секциями РП-0,4 кВ» [6] ТП для цехов № 1,2,4,5,6. Для трансформаторов, установленных в цехе №15, резервирование не предусмотрено, т.к. преобладают приемники электроэнергии III-ей категории. В остальных цехах и корпусах предприятия установлены РП-0,4 кВ.

При проектировании схемы внутреннего электроснабжения представляется целесообразным два варианта:

- 1. Питание всех электроприемников производится от РУ-10 кВ ГПП
- 2.Питание электроприемников производится от РУ-10 кВ ГПП, цехов №1 и 2 и других электроприемников от цеховых РП-1 и РП-2 на 10 кВ.

РП-1 установлен в литейном цехе. От него питаются ДСП, синхронные двигатели, установленные на насосной станции, и ТП, расположенные в цехах №5,6.

РП-2 установлен в помещении компрессорной станции. От него питаются компрессоры и ТП , расположенные в цехах №4,15.

3.5 Выбор кабельных линий распределительной сети 10 кВ

Распределительная сеть 10 кВ выполняется трехжильными кабелями марки АПвБВнг с алюминиевыми жилами с изоляцией из сшитого полиэтилена с прокладкой их в траншеях.

Выбор сечения кабельных линий проводится по нижеприведенной методике.

Производится выбор сечения кабеля по техническим условиям. Сечение кабеля выбирается по справочной литературе исходя из нагрева расчетным током $I_{\scriptscriptstyle D}$ в нормальном режиме работы из условия:

$$K_1K_2I_{доп} \ge I_p$$
,

где K_1 – коэффициент, учитывающий температуру среды. Принимаем $K_1\!\!=\!\!1;$

Расчетный ток при номинальном режиме работы определяется по формуле:

$$\begin{split} \boldsymbol{I}_{p} = & \frac{\boldsymbol{S}_{p}}{n\sqrt{3}\boldsymbol{U}_{H}};\\ \boldsymbol{S}_{p} = & \sqrt{\left(\boldsymbol{P}_{p,HH} + \boldsymbol{P}_{p,o} + \Delta\boldsymbol{P}_{T}\right)^{2} + \left(\boldsymbol{Q}_{p,HH} + \Delta\boldsymbol{Q}_{T} - \boldsymbol{Q}_{\delta\kappa}\right)^{2}} \end{split}$$

для двух трансформаторных подстанций:

$$I_{p,\text{макс}}=2I_{p};$$

Для одно трансформаторных подстанций:

$$I_{p,max} = \frac{1.4S_{T,H}}{\sqrt{3} \cdot U_{H}}.$$

если $I_{p,\text{макс}} > 2I_p$, то принимают $I_{p,\text{макс}} = 2I_p$.

Сечение кабаля проверяется по следующим техническим условиям:

- По условию нагрева в послеаварийном режиме работы по выражению $K_n I_{\text{доп}} K_1 K_2 \ge I_{p,\text{макс}}$, где K_n допустимая перегрузка кабеля на время ликвидации аварии;
- По условию механической прочности. В таблицах ПУЭ на каждом напряжении сечение кабелей начинается с допустимого по механической прочности;
- По условию коронирования кабелей принимается минимально допустимое стандартное значение в шкале сечений;
- По допустимой потере напряжения в нормальном (ΔU =5%) и послеаварийном ($\Delta U_{\text{доп.п/ав.}}$ =10%) режимах работы из условий:

$$\begin{split} & \boldsymbol{l}_{\text{доп}} = \boldsymbol{l} \Delta \boldsymbol{U}_{\text{1\%}} \cdot \Delta \boldsymbol{U}_{\text{доп}} \frac{\boldsymbol{I}_{\text{доп}}}{\boldsymbol{I}_{\text{p}}} \geq \boldsymbol{l} \\ & \boldsymbol{l}_{\text{доп}} = \boldsymbol{l} \Delta \boldsymbol{U}_{\text{1\%}} \cdot \boldsymbol{U}_{\text{доп, п/ав}} \frac{\boldsymbol{I}_{\text{доп, п/ав}}}{\boldsymbol{I}_{\text{D.MAKC}}} \geq \boldsymbol{l} \end{split}$$

где $l_{\text{доп}}, l_{\text{доп}, \pi/a_{\text{в.}}}$ — максимально допустимая длина линии при ее работе соответственно в нормальном и послеаварийном режимах;

 $1\Delta U_{1\%}$ - длина линии на 1% потери напряжения;

1 – фактическая длина линии;

 $\Delta U_{\text{доп}}, \Delta U_{\text{доп,п/ав}}$ — допустимая потеря напряжения в линии соответственно в нормальном и послеаварийном режимах.

Потери напряжения в рабочем и послеаварийных режимах будут не более допустимых в том случае, если фактическая длина кабельной линии будет не более допустимой длины.

– Проверка кабелей по термической стойкости к токам короткого замыкания проводится после расчетов токов К3.

Если при проверке выбранное сечение не удовлетворяет предъявляемым к нему техническим требованиям, то выбираем на ступень большее стандартное сечение и проверяем по методике, указанной выше.

«Далее проводится выбор сечения кабеля по условиям экономической целесообразности. Определение экономически целесообразного сечения производится на основе технико-экономических расчетов в следующей последовательности:

- 1. принимается несколько стандартных сечений: одно равное, а другие больше минимально допустимого сечения, найденного по техническим условиям;
- 2. выбирается экономически целесообразное сечение кабеля по минимуму годовых приведенных затрат, которые определяются по формуле» [7]:

$$3=E_{H}K+C_{9}$$

Ущерб от перерывов электроснабжения в данном случае не учитываем, так как он не зависит от величины сечения.

Капиталовложения определяются по формуле:

$$K_{\kappa J} = K_{\nu J} \cdot 1$$
,

Стоимость расходов на содержание персонала и ремонт одинаковыми для всех сечений линии C₃ определяется как:

$$C_9 = C_n + C_a$$

«Действительные ежегодные потери активной энергии в кабелях определяются по формуле» [8]:

$$\Delta \vartheta_{a,r} = \Delta P_{\kappa \pi} \cdot \tau,$$

$$\tau = \left(0,124 + \frac{T_M}{10^4}\right)^2 \cdot 8760,$$

$$\tau = \left(0,124 + \frac{4500}{10000}\right)^2 \cdot 8760 = 2886, \text{ч}$$

Стоимость потерь электроэнергии в кабеле определяется по выражению:

$$C_{\Pi} = C_{o} \cdot \Delta \Theta_{a.r.}$$

где C_o – стоимость электроэнергии.

Стоимость амортизационных отчислений равна:

$$C_a = \varphi_a \cdot K$$
,

где ϕ_a — коэффициент годовых амортизационных отчислений, принимаемый по справочной литературе.

«После определения приведенных затрат для каждого принятого стандартного сечения кабеля выбирается сечение с минимальными приведенными затратами, а также на ступень меньше и большее сечение и определяется с помощью полинома Ньютона величина экономически целесообразного нестандартного сечения по следующим формулам» [8]:

тогда по найденной величине нестандартного сечения выбираем выгоднейшее меньшее стандартное сечение $S_{\text{эц}}$ кабеля.

кабельных питающих Для примера приведем расчет линий, $T\Pi$ -2, ТП-4(не трансформаторные подстанции включенные В рассматриваемые варианты).так данные подстанции как ОДНО трансформаторные, то их питание от ГПП осуществляется магистральной линией.

Определяем сечение кабеля на участке линий ТП-4, ТП-2. Расчетная мощность всего цеха [13, 14]:

$$S_{\text{pii}} = \sqrt{\left(3209 + 2304 + 176\right)^2 + \left(11503 + 1031 + 895 - 10560\right)^2} = 16952 \text{ kBA}.$$

расчетная мощность, передаваемая по участку линии ТП-4 ТП-2

$$S_p = \frac{16952}{14} = 1210 \text{ kBA}$$

«Выбираем сечение кабеля по техническим условиям. Расчетный ток при нормальном режиме работы равен» [8]:

$$I_p = \frac{1210}{\sqrt{3} \cdot 10} = 70 \text{ A}$$

расчетный ток при послеаварийном режиме работы равен:

$$I_{p,max} = \frac{1.4 \cdot 1600}{\sqrt{3} \cdot 10} = 129 \text{ A}$$

по условию нормального режима работы выбираем кабель марки АПвБВнг $3\times50\text{-}10$ сечением $S_{\rm H}\!\!=\!\!50$ мм 2 с $I_{\rm доп}\!\!=\!\!140$ A; $\Delta U_{1\%}\!\!=\!\!0,\!66$ км/1%; $1\!\!=\!\!0,\!13$ км.

«Для проверки сечения по условию послеаварийного режима работы принимаем время ликвидации аварии 1 час и коэффициент загрузки линии в нормальном режиме» [8]

$$K_3 = \frac{I_p}{I_{1001}} = \frac{70}{140} = 0.5$$

Проверяем сечение по условию нагрева:

В нормальном рабочем режиме

в послеаварийном режиме:

$$1,3\cdot1\cdot0,78\cdot140A\geq129A;$$

таким образом, принятое сечение 50мм² проходит проверку в нормальном и послеаварийном режиме работы.

По условию механической прочности для кабелей при $U_{\scriptscriptstyle H}\!\!=\!\!10$ кB, $S_{\scriptscriptstyle M}\!\!=\!\!16$ мм $^2.$

По условию коронирования кабелей принимаем минимально допустимое сечение $S_\kappa = 16 \text{мm}^2$.

Проверяем сечение по допустимой потере напряжения:

В нормальном рабочем режиме:

$$1_{\text{доп}} = 0,66 \cdot 5 \cdot \frac{140}{70} = 6,6 \text{ km} > 1 = 0,13 \text{ km};$$

в послеаварийном режиме

$$1_{\text{доп,п/ав}} = 0,66 \cdot 10 \cdot \frac{142}{129} = 7,3 \text{ км} > 1 = 0,13 \text{ км}$$

Выбранный кабель прошел проверку по потере напряжения.

По техническим условиям принимаем кабель марки АПвБВнг3×150-10.

Производим выбор сечения кабеля по условиям экономической целесообразности. Для нахождения $S_{_{9Ц}}$ наметим для рассмотрения минимально возможное по техническим условиям сечение и несколько больших стандартных сечений кабеля: 50,70,95,120мм², а затем определим их технико-экономические показатели.

Рассмотрим кабель сечением $S_{\rm H}$ =50мм 2 марки АПвБВнг3×50-10 с и $I_{\rm доп}$ =140A, $r_{\rm vg}$ =0,62 Ом/км, $x_{\rm vg}$ =0,09, $K_{\rm vg}$ =68,7тыс. руб./км , $\phi_{\rm a}$ =0,03.

Потери мощности в кабельной линии:

$$\Delta P_{\text{kii}} = 3.70^2 \cdot 0.62 \cdot 0.13 \cdot 10^{-3} = 1.2 \text{ kBt.}$$

Потери энергии в линии

$$\Delta \Theta_{a,r} = 1,2.2886 = 3463 \text{ кВт.ч/год.}$$

Стоимость потерь энергии в линии

$$C_{\Pi} = 104.3463.10^{-2} = 360$$
 руб/год

Капитальные вложения на сооружение кабельной линии

$$K=68,7\cdot0,13=8,9$$
 тыс. руб

Ежегодные амортизационные отчисления:

$$C_a=0.03\cdot 8.9\cdot 10^3=267$$
 руб/год.

Годовые эксплуатационные расходы:

$$C_9 = 360 + 267 = 627$$
 руб/год

Приведенные затраты равны:

$$3=0,125\cdot267\cdot10^3+627=3400$$
 руб/год.

Аналогичные расчеты производятся для других выбранных сечений, результаты заносятся в таблицу 3.3.

Таблица 3.3 - Выбор экономически целесообразного сечения участка ТП-4-ТП-2.

N_0N_0	Сечение	$\Delta P_{\kappa\pi}$	$\Delta \Im_{\mathrm{a},\scriptscriptstyle\Gamma}$	Сп	К	Ca	$C_{\mathfrak{I}}$	3
ПП	MM^2	кВт	ŕ	Руб/год				
1.	50	1,2	3463	53	0,3	8,9	60,9	97
2.	70	0,8	2309	34,6	0,34	10,2	44,8	86,5
3.	95	0,6	1732	25,3	0,39	11,7	37,7	83,8
4.	120	0,5	1443	21,7	0,44	13,1	34,7	86,8

Определим величину целесообразного нестандартного сечения. Для этого выбираем одно сечение с минимальными затратами и два других на ступень меньше и на ступень больше.

Принимаем ближайшее меньшее стандартное сечение $S_H=95 \text{мм}^2$. окончательно принимается к установке кабель АПвБВнг3×95-10.

Определяем сечения кабеля на участке ТП2-ГПП.

Выбираем сечение кабеля по техническим условиям:

По нагреву расчетным током:

$$I_{p} = \frac{2364}{\sqrt{3} \cdot 10} = 140A$$

$$I_{p,max} = \frac{1, 4 \cdot 3200}{\sqrt{3} \cdot 10} = 258A.$$

по условию нормального режима работы выбираем кабель марки АПвБВнг $3\times150-10$ сечением $S_{\rm H}=150$ мм 2 с $I_{\rm доп}=275$ A.

Для проверки сечения по условию послеаварийного режима работы, принимаем время ликвидации аварии 1час.

Коэффициент загрузки в нормальном режиме составит:

$$K_3 = \frac{140}{275} = 0.5.$$

допустимая перегрузка составит K_n =1,3. коэффициент снижения токовой нагрузки принимается равным 0,78 , тогда

215A≥172A;

 $1,3\cdot1\cdot0,78\cdot275A>258A;$

279A>258A;

по условию механической прочности $S_{M}=16 \text{мm}^{2}$

По условию коронирования $S_{\kappa}=16 \text{мm}^2$

По допустимой потере напряжения:

В нормальном рабочем режиме:

$$l_{\text{доп}} = 1,01 \cdot 5 \cdot \frac{215}{140} = 7,75 \text{ км} \quad l_{\phi} = 0,15 \text{ км};$$

послеаварийном режиме:

$$l_{\text{доп,п/ав}} = 1,01 \cdot 10 \cdot \frac{279}{258} = 1,1 \text{ км}$$
 $l_{\phi} = 0,15 \text{ км}$

по техническим условиям принимаем кабель марки АПвБВнг3×150-10. выбираем сечение кабеля по условиям экономической целесообразности.

Для нахождения S_{94} намечаются сечения: 150,185,240мм².

Рассматриваем кабель сечением S_н=150мм² марки АПвБВнг:

$$r_{yд}$$
=0,206Ом/км, $x_{yд}$ =0,077 Ом/км; ϕ_a =0,03;

потери активной мощности в кабельной линии:

$$\Delta P_{\kappa\pi} = 3.140^2 \cdot 0.15 \cdot 0.206 = 1.8 \text{ кВт}$$

потери энергии в линии:

$$\Delta \Theta_{a,r} = 1,8.2886 = 5195 \text{ кВт-ч/год}$$

стоимость потерь энергии:

$$C_{\pi}$$
=0,06·5195=78 руб/год.

Капитальные вложения на сооружение кабельной линии:

$$K=3,83\cdot0,15=0,57$$
 тыс.руб.

Ежегодные амортизационные отчисления

$$C_a=0.03\cdot0.57\cdot10^3=17.1$$
 руб/год.

Годовые эксплуатационные расходы:

$$C_9$$
=78+17,1=95,1 руб/год.

Приведенные затраты:

$$3=0,125\cdot0,57\cdot10^3+95,1=163,5$$
 руб/год.

Аналогичные расчеты приводятся для других выбранных сечений, результаты заносим в таблицу 3.4.

Таблица 3.4 - Выбор экономически целесообразного сечения участка ТП-2-ГПП линии Л-40

$N_{\circ}N$	Сечение	$\Delta P_{\kappa \pi}$	$\Delta \Theta_{\mathrm{a}}$	Сп	К	C_a	$C_{\mathfrak{d}}$	3
ПП	жил	кВт						
	MM^2							
1	150	1,8	5195	78	0,57	17,1	95,1	163,5
2	185	1,4	4040	60	0,66	19,6	79,6	158,8
3	240	1,1	3174	47,6	0,78	23,4	71	164,6

Принимаем стандартное сечение $S_H = 185 \text{мм}^2$.

Окончательно принимается к установке кабель АПвБВнг $3\times185-10$ с сечением жилы 185мм^2 . потери реактивной мощности в кабельной линии:

$$\Delta Q_{\text{KJ}} = 3.140^2 \cdot 0.15 \cdot 0.079 = 0.7 \text{ kBap.}$$

Аналогичные расчеты проводятся для других участков кабельных линий, питающих ТП, ДСП, СД.

3.6 Расчет токопровода. (II вариант схемы внутреннего электроснабжения)

В сетях 6-35кВ промышленных предприятий для передачи в одном направлении мощности более 20МВА при 6 кВ, более 35 МВА при 10кВ следует применять, как правило, токопроводы с симметричным расположением из следующих конструкций [15, 16]:

гибкие, выполняемые голыми проводами больших сечений;

- из алюминиевых труб, проложенных в виде гибкой нити;
- из алюминиевых труб, выполняемых в виде жесткой балки;
- из алюминиевых шин, закрепленных на подвесных изоляторах;

Находим расчетный ток на одну цепь:

$$I_{p} = \frac{37103}{2 \cdot \sqrt{3} \cdot 10} = 1091, A$$

$$I_{p,max} = 2182, A$$

принимаем к установке открытый токопровод коробчатого сечения из двух корытных профилей из сплава АДЗ1Т1 с изоляторами ИШД-35

$$j = \sqrt{\frac{17.8}{43.3}} = 0.64, A / MM^2$$

найдем сечение токопровода

$$S = \frac{1091}{0.64} = 1704 \text{mm}^2$$
.

принимаем к установке токопровод сечением S=2020мм², $I_{доп}=3500$ A. Проверим по допустимому нагреву:

Проверяем выбранное сечение по допустимой потере напряжения в рабочем режиме:

$$\Delta U = \frac{\sqrt{3} \cdot 1091 \cdot 1, 2 \cdot \left(0,016 \cdot 0,85 + 0,178 \cdot 0,56\right) \cdot 100}{10000} = 1,15\% < 5\%$$

в послеаварийном:

$$\Delta U_{_{\Pi/AB}} = \frac{\sqrt{3} \cdot 2182 \cdot 0,45 \cdot 1,2 \cdot \left(0,016 \cdot 0,85 + 0,178 \cdot 0,56\right) \cdot 100}{10000} = 2,3\% < 10\%$$

Условия выполняются в обоих режимах.

Капитальные затраты определяются по формуле:

$$K=L(K_1+2K_2S_{\Pi})10^{-3},$$

где L – длина токопровода;

 K_1 — составляющая капитальных затрат, зависит от стоимости 1км токопровода.

 K_2 — составляющая капитальных затрат, зависит от стоимости 1км токопровода различного сечения.

3.7 Технико-экономическое сравнение вариантов схем внутреннего электроснабжения

Минимальные годовые приведенные затраты для варианта I составят:

$$3_1$$
=438 тыс.руб/год,

Для варианта II составят:

$$3_2$$
=681 тыс.руб/год.

Произведем предварительный выбор выключателей РУ-10кВ по номинальному напряжению и номинальному току, для РП1, РП2.

Расчетный ток составит:

Для РП1
$$I_p = \frac{37103}{2 \cdot \sqrt{3} \cdot 10} = 1091, A$$

$$I_{p,max} 2 \cdot 1091 = 2182, A$$

$$I_p = \frac{15974}{2 \cdot \sqrt{3} \cdot 10} = 470, A$$

$$I_{p,max} = 2 \cdot 470 = 940, A$$

При выборе выключателей должны соблюдаться условия:

$$U_H \ge U_p$$
; $I_H \ge I_{p,max}$

Согласно им, принимаем КРУ-СЭЩ-70 с выключателем типа ВВУ-СЭЩ: для РП1 вводные выключатели ВВУ-СЭЩ-3200-10 и секционные выключатели ВВУ-СЭЩ-1600-10; для РП2 вводные выключатели ВВУ-СЭЩ-1600-10 и секционные выключатели ВВУ-СЭЩ-630-10.

Число ячеек с выключателями на отходящих линиях: для I варианта составит 32 шт., для II варианта 31 шт.; секционных для I варианта 3 шт. вводных для II варианта – 4 шт. (вводные и секционные выключатели РУ-10кВ ГПП не учитываем).

Вывод: исходя из полученных значений, принимаем схему варианта I для внутреннего электроснабжения завода.

4 Система внешнего электроснабжения

4.1 Выбор числа и мощности трансформаторов ГПП

Выбор мощности трансформаторов ГПП зависит от следующих факторов:

- 1. Величины расчетной нагрузки;
- 2. Динамики нагрузки по годам;
- 3. продолжительности использования максимума нагрузки;
- 4. Характера графика нагрузки;
- 5. Годовое число часов работы предприятия.

«Полная расчетная мощность на шинах РУ-10кВ ГПП, передаваемая через трансформаторы с учетом разновременности максимума нагрузки и компенсации реактивной мощности» [17]:

$$\begin{split} S_{\text{pS}} &= \sqrt{P_{\text{p},\Sigma}^2 + Q_{\text{p},\Sigma}^2}\,, \\ Q_p &= \left(Q_{\text{p,HH}} + Q_{\text{p,BH}} + \Delta Q_{\text{кл}}\right) \cdot K_{\text{pm}} + Q_{\text{p,o}} + Q_{\text{tn}} - Q_{\text{6k}} - Q_{\text{cd}} - Q_{\text{6k}}; \\ \text{при } U_H &= 110 \text{kB}; \\ Q_{\text{p,S}} &= \left(31897 + 7920 + 63\right) \cdot 0,95 + 3879 + 2788 - 25425 - 8000 - 4900 = 3755, \text{квар} \\ S_{\text{p,S}} &= \sqrt{71403^2 + 3755^2} = 71501, \text{kBA} \\ \text{при } U_H &= 220 \text{kB}; \\ Q_{\text{p,S}} &= \left(31897 + 7920 + 63\right) \cdot 0,95 + 3879 + 2788 - 25425 - 7500 - 4700 = 4255 \text{kbap} \\ S_{\text{p,S}} &= \sqrt{70682^2 + 4255^2} = 70808, \text{kBA} \end{split}$$

Расчетная мощность трансформатора определяется по формуле:

$$S_{T} = \frac{S_{p,\Sigma}}{N \cdot K_{_{3,H}}},$$

где N — число трансформаторов, т.к. на заводе преобладают приемники II категории, то предусматривается установка на ГПП двух трансформаторов.

 $K_{_{3,H}}$ — нормативный коэффициент загрузки трансформатора, равный 0,7 для указанных категорий электроприемников.

Тогда:

Для $U_H = 110 \text{ кB}$

$$S_T = \frac{71501}{2 \cdot 0.7} = 51072 \text{ kBA};$$

для $U_{H}=220 \text{ кB}$

$$S_T = \frac{70808}{2 \cdot 0.7} = 50577 \text{ kBA}$$

Стандартное значение номинальной мощности трансформатора принимается 63000 кВА. В этом случае K_3 в нормальном и послеаварийных режимах примет следующие значения:

Для U_{H} =110 кВ

$$K_{3} = \frac{74148}{2 \cdot 63000} = 0,59;$$

$$K_{_{3,\Pi/aB}} = \frac{74148}{63000} = 1,18;$$

для $U_{H}=220 \text{ кB}$

$$K_{3} = \frac{73400}{2 \cdot 63000} = 0.58;$$

$$K_{_{3,\Pi/aB}} = \frac{73400}{63000} = 1,16;$$

Выбираем для установки на ГПП предприятия 2 СТ типа ТРДЦН с номинальной мощностью 63000 кВА каждый.

4.2 Определение напряжения системы внешнего электроснабжения и выбор его схемы

Для того, чтобы наметить для рассмотрения возможные с технической точки зрения варианты напряжения питающей сети, определяется нестандартное рациональное напряжение по формуле Илларионова:

$$U_{\text{рац}} = \frac{1000}{\sqrt{\frac{500}{1} + \frac{2500}{P_{\text{p,H}}}}}$$

где l – длина питающих линий;

Согласно технического задания питание завода электроэнергией может осуществляться следующим образом:

- 1. От районной ПС 220/110 кВ, находящейся в 10км от завода;
- 2. Отпайкой от ВЛ 220кВ, проходящей в 1км от завода, поэтому определим $U_{\text{рац}}$ для этих вариантов.

$$U_{\text{рац1}} = \frac{1000}{\sqrt{\frac{500}{10} + \frac{2500}{69,446}}} = 108, \text{кB}$$
 Тогда
$$U_{\text{рац2}} = \frac{1000}{\sqrt{\frac{500}{1} + \frac{2500}{58,9}}} = 43, \text{кB}$$

Нестандартное напряжение округляется до ближайшего стандартного напряжения ($U_{\text{рац,ct1}}$ =110кB; $U_{\text{рац,ct2}}$ =35кB) и намечаются для рассмотрения три варианта:

- 1. С напряжением на ступень меньше стандартного напряжения;
- 2. С полученным стандартным напряжением;
- 3. С напряжением на ступень больше полученного стандартного напряжения.

При $U_{\text{рац,ct1}}$ =110кВ принимаем к рассмотрению следующие напряжения:

 $U_1 = 35 \text{ kB};$

 $U_2=110\kappa B$;

 $U_3 = 220 \kappa B$.

В этом случае питание завода осуществляется от РПС 220/110кB, поэтому напряжение 35кB не рассматриваем.

При $U_{\text{рац,cт2}}$ =35кВ принимаем к рассмотрению следующие напряжения:

 $U_1 = 20 \text{ kB};$

 $U_2 = 35 \text{ kB}$;

 $U_3=110\kappa B$.

В этом случае питание завода осуществляется отпайкой от ВЛ-220кВ, т.е. этот вариант не требует рассмотрения.

При рассмотрении вариантов на напряжение 220кВ питание завода от районной ПС (l=10км) и питание завода отпайкой от ВЛ-220кВ (l=1км) очевидно, что наиболее экономичным будет последний вариант.

Исходя из вышеизложенного, принимаем к рассмотрению следующие варианты:

Вариант 1: электроснабжение завода осуществляется на напряжении 110кВ от районной ПС.

Вариант 2: электроснабжение завода осуществляется отпайкой от ВЛ-220кВ.

Рассмотрим вариант1. Так как ГПП предприятия является в данном случае тупиковой, то применение отделителей (выключателей) в ОРУ-110кВ ГПП не требуется.

Параметры ТРДЦН-63000/110:

$$S_{\text{T.H}} = 63000 \text{ kBA}$$
; $I_{xx} \% = 0.65$; $U_{x3} \% = 10.5$; $\Delta P_{xx} = 73 \text{ kBT}$; $\Delta P_{x3} = 260 \text{ kBT}$.

«Потери активной и реактивной мощности» [18]:

$$\Delta P_{\Gamma\Pi\Pi} = 2(73 + 0.59^{2} \cdot 260) = 327 \text{ kBt}$$

$$\Delta Q_{\Gamma\Pi\Pi} = 2 \cdot \frac{6300}{100} (0.65 + 10.5 \cdot 0.59^{2}) = 5424 \text{ kBap}$$

$$S_{\Gamma\Pi\Pi} = \sqrt{69446^{2} + 19445^{2}} = 72116 \text{ kBA}$$

«Питающие линии (L).

Две питающие линии воздушные выполняются сталеалюминевыми проводами марки AC длиной 10 км.

Выбираем сечение провода по техническим условиям.

Определим ток, протекающий по линиям:

В нормальном рабочем режиме» [10]:

$$I_{p} = \frac{S_{p,\Gamma\Pi\Pi\Pi}}{2 \cdot \sqrt{3} U_{H}} = \frac{72116}{2 \cdot \sqrt{3} \cdot 110} = 192 \text{ A}$$

в послеаварийном режиме

$$I_{p,max} = \frac{S_{p,\Gamma\Pi\Pi\Pi}}{\sqrt{3}U_{H}} = \frac{72116}{\sqrt{3}\cdot110} = 384 \text{ A}$$

по условиям допустимого нагрева для нормального режима

$$I_{\text{доп}} \ge I_p$$

Принимается сечение провода S=95/16мм² с $I_{доп}=330$ A, т.е. 330A>192A.

«Проверяем выбранное сечение по условию нагрева в послеаварийном режиме работы с учетом допустимой 30% ее перегрузки» [10]

1,3
$$I_{доп} \ge I_{p,макс}$$
;

«по условию коронирования проводов принимается минимальное стандартное сечение в шкале сечений для $U_{\scriptscriptstyle H}$ =110кB равное $S_{\scriptscriptstyle K}$ =70мм²

Минимальное допустимое стандартное сечение по механической прочности $\rho_{\text{\tiny M}} = 70 \text{мm}^2$.

По допустимой потере напряжения:

В нормальном рабочем режиме» [10]:

$$1_{\text{доп}} = 5,94 \cdot 5 \cdot \frac{330}{190} = 50,5; \text{км} > 1 = 10 \text{км};$$

в послеаварийном режиме:

$$1_{\text{доп.п/ав}} = 5,94 \cdot 10 \cdot \frac{429}{380} = 67; \text{км} > 1 = 10 \text{км}.$$

Таким образом, минимально допустимым сечением линии по техническим условиям является S_{cr} =95мм 2 .

Выбор сечения провода по условиям экономической целесообразности.

Рассмотрим сечение линии 95мм²,

Капитальные затраты $K_3=2\cdot 10\cdot 8=160$ тыс.руб

Действительные потери в линии:

$$\Delta P_{BJ} = 2.3.190^{2}.10^{-2}0,33 = 745 \text{ kBt}.$$

Потери электроэнергии определяются:

$$\Delta Э_a = 745 \cdot 2886 = 2150070$$
 кВт·ч/год.

Стоимость ежегодных потерь в линиях:

$$C_{\text{п,вл}} = 60 \cdot 10^{-2} \cdot 2150070 = 32,3$$
 тыс.руб/год.

Стоимость амортизационных отчислений:

$$C_{a,BJ}$$
=0,028·160=4,48 тыс.руб/год.

Ежегодные эксплуатационные расходы:

$$C_{3,BJ}$$
=32,3+4,48=36,78 тыс.руб/год.

Годовые расчетные затраты:

$$3_{\text{вл}}$$
=0,125·160+36,78=56тыс,руб/год.

Технико-экономические показатели питающих ВЛ марки АС сводим в таблицу 4.1.

Таблица 4.1 - Технико-экономические показатели питающих ВЛ марки АС

$N_{\underline{0}}$	S	К _{уд}	r_0	$\Delta \Theta_{a,\scriptscriptstyle \mathrm{BJ}}$	$\Delta P_{\scriptscriptstyle BJI}$	$C_{\Pi,B\Pi}$	$K_{\scriptscriptstyle BJI}$	$C_{a,{\scriptscriptstyle B}{\scriptscriptstyle J}{\scriptscriptstyle J}}$	$C_{\scriptscriptstyle \mathfrak{I}, \mathtt{B} \mathtt{J}}$	3
	MM^2		Ом/км							
1	95	8	0,33	2150070	745	32,3	160	4,48	36,78	56
2	150	8,35	0,27	1757574	609	26,4	167	4,68	31,08	51
3	120	8,6	0,21	1367964	474	20,5	172	4,52	25,3	46
4	185	9	0,2	1171313	406	17,5	180	5	22,5	44,1
5	240	9,8	0,13	845598	293	12,7	192	5,4	18,1	41,1
6	300	10,3	0,11	715728	218	10,7	206	5,8	16,5	41,4

Определим экономическое нестандартное сечение:

$$S_1 = 185 \text{мм}^2; \ \Delta S = 240 - 185 = 55 \text{мм}^2; \ S_2 = 240 \text{мм}^2; \ \Delta S = 300 - 240 = 60 \text{мм}^2; \ S_3 = 300 \text{мм}^2; \ \Delta S = 300 - 185 = 115 \text{мм}^2; \ \Delta S_1 = 41,1 - 44,1 = -3 \text{тыс.руб/год;} \ \Delta S_2 = 41,4 - 41,1 = 0,3 \text{тыс.руб/год;} \ \delta = \frac{0,3 \cdot 55}{-3 \cdot 60} - 1 = 1,1; \ S_{_{944}} = \frac{240 + 185}{2} + \frac{115}{2.2} = 254; \text{мм}^2$$

таким образом стандартное сечение равно 240мм²

Тогда полная расчетная мощность завода с учетом потерь в линии:

$$S_{p,3-дa} = \sqrt{68971^2 + 19311^2} = 71623 \text{ кВА}.$$

Выключатели (Q).

Предварительно выбираются головные выключатели по номинальным данным ($U_{\text{H}} \!\! \geq \! U_{\text{H,yct}}; \! I_{\text{H,дл}} \!\! \geq \! I_{\text{p,max}}; \! S_{\text{H,otk}} \!\! \geq \! S_{\text{p,otk}}$). Максимальный рабочий ток:

$$I_{p,max} = \frac{71623}{\sqrt{3} \cdot 110} = 376, A$$

расчетная отключающая мощность известна:

$$S_{p,otk} = S_{k3} = 3000 \text{ MBA}.$$

Отключающий ток:

$$I_{p,otk} = \frac{S_{k3}}{\sqrt{3}U_{cp}} = \frac{3000}{\sqrt{3} \cdot 115} = 15,3 \text{ kA}$$

Исходя из расчетных данных выбираем два выключателя ВГТ-110.

Ежегодные потери активной электроэнергии определяются по:

$$\Delta \Theta_{\text{а гип}} = 2(73.8760 + 0.59^2 \cdot 260.2886) = 1801361 \text{ кВт-ч/год.}$$

Стоимость ежегодных потерь в трансформаторах ГПП:

$$C_n=60\cdot10^{-2}\cdot1801361=27,02$$
тыс.руб/год.

Стоимость годовых амортизационных отчислений на трансформаторы ГПП:

$$C_{a,r}$$
=0,063·177=11,2тыс.руб/год.

Суммарные амортизационные отчисления на ОРУ-110кВ и трансформаторы ГПП определяются по формуле:

$$C_{a,\text{гип}}$$
=11,2+0,03+0,01+0,059+0,07=11,31тыс.руб/год.

Суммарные эксплуатационные расходы:

$$C_{9,\text{гип}} = C_{a,\text{гип}} + C_{\pi,\tau} = 11,3 + 27,02 = 38,33$$
 тыс.руб/год.

Суммарные капитальные затраты:

$$K_{rnn}$$
=117+0,46+0,2+0,94+0,012=178,6тыс.руб.

Технико-экономические показатели варианта 1.

Капитальные затраты определяются по формуле:

$$K_1 = K_{\text{вл}} + K_{\text{гип}} + K_{\text{в}} = 192 + 178,6 + 13 = 383,6$$
 тыс.руб.

Стоимость годовых амортизационных отчислений:

$$C_{a,\text{B}} \!\!=\!\! \phi_a \!\!\cdot\! K_B \!\!=\!\! 0,\!063 \!\!\cdot\! 13 \!\!=\!\! 0,\!8$$
 тыс.руб/год.

Суммарные годовые амортизационные отчисления составят:

$$C_{a,1}=C_{a,B\pi}+C_{a,\Gamma\Pi\Pi}+C_{a,B}=5,4+11,31+0,8=17,61$$
 тыс.руб/год.

Суммарные годовые эксплуатационные расходы:

$$C_{3,1}=C_{a,1}+C_{\pi,B\pi}+C_{\pi,Tp}=17,1+27,02=57,23$$
тыс.руб/год.

Годовые расчетные затраты определяются по:

$$3_1$$
=0,125·383,6+57,23=105,2 тыс.руб/год.

Рассмотрим вариант 2. Питание завода осуществляется на напряжении 220кВ отпайкой от ВЛ-220кВ.

Параметры ТРДЦН-63000/220

$$S_{\text{t,h}} = 63000 \text{ kBA}; I_{xx} = 4; u_{x3} = 12; \Delta P_{xx} = 137 \text{kBt}; \Delta P_{x3} = 345 \text{kBt}.$$

«Потери активной и реактивной мощности в трансформаторах» [19]:

$$\Delta P_{rmn} = 2(137 + 0.58^2 \cdot 345) = 506 \text{kBt};$$

$$\Delta Q_{rm} = 2(63000/100) \cdot (4+0.58^2 \cdot 12) = 10126 \text{kBap};$$

Полная расчетная мощность с учетом потерь в трансформаторах:

$$S_{\text{n,equi}} = \sqrt{68904^2 + 19293^2} = 71554 \text{ kBA}$$

«Питающие линии (W).

Питающие воздушные линии выполняются сталеалюминевыми проводами марки AC длиной 1км.

Выбираем сечение провода по техническим условиям.

Определим ток, протекающий по линиям» [11]:

$$I_{p} = \frac{S_{p,rmn}}{2 \cdot \sqrt{3} \cdot 220} = \frac{71554}{2 \cdot \sqrt{3} \cdot 220} = 96, A$$

$$I_{p,marc} = \frac{71554}{\sqrt{3} \cdot 220} = 192, A$$

По условиям допустимого нагрева для нормального режима принимаем минимально возможное сечение провода:

$$S_{H}$$
=240мм² с $I_{доп}$ =610, А тогда:

В нормальном рабочем режиме:

в послеаварийном режиме:

По условиям коронирования: $S_{\kappa}=240 \text{мм}^2$

По допустимой потере напряжения:

$$l_{\text{доп}} = 17, 5 \cdot 5 \cdot \frac{610}{96} = 556, \text{км} > l = 1 \text{км};$$

$$l_{\text{доп,п/ав}} = 17, 5 \cdot 10 \cdot \frac{793}{192} = 722, \text{км} > l = 1 \text{км}.$$

Следовательно, по техническим условиям выбираем сечение 240мм².

Выбираем сечение провода по условиям экономической целесообразности.

Принимаем к рассмотрению следующие сечения: 240,300,400мм².

Рассмотрим сечение 240мм².

Капитальные затраты на линию:

$$K_B=2\cdot 1\cdot 12,6=25,2=$$
тыс.руб

Амортизационные отчисления:

$$C_{a,BJ}$$
=0,028·25,2=0,76тыс.руб.

Потери активной мощности:

$$\Delta P_{BJ} = 3.2.96^2 \cdot 0.13 = 7 \text{ kBt.}$$

Годовые потери электроэнергии в линиях:

$$\Delta \Theta_{a,\text{вл}} = 7.2886 = 20202 \text{ кВт.ч/год.}$$

Стоимость годовых потерь:

$$C_{\text{пвп}} = 60.10^{-2}.20202 = 0.3$$
 тыс.руб/год.

Стоимость годовых эксплуатационных расходов:

$$C_{_{9,\text{вл}}}$$
=0,76+0,3=1,06 тыс.руб/год.

Годовые расчетные затраты на линии:

$$3_{\text{вл}}$$
=0,125·25,2+1,06=4,05 тыс.руб/год.

Результаты расчетов заносятся в таблицу 4.2.

Таблица 4.2 - Технико-экономические показатели питающих воздушных линий марки AC (вариант 2)

№	Сечения мм ²	$K_{yд}$	$r_{yд}$	$\Delta P_{\scriptscriptstyle BJI}$	ΔЭ	$C_{\Pi,B\Pi}$	K_{BJI}	Са,вл	$C_{_{\mathfrak{I},BЛ}}$	З _{вл}
1	240	12,6	0,13	7,13	20202	0,3	25,2	0,76	1,06	4,05
2	300	13,4	0,11	6	17316	0,26	26,8	0,8	1,06	4,2
3	400	14,7	0,08	4,4	12698	0,19	29,4	0,88	1,07	4,6

Как видно из расчетов, зависимость 3 от S не имеет минимума, а носит возрастающий характер. Поэтому окончательно принимаем сечение, выбранное по техническим условиям, т.е. S=240мм².

Тогда полная расчетная мощность завода:

$$S_{p,n} = \sqrt{689901^2 + 19292^2} = 71550 \text{ kBA};$$

Суммарные капитальные затраты на ОРУ-220кВ и трансформаторы ГПП:

$$K_{\text{глл}} = 260,8+3,02+0,68+0,46+2,06+0,2=267,22$$
 тыс.руб.

Суммарные годовые амортизационные отчисления

$$C_{a,r}$$
=16,4+0,22+0,046+0,035+0,13+0,01=16,844 тыс.руб/год.

Суммарные эксплуатационные расходы:

$$C_{9,\text{гпп}}$$
16,84+46,05=62,9тыс.руб/год.

Суммарные капитальные затраты ВЛ:

$$K_{\text{вл}}=25,2+0,1+3,02=28,32$$
тыс.руб.

Суммарные годовые амортизационные отчисления на вл:

$$C_{a,BJI} = 0.76 + 0.1 + 0.2 = 1.06$$

Суммарные эксплуатационные расходы на ВЛ:

$$C_9 = 1,06+0,3=1,36$$

Технико-экономические показатели варианта 2.

Суммарные капитальные затраты:

$$K_2 = K_{\text{вл}} + K_{\text{гпп}} = 28,22 + 267,22 = 292,44$$

Суммарные годовые амортизационные отчисления:

$$C_a = C_{a,B,T} + C_{a,FHH} = 1,06 + 16,84 = 17,82$$

Суммарные эксплуатационные расходы:

$$C_9 = 1,28 + 62,89 = 64,17$$

Годовые расчетные затраты:

$$3_2 = 0,125 \cdot 295,44 + 64,17 = 101,1$$

Вывод: данные расчета показывают, что вариант 2 экономичнее, т.е. электроснабжение завода осуществляется на напряжении 220кВ с отпайкой от ВЛ – 220кВ, проходящей в 1км от станкостроительного завода.

5 Расчет токов короткого замыкания. Выбор электрооборудования

5.1 Расчет токов короткого замыкания

В качестве расчетных принимаем следующие точки КЗ:

K-1- для выбора электрооборудования на отходящих от ВЛ-220кВ линиях;

К-2 – для выбора оборудования на стороне 220кВ;

К-6,К-3 – для выбора электрооборудования на стороне 10кВ;

K-4,K-5,K-7,K-8 — для проверки сечения кабельных линий, питающие цеховые $T\Pi,CД,ДC\Pi$.

Расчеты ведем в относительных единицах, за базисные величины принимаем: S_6 =100 MBA; U_{61} = U_{cp1} =230кB; U_{62} = U_{cp2} =10кB.

Базисный ток определяется по формуле [20]:

$$I_{6} = \frac{S_{6}}{\sqrt{3} \cdot U_{6}} = \frac{100}{\sqrt{3} \cdot 230} = 0,25 \text{ kA};$$

$$I_{62} = \frac{100}{\sqrt{3} \cdot 10.5} = 5,5 \text{ kA}$$

Определим параметры схемы замещения.

Сопротивление системы определяется по формуле:

$$x_{c*} = \frac{S_6}{S_{c*}} = \frac{100}{6000} = 0,017.$$

Сопротивление ВЛ-220кВ марки АС-240/32 длиной 1км, r_0 =0,37Ом/км; x_0 =0,435Ом/км, определяется по формулам:

$$x_* = x_0 \cdot 1 \cdot \frac{S_6}{U_6^2} = 0,424 \cdot 1 \cdot \frac{100}{230^2} = 0,0008;$$

$$r_* = r_0 \cdot 1 \cdot \frac{S_6}{U_6^2} = 0,137 \cdot 1 \cdot \frac{100}{230^2} = 0,0003$$

Сопротивления трансформатора типа ТРДЦН-63000/220, определяется по формулам:

$$\begin{split} r_{T^*} &= \frac{\Delta P_{_{K3}} \cdot S_{_{6}}}{S_{_{TH}}} = \frac{0,345 \cdot 100}{63} = 0,54 \\ x_{_{3^*}} &= \frac{U_{_{KH1-_{H2}}}}{100} \cdot \left(1 - \frac{K_{_{p}}}{4}\right) \cdot \frac{S_{_{6}}}{S_{_{TH}}} = \frac{12}{100} \cdot \left(1 - \frac{3,5}{4}\right) \cdot \frac{100}{63} = 0,023 \\ x_{_{4^*}} &= x_{_{5^*}} = \frac{U_{_{KH1-_{H2}}}}{100} \cdot \frac{K_{_{p}}}{2} \cdot \frac{S_{_{6}}}{S_{_{TH}}} = \frac{12}{100} \cdot \frac{3,5}{2} \cdot \frac{100}{63} = 0,33 \end{split}$$

Сопротивление кабельной линии марки АПвБВнг3×95-10 от КТП-4 до КТП-2 длиной l=0,13км; $r_{yд}$ =0,326Ом/км; $x_{yд}$ =0,083Ом/км; и кабельной линии марки АПвБВнг3×185-10 от КТП-2 до ГПП длиной l=0,15км; $r_{yд}$ =0,167Ом/км; $x_{yд}$ =0,077Ом/км; кабельной линии марки АПвБВнг3×50-10 от ГПП до СД длиной l=0,45км; $r_{yд}$ =0,62Ом/км; $x_{yд}$ =0,09Ом/км; кабельной линии марки АПвБВнг3×240-10 от ГПП до СД длиной l=0,4км; $r_{yд}$ =0,129Ом/км; x_{yg} =0,075Ом/км; определяется по формуле:

$$x_{6} = 0,09 \cdot 0,45 \cdot \frac{100}{10,5} = 0,38;$$

$$r_{6} = 0,62 \cdot 0,45 \cdot \frac{100}{10,5} = 2,36;$$

$$x_{7} = \frac{0,075}{2} \cdot \frac{0,4 \cdot 100}{10,5} = 0,14;$$

$$r_{7} = \frac{0,129}{2} \cdot \frac{0,4 \cdot 100}{10,5} = 0,25;$$

$$x_{8} = 0,083 \cdot 0,13 \cdot \frac{100}{10,5} + 0,077 \cdot 0,1 \cdot \frac{100}{10,5} = 0,21;$$

$$r_{8} = 0,325 \cdot 0,13 \cdot \frac{100}{10,5} + 0,167 \cdot 0,15 \cdot \frac{100}{10,5} = 0,63.$$

Рассмотрим КЗ в точке К-1.

$$X=x*_{\Sigma}=0,017.$$

Определим сверхпереходной ток

$$I_{\kappa 31} = \frac{I_{\delta 1}}{X_{1*\Sigma}} = I_{k-1}^{"} = \frac{0,25}{0,017} = 14,7.$$

Значение ударного тока:

$$\mathbf{i}_{y\kappa-1} = \mathbf{K}_y \sqrt{2} \cdot \mathbf{I}_{\kappa-1}^{"}$$

«где K_y — ударный коэффициент, определяемый по справочной литературе. При малых значениях активного сопротивления принимаем среднее значение $K_v=1,8$ » [11].

Тогда:

$$i_{vk-1} = 1,8 \cdot \sqrt{2} \cdot 14,7 = 37,3 \text{ KA}$$

Определим мощность КЗ в точке К-1

$$S_{K3} = \sqrt{3} \cdot I_{K3}^{"} \cdot U_{\delta} = \sqrt{3} \cdot 14, 7 \cdot 230 = 5849 \text{ MBA}$$

Рассмотрим КЗ в точке К-2.

Результирующие сопротивления определим по формуле:

$$X_{*\Sigma}=x_{*1}+x_{*2}=0,017+0,0008=0,0178$$

 $r_{*\Sigma}=r_{*}=0,0003.$

Соотношение 0,0003<(0,017/3) – активное сопротивление не учитываем. Определим сверхпереходной ток:

$$I_{\kappa_{32}} = I_{k-2}^{"} = \frac{0.25}{0.0178} = 14 \text{ KA};$$

Значение ударного тока:

$$i_v = 1.8 \cdot \sqrt{2} \cdot 14 = 35.5 \text{ KA};$$

Ток КЗ в точке К2:

$$S_{K3,K-2} = \sqrt{3} \cdot 14 \cdot 230 = 5474MBA.$$

Рассмотрим КЗ в точке К-3.

Определим результирующие сопротивление до точки К-3.

$$X_{*3\Sigma} = x_{*2\Sigma} + x_{*3} + x_{*4} = 0,0178 + 0,023 + 0,33 = 0,37;$$

 $r_{*\Sigma} = r_{*2\Sigma} + r_{*3} = 0,003 + 0,54 = 0,543$

Определим сверхпереходной ток энергосистемы по формуле:

$$I_{\kappa_3} = I_{\kappa_3}^{"} = \frac{I_6}{Z_{*\Sigma_i}} = \frac{5.5}{\sqrt{0.543^2 + 0.32^2}} = 8.8 \text{ kA}.$$

Определим ударный ток от энергосистемы

 K_v =1,05 из соотношения 0,37/0,543=0,68.

$$i_{v. \kappa3} = 1,05 \cdot \sqrt{2} \cdot 8,8 = 13 \text{ KA};$$

определим мощность КЗ без учета подпитки от СД:

$$S_{K33} = \sqrt{3} \cdot 8, 8 \cdot 10, 5 = 157 \text{ MBA}$$

«Определим ток и мощность КЗ в точке К-3 с учетом подпитки от присоединенных к шинам 10кВ ГПП синхронных двигателей.

Начальное действующее значение периодической составляющей тока КЗ определяется по формуле» [12]:

$$I_{c_A}^{"} = \frac{E_{0^*}^{"} \cdot I_{c_{A,H}}}{X_A^{"}};$$

где $I_{\text{сд, H}}$ – номинальный ток двигателя;

х д - сверхпереходное реактивное сопротивление;

 $\vec{E_{0}}^{"}$ - значение сверхпереходной ЭДС в начальный момент K3;

$$\begin{split} E_{0*}^{"} &= \sqrt{\cos \phi^2 + \left(\sin \phi_H + x_d^{"}\right)^2} = \sqrt{0,9^2 + \left(0,43 + 0,143\right)^2} = 1,06; \\ I_{_{CZ,H}} &= \frac{\sum_{_{CZ,H}} P_{_H}}{\sqrt{3} \cdot U_{_H} \cdot \cos \phi_H} = \frac{13 \cdot 630}{\sqrt{3} \cdot 10 \cdot 0,9} = 540A; \\ I_{_{C}}^{"} &= \frac{1,06 \cdot 0,54}{0.143} = 4\kappa A; \end{split}$$

Значение ударного тока:

$$i_{y,c,a} = 1,05 \cdot \sqrt{2} \cdot 4 = 5,9 \text{ KA};$$

Мощность короткого замыкания:

$$S_{K3,CJ} = \sqrt{3} \cdot 10, 5 \cdot 4 = 71, 4 \text{ MBA};$$

Найдем значение ударного тока с учетом подпитки от синхронных двигателей:

$$i_{y,\kappa-3} = i_{y,\kappa_3} + i_{y,c_A} = 13 + 5,9 = 18,9 \text{ kA}$$

Определим ток КЗ с учетом подпитки от СД:

$$I_{\kappa-3}=I_{\kappa3}+I_{\kappa3}=8,8+4=12,8 \text{ KA};$$

Мощность в точке К-3 с учетом подпитки от СД

$$S_{K-3} = S_{\kappa_{33}} + S_{\kappa_{3,c,d}} = 157 + 71,4 = 228,4 \text{ MBA}.$$

Рассмотрим КЗ в точке К-4.

Определим результирующее сопротивление до точки К-4:

$$X_{4\Sigma}=x_{*3\Sigma}+x_{*6}=0,37+0,38=0,75;$$

$$r_{4\Sigma}=r_{*3\Sigma}+r_{*6}=0,543+2,36=2,9.$$

Определим ток КЗ

$$I_{K-4} = \frac{5.5}{\sqrt{2.9^2 + 0.75^2}} = 1.83 \text{ KA};$$

Определим ударный ток:

 $K_v=1,03$ из соотношения 0,75/2,9=0,25;

Тогда:

$$i_{y,\kappa-4} = 1,03\sqrt{2}\cdot1,83 = 2,7 \text{ KA};$$

определим мощность КЗ:

$$S_{K3} = \sqrt{3.1,83.10,5} = 33 \text{ MBA};$$

Определим ток КЗ с учетом подпитки от СД:

$$I_{\kappa 4} = I_{\kappa 34} + I_{c_A} = 1,83 + 4 = 5,83 \text{ } \kappa\text{A};$$

Ударный ток в точке К-4 с учетом подпитки от СД:

$$i_{v,\kappa-4}=i_{v,\kappa4}+i_{v,c\pi}=2,7+5,9=8,6 \text{ KA};$$

мощность КЗ с учетом подпитки от СД:

$$S_{\kappa_3-4}=33+71,4=104,4 \text{ MBA};$$

Рассмотрим КЗ в точке К-5.

Определим результирующее сопротивление:

$$X_{*5\Sigma}=0,37+0,14=0,51;$$

$$r_{*5\Sigma}=0,543+0,25=0,79;$$

определим сверхпереходный ток:

$$I_{k5} = \frac{5.5}{\sqrt{0.79^2 + 0.51^2}} = 5.9 \text{ kA}.$$

Определим ударный ток:

$$i_{v,\kappa 5} = 1,12 \cdot \sqrt{2} \cdot 5,9 = 9,3 \text{ KA};$$

определим мощность КЗ:

$$S_{\kappa_{3}5} = \sqrt{3} \cdot 5, 9 \cdot 10, 5 = 105 \text{MBA};$$

Значение сверхпереходного тока с подпиткой от СД:

$$I_{\kappa-5} = I_{\kappa 35} + I_{c\pi} = 5,9 + 4 = 9,9 \kappa A;$$

Ударный ток с учетом подпитки от СД:

$$i_{v,k-5} = i_{v,k5} + i_{v,c,i} = 9,3+5,9=15,2\kappa A$$

мощность КЗ с учетом подпитки от СД:

$$S_{\kappa-5} = S_{\kappa35} + S_{\kappa3,c\pi} = 105 + 71,5 = 176,5 MBA;$$

Рассмотрим короткое замыкание в точке К-8.

Результирующее сопротивление:

$$X_{*6\Sigma}=0,37;$$

$$r_{*6\Sigma} = 0,543.$$

Сверхпереходный ток:

$$I_{\kappa 6} = I_{\kappa - 3} = 8.8 \kappa A$$
.

Ударный ток: $i_{y\kappa-3}=I_{y\kappa-6}=13\kappa A$.

Мощность К3: $S_{\kappa 3} = S_{\kappa - 6} = 157 MBA$.

Рассмотрим короткое замыкание в точке К-7

Определим результирующее сопротивление:

$$X_{*7\Sigma}=x_{*6\Sigma}+x_{*8}=0,37+0,11=0,48;$$

$$r_{*7\Sigma} = r_{*6\Sigma} + r_{*8} = 0,534 + 0,24 = 0,77.$$

Определим сверхпереходной ток:

$$I_{k7} = \frac{5.5}{\sqrt{1.17^2 + 0.58^2}} = 6.1 \text{ KA}$$

определим ударный ток ; Ку=1,04 из соотношения 0,48/0,77=0,62.

$$i_{y,\kappa-7} = 1,04 \cdot \sqrt{2} \cdot 6,1 = 8,9 \kappa A$$

Мощность КЗ:

$$S_{K3-7} = \sqrt{3} \cdot 6.1 \cdot 10.5 = 110.8 \text{MBA}$$

Рассмотрим КЗ в точке К-8.

Определим результирующие сопротивления:

$$x_{*8\Sigma} = x_{*7\Sigma} + x_{*8} = 0,48 + 0,1 = 0,58;$$

 $r_{*8\Sigma} = r_{*7\Sigma} + r_{*8} = 0,77 + 0,4 = 1,17.$

Определим сверхпереходный ток:

$$I_{\kappa_{3,\kappa-8}} = \frac{5.5}{\sqrt{1.17^2 + 0.58^2}} = 4.2 \text{ } \kappa\text{A}$$

Ударный ток:

$$i_{v,\kappa-8} = 1,02 \cdot \sqrt{2} \cdot 4,2 = 6,2 \text{ KA}$$

Мощность КЗ:

$$S_{\kappa_{3,\kappa-8}} = \sqrt{3} \cdot 4, 2 \cdot 10, 5 = 75 \text{MBA}.$$

Определим токи однофазного КЗ на землю в сети с напряжением 10кВ.

Величину емкостного тока замыкания определим по формуле:

$$I_{c,3am} = \frac{U_n}{350} \cdot \left(35l + l_b\right)$$

где U_{π} – линейное напряжение сети, кВ;

 l_{κ} – длина кабельных линий (электрически связанных), км;

 l_b – длина воздушных линий (электрически связанных), км.

Тогда:

$$I_{c.3aM} = (10/350)(35.19,89+0) = 19,89A$$

Согласно ПУЭ компенсация емкостного тока замыкания на землю при помощи дугогасящих аппаратов должна применятся в сетях напряжением 10кВ при токах замыкания на землю не более 20A, т.е. в данном случае она не требуется.

5.2 Выбор электрооборудования

5.2.1 Выбор электрооборудования на напряжении 220 кВ

Выбор разъединителей производят по номинальному напряжению и номинальному току, короткозамыкатели выбираются по номинальному напряжению.

Таким образом, чтобы выполнялись соотношения:

$$U_{\text{\tiny H},a} \ge U_{\text{\tiny M},y}$$

$$I_{H,a} \ge I_{p,max}$$

Проверку производят:

На электродинамическую устойчивость

$$I_{\scriptscriptstyle H.ДИН}\!\!\geq\!\! I_{y.p.}$$

На термическую стойкость

$$I^2_{\text{H,C}} \cdot t_{\text{HTC}} \ge I^2_{\infty} t_{\phi} = B_{\kappa}$$

Принимаем к установке разъединители РГП-2-220/1000.

5.2.2 Выбор электрооборудования РУ-10кВ ГПП

Для выбора электрооборудования на стороне 10кВ ГПП принимаем значение токов КЗ в точке К-3.

Номинальный ток одной секции шин при полной загрузке трансформаторе определяется по формуле:

$$I_{p,max} = \frac{S_{T,H} \cdot 1,4}{2 \cdot \sqrt{3} \cdot U_{H}} = \frac{63000 \cdot 1,4}{2 \cdot \sqrt{3} \cdot 10} = 2549 \text{ A}$$

Для первой системы шин расчетный ток с учетом подпитки от СД составит:

$$I_{p,1c}$$
=2549+540=3089,A

На вводах РУ-10кВ принимаем выключатель типа ВВУ-СЭЩ-10-3200.

Принимаем к установке секционный выключатель ВВУ-СЭЩ-10-1600-31,5.

Для отходящих линий от РУ-10кВ ГПП к цеховым ТП, СД и ДСП принимаем к установке выключатель ВВУ-СЭЩ-10-630-31,5.

Результаты выбора выключателей заносим в таблицу 5.1.

Таблица 5.1 - Выбор и проверка выключателей 10кВ

Наименование	$U_{\scriptscriptstyle H,a}$	$I_{\scriptscriptstyle H,a}$	$I_{\scriptscriptstyle H.ДИН}$	$S_{ot.h}$	$I_{\text{от,H}}$	I^2t_{H}	$U_{H,y}$	$I_{p,max}$	i_y	I"	S	I^2t_{H}
оборудования	кВ	Α	кА	MBA	кА	КА	кВ	A	кA	Α	MBA	кА
1	2	3	4	5	6	7	8	9	10	11	12	13
Ввод РУ-10кВ	10	3200	80	350	31,5	3969	10	2089	18,9	12,8	288	18
ВВУ-СЭЩ-												
10-3200-31,5												
Секционный	10	1600	80	350	31,5	3969	10	1544	18,9	12,8	288	18
выключатель												
ВВУ-СЭЩ-												
10-1600-31,5												
Линии ГПП-	10	630	80	350	31,5	3969	10	157	8,9	6,1	110	18
КТП ВВУ-												
СЭЩ-10-630-												
31,5												
Линии ГПП-	10	630	80	350	31,5	3969	10	294	15,2	9,9	176	18
ДСП ВВУ-												
СЭЩ-10-630-												
31,5												
Линии ГПП-	10	630	80	350	31,5	3969	10	33	8,6	5,83	104	18
СД ВВУ-												
СЭЩ-10-630-												
31,5												
Ввод РУ-10кВ	10	3200	80	350	31,5	3969	10	2549	13	8,8	157	18
ВВУ-СЭЩ-												
10-3200-31,5												
Секционный	10	1600	80	350	31,5	3969	10	1274	13	8,8	157	18
выключатель												
ВВУ-СЭЩ-												
10-1600-31,5												

«Все оборудование РУ-10кВ комплектное в ячейках КРУ, в том числе шины, изоляторы и т.д., кроме трансформаторов тока, рассчитано заводом изготовителем по вводным выключателям, поэтому расчет сборных шин и изоляторов не производится» [13].

По результатам представленного выше выбора принимаем к установке КРУ серии КРУ-СЭЩ-70.

5.2.3 Выбор трансформаторов тока в РУ-10кВ

На вводах РУ-10кВ ГПП устанавливаем ТТ в соответствии с расчетным током ТПШЛ-10-4000, класс точности 0,5.

На секционном выключателе для 1c шин устанавливаем ТТ: ТПШЛ-10-2000, класс точности 0,5.

Аналогично выбираются ТТ на отходящих линиях к КТП, СД, ДСП (таблица 5.2).

Таблица 5.2 - Выбор и проверка трансформаторов тока

Наименование	$U_{\scriptscriptstyle \mathrm{H}}$	I_{H}/I_2	$K_y\sqrt{2I_H}$	$(K_{\scriptscriptstyle T}I_{\scriptscriptstyle H}1)^2$	Класс	$U_{\scriptscriptstyle \mathrm{H}}$	І _{р,макс}	i_y	$I^2_{\infty}t_{\Phi}$
электрооборудования	кВ	A	кА		ТОЧ	кВ	Α	кА	•
На вводе РУ-10кВ	10	4000/5	564	58800	0,5/Д	10	3089	18,9	184
ГПП ТПШЛ-10-4000									
На секционном выкл	10	2000/5	282	14700	0,5/Д	10	1544	18,9	102
ТПШЛ-10-4000									
На линиях ГПП-КТП	10	400/5	96	972	0,5/Д	10	157	6,2	2,5
ТПП-10-400									
На линиях ГПП-СД	10	200/5	70,5	243	0,5/Д	10	66	5,83	4,1
ТПП-10-200									
ГПП-ДСП ТПП-10-	10	600/5	69	1105	0,5/Д	10	588	9,9	12
600									
На вводе РУ-10 ГПП	10	3000/5	223	33075	0,5/Д	10	2549	13	86
2сш ТПШЛ-10-3000									
На секционном выкл	10	2000/5	282	14700	0,5/Д	10	1274	13	44
2сш ТПШЛ-10-2000									

5.2.4 Выбор трансформаторов напряжения

Питание измерительных приборов осуществляется через трехфазный пяти стержневой трансформатор напряжения типа НАМИТ-10 мощностью 100ВА, класс точности 0,5/Д. Трансформаторы напряжения присоединены к шинам ГПП плавкие предохранители типа ПКТ-10. Результаты выбора заносим в таблицу 5.3.

Таблица 5.3 - Нагрузка трансформаторов напряжения

Наименование прибора	Мощность прибора ВА	Число прибо	cosφ	Потреб	Потребляемая мощность		
приоори	приоора Вл	ров		P	Q	S	
		Pos		Вт	квар	BA	
Вольтметр	9	1	1	9		9	
Вольтметр	10	1	1	10		10	
Частотомер	8	1	1	9		9	
Счетчик	0,65	10	0,08	6,65	16,2	17,5	
активной							
энергии							
Счетчик	0,65	10	0,08	6,65	16,2	17,5	
реактивной							
энергии							
Реле напряжения	5	1	1	5		5	
Итого:		·		45,3	32,4	56	

Нагрузка ТН составит:

$$S_{\Sigma}=45,3^2+32,4^2=56 \text{ BA}<100\text{BA},$$

условие выполняется.

5.2.5 Выбор трансформаторов собственных нужд

Произведем расчет нагрузки трансформаторов собственных нужд на основании данных таблицы 5.4.

Таблица 5.4 - Расчет нагрузки ТСН

N_0N_0	Наименование	$P_{\scriptscriptstyle \mathrm{H}}$	Количество	cosφ	P	Q	S
ПП	потребителя	кВт	Шт.	·	кВт	квар	КВА
1	Освещение	0,1	30	1	3		
	ГПП	1	2		2		
2	Обдув тр-ов	8	2	1	16	10	
	ГПП						
3	Обогрев КРУ	0,3	49	0,85	14,7		
4	Оперативные	1,8	1	0,85	8,8		
	цепи						
5	Обогрев	1,1	4	1	4,4		
	приводов						
6	Аппаратура	4,3	2	1	8,6		
	СВЯЗИ						
7	Заряднык	8,3	2	0,8	16,6	12,3	
	устройства						
	Итого:				67,1	22,3	70,8

C учетом коэффициента разновременности нагрузок $K_{pm}\!\!=\!\!0,\!65,$ потребляемая мощность будет равна:

$$S=0,65.70,8=46,02 \text{ kBA}.$$

Вывод: принимается к установке трансформатор ТМ-63/10. На ГПП устанавливаем два трансформатора собственных нужд с ABP на стороне 0,4кВ – один рабочий один резервный.

6 Автоматизированная система контроля и учета электроэнергии

6.1 Назначение и состав системы

Автоматизированная система контроля и учета электроэнергии предназначена для тарифных расчетов предприятий промышленности за электроэнергию, а также для тарифных расчетов по многоставочным по зонным тарифам.

Система может применятся также для технического учета электроэнергии в цехах промпредприятия, для межцехового учета.

В состав системы входят [21]:

- Информационно-вычислительное устройство;
- Цифропечатающее устройство;
- Регистрирующий прибор;
- Трехфазные счетчики активной и реактивной энергии с телеметрическими датчиками импульсов4
 - Линии передач информации от счетчиков к ИВУ системы.

6.2 Функции, выполняемые системой

Информационно-вычислительное устройство системы производит обработку информации, получаемой от счетчиков, накапливает и хранит результаты вычислений.

Система обеспечивает диапазоны задания максимумов с дискретностью 30 минут.

Система обеспечивает визуальный контроль работы всех каналов учета.

Система обеспечивает запись регистрирующим прибором текущей совмещенной мощности с заданным временем усреднения.

Система обеспечивает коррекцию значения текущего времени.

6.3 Технические данные системы

Питание системы осуществляется от однофазной сети переменного тока промышленной частоты 50 Гц и напряжения 220 В.

Для сохранения работоспособности системы в случае перерыва в питании сети переменного тока предусмотрена возможность подключения напряжения одноименной фазы 220 в от резервной секции шин.

Система потребляет от сети не более 500 Вт.

Система работает в температурном диапазоне от плюс 10 до плюс 35^{0} С при относительной влажности от 30 до 80%.

Расстояние от счетчиков до ИВУ не более 3км.

Наработка на отказ ИВУ системы не менее 2500ч.

Время заполнения всех разрядов регистра общего расхода энергии не менее 1 месяца при нагрузке трансформаторов тока 70% от номинальной.

Метрологические характеристики.

Систематическая составляющая относительной погрешности в определении величин, хранящихся в регистрах ИВУ, при счетчиках класса точности 1,0 не превышает 1,5%.

Случайная составляющая относительной погрешности в определении совмещенной мощности численно не превышает класса точности используемых счетчиков.

Погрешность записи текущей мощности не превышает 2% от предела измерения прибора.

Дополнительная погрешность от индустриальных помех системы в целом не превышает 0,1% за время не менее 0,5 ч при нагрузке предприятия не ниже 20% от номинальной.

Вывод: рассмотрены функции автоматизированной системы контроля и учета электроэнергии.

7 Расчет заземляющего устройства

Одним из видов защиты от прикосновения к токоведущим частям, оказавшимся под напряжением, является выравнивание потенциалов путем устройства контура заземления.

Расчет контурного заземления ГПП 220, 10 кВ проводится в следующей последовательности:

1. Определяется сопротивление искусственного заземления с учетом использования естественных заземлителей, включенных параллельно с естественными по формуле:

$$R_{\rm H} = \frac{R_{\rm e} \cdot R_{\rm 3}}{R_{\rm e} - R_{\rm 3}} \quad ;$$

где $R_3 = 0.5$ Ом — сопротивление заземления со стороны 2209 кВ, принимаются равными 0,5 Ом, т.к. согласно ПУЭ в электроустановках с большими точками замыкания на землю с сопротивлением заземляющих устройств должно быть не более 0,5 Ом;

 $R_{\rm e}$ - сопротивление заземлителя системы "трос-опора", т.е. естественного заземлителя, которое определяется по формуле:

$$R_{e} = \frac{1}{2} \sqrt{r_{O\Pi} \frac{r_{TP}}{n}};$$

где $r_{on} = 30 \ \mathrm{Om} - \mathrm{a} \kappa$ тивное сопротивление заземлителя одной опоры.

n — число тросов линии,

 ${
m r}_{{
m TP}}$ — сопротивление троса по длине одного пролета, которое определяется по формуле:

$$r_{TP} = 0.15 \frac{\ell}{s};$$

где s –сечение троса, mm^2 ;

 ℓ – длина пролета, м.

Для троса C-50, сечением $s = 50 \text{ мм}^2$ при длине пролета 200 м, активное сопротивление троса будет равно

$$r_{TP} = 0.15 \frac{200}{50} = 0.6 \text{ Om}$$

Тогда

$$R_e = \frac{1}{2} \sqrt{30 \cdot \frac{0.6}{2}} = 1.5$$

$$R_{\rm H} = \frac{1,5 \cdot 0,5}{1,5-0,5} = 0,75 \text{ Om.}$$

«2. Определяются расчетные удельные сопротивления для вертикальных и горизонтальных электродов по формуле

$$\rho_{P} = K_{B(\Gamma)} \rho_{\Gamma P}$$

где $K_B=1,8$ — повышающий коэффициент для вертикальных стержневых электродов длиной 2-3 и при глубине их вершин 0,5-0,8 м, принимается согласно таблицы 12-2 [7];

 $K_{(\Gamma)}$ = 4, - повышающий коэффициент для горизонтальных протяженных электродов при глубине заложения 0,8 м, принимается согласно таблицы 12-2» [7];

 $ho_{\it IP} = 100$ Ом'м — удельное сопротивление грунта в месте сооружения заземлителя, которое рекомендуется для предварительных расчетов по таблице 12-1 [7],

Тогда

$$\rho_{P,B} = 1.8 \cdot 100 = 180$$
, Om'm,

$$\rho_{P \Gamma} = 4.5 \cdot 100 = 450$$
, Om'm.

Определяем сопротивление одного вертикального электрода (уголки $N_{2}50$) длиной 1=2,5 м при погружении в землю на 0,7 м по формуле

$$R_{B,O} = \frac{\rho_{P,B}}{2} (\ell_n \frac{2\ell}{\alpha} + \frac{1}{2} \ell_n \frac{4t + \ell}{4t - \ell})$$

где α - диаметр сечения электрода, который определяется по формуле $\alpha = 0.95 \text{в},$

где в −0,05 м – ширина стороны уголка № 50,

 t – глубина погружения середины длины электрода в землю расстояние от поверхности земли до середины длины электрода которая определяется по формуле

$$t = t_0 + 0.5\ell$$

где t_0 =0.7 м – глубина погружения электрода в землю- расстояние от поверхности земли до электрода,

 $\ell = 2.5 \text{ м} - длина электрода$

Тогда

$$\alpha = 0.95 \cdot 0.05 = 0.0475 \text{ m},$$

$$t = 0.7 + 0.5 \cdot 2.5 = 1.95 \text{ m},$$

$$R_{\text{B,O}} = \frac{180}{2 \cdot 3.14} (\ell n \frac{2 \cdot 2.5}{0.0475} \cdot \frac{1}{2} \ell n \frac{4 \cdot 1.95 + 2.5}{4 \cdot 1.95 - 2.5}) = 57.17 \text{ Om}$$

4. Определяется примерное число вертикальных заземлителей при предварительном коэффициенте использования $K_{u, B}$ по формуле

$$n = \frac{R_{B,O}}{K_{MR} \cdot R_{M}} ,$$

где $K_{\text{ИВ}}$ =0.56 – предварительный коэффициент использования.

Тогда
$$n = \frac{57.17}{0.56 \cdot 0.75} \approx 136 \text{ шт.}$$

5.Определяется сопротивление растеканию горизонтальных электродов (полосы 60х5 мм) приваренных к верхним концам уголков, по формуле

$$R_{\Gamma} = \frac{1}{K_{\text{M},\Gamma}} \cdot \frac{R_{\text{P},\Gamma}}{2\pi\ell} \ell n \frac{2\ell^2}{\text{Bt}} ,$$

где $K_{\text{И},\Gamma}$ =0,24 — коэффициент использования, принимается по таблице 12.7/7/.

 $\ell = 500$ м – периметр контура;

B = 0.06 м - ширина электрода (полоса 60 x 5 мм).

Тогда R =
$$\frac{1}{0.24} \cdot \frac{450}{2 \cdot 3.14 \cdot 500} \cdot \ell n \frac{2 \cdot 500^2}{0.06 \cdot 0.7} = 8.57 \text{ Ом.}$$

6. Уточняется сопротивление вертикальных электродов по формуле

$$R_{\rm B} = \frac{R_{\rm r} R_{\rm H}}{R_{\rm r} - R_{\rm H}} ,$$

тогда

$$R_B = \frac{0.57 \cdot 0.75}{8.57 - 0.75} = 0.82 \text{ Om}.$$

7. Уточняется число вертикальных электродов по формуле

$$n = \frac{R_{B,O}}{K_{MB} \cdot R_B},$$

где К_{и,В =} коэффициент использования.

Тогда

$$n = \frac{57.17}{0.5 \cdot 0.82} = 134 \text{ mT};$$

Окончательно принимаем установке 134 уголка № 50.

8. Проверка на термическую стойкость полосы 60x5 мм осуществляется по формуле

$$R_{min} = I_K^{(3)} \frac{\sqrt{t_{\Phi}}}{C} \le F;$$

где $I_K^{(3)} = 14 \text{ кA} -$ значение тока 3х фазного К3 на стороне 220 кВ;

 t_{φ} = 2,05 с – фактическое время протекания тока К3;

С = 74- постоянный коэффициент для стали;

 $F = 300 \text{ мм}^2 - фактическое сечение полосы.}$

Тогда

$$F = 14 \cdot \frac{\sqrt{2.05}}{74} = 270 \text{ mm}^2 < F = 300 \text{ mm}^2,$$

Вывод: полоса 60x5 мм² удовлетворяет условию термической стойкости.

Заключение

В результате выполнения бакалаврской работы была спроектирована система электроснабжения предприятия по выпуску станочного оборудования, позволяющая обеспечить надежное электроснабжение потребителей предприятия с минимальными издержками.

При выполнении работы были определены расчетные нагрузки по всем корпусам предприятия. Общая нагрузка предприятия составила 71 МВА. Выполнен расчет системы внутреннего освещения производственных корпусов и системы наружного освещения территории предприятия с использованием светодиодных светильников. Определены координаты центра электрических нагрузок по предприятию. Выбрано целесообразное напряжение внутрицеховых сетей 380/220 В. Произведен выбор числа, мощности цеховых трансформаторов и компенсирующих устройств и определены потери активной и реактивной мощности в трансформаторах. Для системы внутризаводского электроснабжения выбрано напряжение 10 кВ как наиболее экономичное, позволяющее получить высокое качество электроэнергии, возможность роста электрических нагрузок. Распределительная сеть 10 кВ выполняется трехжильными кабелями марки АПвБВнг с алюминиевыми жилами с изоляцией из сшитого полиэтилена с прокладкой их в траншеях. Выполнен расчет сечений кабельных линий 10 ĸВ. распределительной Выполнена технико-экономическое сети сравнение двух вариантов схем внутреннего электроснабжения. Приняты к установке КРУ-СЭЩ-70 с выключателями типа ВВУ-СЭЩ. Выбраны число и трансформаторов ΓΠΠ. Определено напряжение системы внешнего электроснабжения и выбрана ее схема. Произведен расчет токов короткого замыкания, выбрано и проверено на устойчивость к токам КЗ ГПП. электрооборудование Определены требования на К автоматизированной системе контроля и учета электроэнергии. Выполнен расчет заземляющего устройства.

Список используемых источников

- 1. Правила устройства электроустановок. 7-е изд., Сибирское университетское издательство, 2013г.
- 2. Куско А., Томпсон М. Сети электроснабжения. Методы и средства обеспечения качества энергии. Саратов: Профобразование, 2017. 334 с.
- 3. Sahdev S. K. Basic Electrical Engineering. Pearson India, 2015. 768 p.
- 4. Антонов С.Н. Проектирование электроэнергетических систем : учебное пособие. Ставрополь: Ставропольский государственный аграрный университет, 2014. 104 с.
- 5. Ушаков В.Я., Чубик П.С. Потенциал энергосбережения и его реализация на предприятиях ТЭК: учебное пособие. Томск: Изд-во Томского политех. университета, 2015. 388 с.
- 6. Сибикин Ю.Д. Пособие к курсовому и дипломному проектированию электроснабжения промышленных, сельскохозяйственных и городских объектов: учебное пособие. М.: ФОРУМ: ИНФРА-М, 2015. 384 с.
- 7. Данилов М.И. Романенко И.Г. Инженерные системы зданий и сооружений (электроснабжение с основами электротехники) [Электронный ресурс]: учебное пособие (курс лекций). Ставрополь: Северо-Кавказский федеральный университет, 2015. 223 с. URL: http://www.iprbookshop.ru /63087.html (дата обращения: 03.05.2019).
- 8. РТМ 36.18.32.4-92. Указания по расчету электрических нагрузок. ВНИПИ «Тяжпромэлектропроект» №358-90 от 1 августа 1993 г.
- 9. Вахнина В.В., Черненко А.Н. Проектирование систем электроснабжения [Электронный ресурс]: электронное учеб.-метод. пособие. Тольятти: Изд-во ТГУ, 2016. 78 с. URL: https://dspace.tltsu.ru/bitstream/123456789/2976/1/Vahnina% 20Chernenko EUMI Z.pdf (дата обращения:

10.05.2019).

- 10. Вахнина В.В., Черненко А.Н. Системы электроснабжения [Электронный ресурс]: электронное учеб.-метод. пособие. Тольятти: Изд-во ТГУ, 2015. 46 с. URL: https://dspace.tltsu.ru/bitstream/123456789/2943/1/Vahnina%20Chernenko EUMI Z.pdf (дата обращения: 10.05.2019).
- 11. Сибикин Ю.Д. Электроснабжение промышленных и гражданских зданий [Электронный ресурс]: учебник. 5-е изд., перераб. и доп. М.: ИНФРА-М, 2019. 405 с. URL: http://znanium.com/catalog/product/1003810 (дата обращения: 18.04.2019).
- 12. Qiu L., Ouyang Y., Feng Y., Zhang X. Review on micro/nano phase change materials for solar thermal applications // Renewable Energy. 2019. №14, pp. 513-538.
- 13. Абрамова Е. Я. Курсовое проектирование по электроснабжению промышленных предприятий: учебное пособие. Оренбургский гос. ун-т. Оренбург: ОГУ, 2012. 106 с.
- 14. Zhang Q., Tang W., Zaccour G., Zhang J. Should a manufacturer give up pricing power in a vertical information-sharing channel // European Journal of Operational Research. 2019. №276, pp. 910-928.
- 15. Кузнецов С.М. Проектирование тяговых и трансформаторных подстанций : учебное пособие. Новосибирск: Новосибирский государственный технический университет, 2013. 92 с.
- 16. Стандарт организации ОАО «ФСК ЕЭС» СТО 56947007-29.240.30.010-2008. Схемы принципиальные электрические распределительных устройств подстанций 35-750 кВ. Типовые решения. Стандарт организации. Дата введения: 13.09.2011. ОАО «ФСК ЕЭС». 2011.
- 17. Banerjee G. K. Electrical and electronics engineering materials. PHI Learning Pvt. Ltd., 2014. 360 p.
- 18. Пилипенко В.Т. Электромагнитные переходные процессы в электроэнергетических системах : учебно-методическое пособие. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014. 124 с.

- 19. Шеховцов В.П. Электрическое и электромеханическое оборудование : учебник, 3-е изд. М. : ИНФРА-М, 2018. 407 с.
- 20. Alatawneh N. Effects of cable insulations' physical and geometrical parameters on sheath transients and insulation losses // International Journal of Electrical Power and Energy Systems. 2019. №11, pp. 95-106.
- 21. Дайнеко В.А., Забелло Е.П., Прищепова Е.М. Эксплуатация электрооборудования и устройств автоматики: учебное пособие. М.: НИЦ ИНФРА-М, Нов. знание, 2015. 333 с.