федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

	<u> АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ</u>	
TT	(институт)	
Теплогазоснаож	ение, вентиляция, водоснабжение и в	водоотведение
	(кафедра)	
	270800.62 (08.03.01) "Строительство"	
(код и	наименование направления подготовки, специально	ости)
	<u>Теплогазоснабжение, вентиляция</u>	
	(наименование профиля, специализации)	
	БАКАЛАВРСКАЯ РАБОТА	
на тему: <u>г.о. Тольятти</u>	. Индивидуальный жилой дом с цокольным	этажом. Инженерные
<u>cemu.</u>		
Студент	Д.А Струков	
	(И.О. Фамилия)	(личная подпись)
Руководитель	Е.В. Чиркова	,
	(И.О. Фамилия)	(личная подпись)
Консультанты	А.В. Щипанов	, , ,
•	(И.О. Фамилия)	(личная подпись)
Hankararenau	II A Waranagana	
Нормоконтроль	И.А. Живоглядова	
	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
-		
Завелующий кафелро	ойк.т.н., доцент. М.Н. Кучеренко_	
заведующий кафедро	(ученая степень, звание, И.О. Фамилия)	(личная подпись)
« »	2016-	
··		

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

АРХИТЕКТУРНО-	<u>СТРОИТЕЛЬНЫЙ</u>	
· ·	гитут)	
«Теплогазоснабжение, вентиляция		оотведение»
(каф	едра)	
	УТВЕРЖДАЮ	
	Зав. кафедрой ТГВЕ	ВиВ
	1 1	_М.Н. Кучеренко
	(подпись)	(И.О. Фамилия)
	«»	20Γ.
	АНИЕ манаромой работи	_
на выполнение бак	калаврской работы	l
Студент <u>Струков Дмитрий Александро</u> в	вич	
1.Тема <u>г.о. Тольятти. Индивидуальн</u>	ный жилой дом с	цокольным этажом.
Инженерные сети.		
2. Срок сдачи студентом законченной выпуск		й работы <i>10.06.2016 г</i> .
3. Исходные данные к выпускной квалификаг	_	_
5. Исходные данные к выпускной квалификаг	ционнои расоте. <u>илины</u>	этижеи
 Содержание выпускной квалификационно 	NA DOUGHANT (HODOHANI H	ATHOMOTHUM POOPONOTES
вопросов, разделов): <u>исходные данные, п</u>	<u> 1еплотехнический рас</u>	чет, расчет систем
пеплоснабжения, вентиляции, водоснаб	эжения, водоотведет	ния, газоснабжения <u>,</u>
автоматизация теплового пункта, орга	низация строительно	о-монтажных работ <u>,</u>
безопасность и экологичность проекта.		
•		
5. Ориентировочный перечень графического	и иппюстративного м	иатериала: лист общих
данных, планы цокольного, первого, второго	_	
отопления, вентиляции, горячего водоснабжа	<u>гния, холооного вооосн</u>	<u>аожения, канализации,</u>
газоснабжения.		
б. Дата выдачи задания « <u>18</u> » <u>апр</u> е	<u>2016</u> г.	
Руководитель выпускной		
квалификационной работы		Е.В. Чиркова
_	(подпись)	(И.О. Фамилия)
Вадание принял к исполнению		Д.А. Струков
	(подпись)	(И.О. Фамилия)

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

A	<u> РХИТЕКТУРНО-</u>	<u>СТРОИТЕЛЬНЫЙ</u>	. <u>. </u>	
	(инст	титут)		
«Теплогазосна	<u>бжение, вентиляция</u>	, водоснабжение и в	одоотведени	e»
	(кафо	едра)		
		УТВЕРЖДАЮ		
		Зав. кафедрой ТГ	ВВиВ	
		1 1		Кучеренко
		(подпись)		Фамилия)
		«»	20г.	
	КАЛЕНДАР			
В	ыполнения оака	лаврской работы	J	
Студента Струкова Д.	митрия Александро	вича		
по теме г.о. Тольян			с иокольны.	м этажом.
Инженерные сети.	· · · · · · · · · · · · · · · · · · ·			
22.16.16.2.16.16.2.16.16.16.16.16.16.16.16.16.16.16.16.16.				
Наименование раздела	Плановый срок	Фактический срок	Отметка о	Подпись
работы	выполнения раздела	выполнения раздела	выполнении	руководителя
Введение. Исходные данные	18.04.16-20.04.16	18.04.16-20.04.16	выполнено	
Теплотехнический расчет	21.04.16-25.04.16	21.04.16-26.04.16	выполнено	
Теплоснабжение	26.04.16-09.05.16	27.04.16-12.05.16	выполнено	
Вентиляция	10.05.16-14.02.16	13.05.16-16.05.16	выполнено	
Водоснабжение и водоотведение	15.05.16-20.05.16	17.03.16-20.05.16	выполнено	
Газоснабжение	21.05.16-26.05.16	21.05.16-23.05.16	выполнено	
Контроль и автоматизация	27.05.16-31.05.16	24.05.16-29.05.16	выполнено	
Организация монтажных работ	01.06.16-05.06.16	30.05.16-05.06.16	выполнено	
Безопасность и экологичность проекта	06.06.16-10.06.16	06.06.16-10.06.16	выполнено	
Руководитель выпускной квалификационной работи Задание принял к исполне		(подпись)	(И.С Д.А.	. <i>Чиркова</i> О. Фамилия) . <i>Струков</i>
		(подпись)	(И.	О. Фамилия)

Аннотация

В основу проекта положены архитектурно-строительные чертежи и генеральный план застройки.

В проекте приняты решения по оснащению инженерными системами индивидуального жилого дома, расположенного в г.о. Тольятти Самарской области. Произведен теплотехнический расчет ограждающих конструкций.

В разделе "Теплоснабжение" выполнен гидравлический расчет двухтрубной системы отопления с тупиковым движением теплоносителя, осуществлен расчет числа секций отопительных приборов, а также подбор клапанов и оборудования теплового пункта. Для помещений с плиточным покрытием принята к установке система теплого пола.

В разделе "Вентиляция жилого дома" для различных помещений была запроектирована приточно-вытяжная система вентиляции с искусственным и естественным побуждением. Рассчитаны размеры сечений вытяжных каналов из помещений сан.узлов, котельной, кухни. Для помещений бассейна и тренажерного зала рассчитаны отдельные системы вентиляции периодического действия с искусственным побуждением. Подобраны приточные венткамеры канального типа с электрическим подогревом, а в качестве воздухораспределителей приняты воздухораспределители типа РР.

В разделе "Водоснабжения и водоотведения" выполнен гидравлический расчет систем горячего и холодного водоснабжения и канализации. Подобраны диаметры труб, подобран счетчик в узел учета.

Выполнен раздел "Организация строительно-монтажных работ" при монтаже внутренних инженерных систем и составлена функциональная схема автоматизации теплового пункта.

Содержание

В радонна	3
Введение	•
1. ИСХОДНЫЕ ДАННЫЕ	4
1.1 Параметры наружного воздуха	4
1.2 Параметры внутреннего воздуха	5
1.3 Описание объекта строительства	5
2. ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ	7
2.1 Теплотехнический расчет ограждающих конструкций	7
2.2 Определение теплопотерь здания	15
3. ТЕПЛОСНАБЖЕНИЕ	17
3.1 Конструирование системы отопления	17
3.2 Горячее водоснабжение	24
3.3 Расчет и подбор оборудования котельной	27
4. ВЕНТИЛЯЦИЯ	31
4.1 Определение требуемых воздухообменов	32
4.2 Выбор принципиальных решений и конструирование	33
4.3 Аэродинамический расчет	34
4.4 Расчет и подбор оборудования	36
5. ВОДОСНАБЖЕНИЕ И ВОДООТВЕДЕНИЕ	34
5.1 Холодное водоснабжение	37
5.2 Водоотведение	40
6. ГАЗОСНАБЖЕНИЕ	43
6.1 Конструирование системы газоснабжения	43
6.2 Гидравлический расчет внутренней системы газоснабжения	43
7. КОНТРОЛЬ И АВТОМАТИЗАЦИЯ	47
8. БЕЗОПАСНОТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА	50
9. ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ	55
Список литературы	58
ПРИЛОЖЕНИЯ	61

Введение

Основное назначение систем отопления и вентиляции состоит в обеспечении заданных климатических условий в помещениях зданий.

Для того, чтобы в холодный период года обеспечить в жилом помещении необходимые условия для проживания, нужна система, которая помогала бы поддерживать нужный температурный режим. Система отопления является наиболее удачным инженерным решением данной проблемы. Системы отопления и вентиляции помогут поддерживать в доме заданные температурные условия на протяжении всего холодного периода.

Поддержание определенных параметров среды в течение года важно в целях обеспечения здоровья жителей и долговечности строительных конструкций.

В связи с тенденцией роста цен на энергоноситель остро встает вопрос о применении новых энергосберегающих технологий и экономии топлива. Потому в качестве источника тепла все чаще используются конденсатные котлы.

Цель проекта заключается в проектировании систем отопления, водоснабжения, водоотведения, вентиляции и газоснабжения жилого дома в соответствии всем современным нормам и требованиям.

1Исходные данные

1.1 Параметры наружного воздуха

Согласно заданию на проектирование, местоположение проектируемого объекта: Самарская область, г.о. Тольятти, проезд Моховой.

Согласно СП «Строительная климатология» [23] и определяются параметры наружного воздуха для Самарской области:

- температура наружного воздуха наиболее холодной пятидневки обеспеченностью 0.92: $t_H = -30$ °C;
- количество дней со среднесуточной температурой наружного воздуха < 8 °C: $Z_{ot} = 203$ сут;
- средняя температура периода, в котором температура наружного воздуха < 8 °C: $t_{ot} = -5,2$ °C;
- средняя месячная относительная влажность воздуха наиболее холодного месяца: $\varphi = 84 \%$;
- барометрическое давление: 990 гПа.

Скорость ветра:

- 3,2 м/с для теплого периода года (Теплый период года период года, характеризующийся среднесуточной температурой наружного воздуха выше 8 °C);
- 5,0 м/с для холодного периода года. (Холодный период года период года, характеризующийся среднесуточной температурой наружного воздуха, равной 8 °C и ниже).

Удельная энтальпия:

- 52,8 кДж/кг для теплого периода года,
- -29,8 кДж/кг для холодного периода года.

Температура воздуха теплого периода года: 24,3 °C.

Зона влажности: сухая. Условия эксплуатации: нормальные.

1.2 Параметры внутреннего воздуха

Параметры внутреннего воздуха для разных типов помещений определяются согласно ГОСТ 30494 [6] и приводятся в таблице 1.1

Таблица 1.1 – Параметры внутреннего воздуха

Наименование помещения	Температур а воздуха, ⁰ C	Относительная влажность, %	Скорость движения воздуха, м/с
Спальня	20	55	0,2
Кухня	20	55	0,2
Санузел	25	65	0,2
Коридор	20	55	0,2
Зал тренажерный	18	55	0,2
Вестибюль	20	55	0,3
Зимний сад	18	60	0,2
Холл	20	55	0,3
Кабинет	20	55	0,2
Гостиная	20	55	0,2
Детская комната	20	55	0,2
Помещение бассейна	25	65	0,3

1.3 Описание объекта строительства.

Объект строительства - индивидуальный жилой дом с ориентацией главного фасада здания на восток. С архитектурной точки зрения конструкция здания представляет собой одноэтажную постройку с цокольным и мансардным этажом. Дом имеет сложную планировку с общей площадью застройки 278 м² и высотой помещений 3,0 м. Дом имеет 3 этажа.

На первом и цокольном этажах здания расположены помещения котельной, холла, вестибюля, прихожей, сауны, кухни, бильярдной, гостиной, а также на цокольном этаже имеется помещение бассейна с отметкой чаши бассейна на отметке -5.300. На мансардном этаже здания, на отм. 3.300 расположены сан. узел и жилые комнаты.

Наружные стены выполнены из кирпича с пеноблоком, которые утеплены минераловатной плитой и с внутренней стороны покрыты гипсовой штукатуркой. Пол цокольного этажа утепленный по грунту. Крыша деревянная утепленная минераловатной плитой. Окна пластиковые из профильной системы Фаворит 71 с двухкамерном стеклопакетом.

2 Теплотехнический расчет

2.1 Теплотехнический расчет ограждающих конструкций

Теплотехнический расчет ограждающих конструкций выполняется из условия, что приведенное сопротивление теплопередаче ограждающих конструкций будет не меньше нормируемого значения:

$$R_o^{np} \ge R_o^{mp}$$
 , (2.1)

- где R_o^{np} приведенное сопротивление теплопередаче ограждающих конструкций, (м 2 - $^{\circ}$ C)/Вт,
 - R_o^{mp} требуемое значение сопротивления теплопередаче ограждающих конструкций, (м² · ° С)/Вт, определяется в зависимости от градусосуток района строительства ГСОП, (°С·сут)/год.

Требуемое сопротивление теплопередаче ограждающих конструкций, определяют по таблице. 3 СП 50.13330.2012 [24] в зависимости от градусосуток района строительства ГСОП, (°С·сут)/год.

Градусо-сутки отопительного периода ГСОП , (°С·сут)/год, определяют по формуле:

$$\Gamma CO\Pi = (t_s - t_{om}) \cdot Z_{om}, \qquad (2.2)$$

где ГСОП - градусо-сутки отопительного периода, °С·сут,

- t_{s} расчетная средняя температура внутреннего воздуха здания, °C, (см. п. 1.2)
- t_{om} средняя температура наружного воздуха, °C, отопительного периода (см. п. 1.1).
- Z_{on} продолжительность, сут, отопительного периода (см. п. 1.1).

Нормируемое значение сопротивления теплопередаче ограждающих конструкций, R_o^{mp} , (м 2 · $^{\circ}$ C)/Вт, определяется интерполяцией по [24], табл. 4.

Для входных дверей приведенное сопротивление теплопередачи R_o^{mp} , $M^{2.0}\text{C/BT}$, должно быть не менее произведения $0.6~R_o^{mp}$, где R_o^{mp} – требуемое

Приведенное сопротивление теплопередаче ограждающих конструкций находится по следующей формуле:

$$R_o = \frac{1}{\alpha_g} + \sum R_i + \frac{1}{\alpha_n} , \qquad (2.4)$$

где α_e - коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, $Bt/(M^{2o}C)$, принимается по [24, табл. 7]

 $\sum R_i$ - сопротивление теплопередаче ограждающей конструкции (м² · °C)/Вт,

 $\alpha_{_{\it H}}$ - коэффициент теплоотдачи наружной поверхности ограждающей конструкции, ${\rm BT/(m^{2o}C)},$ принимается по [24, табл. 6]

Сопротивление теплопередаче ограждающей конструкции $\sum R_i$, $(m^2 \, {}^{\circ}{\rm C})/{\rm BT}$, определяют по формуле

$$\sum R_i = R_1 + R_2 + \dots + R_n , \qquad (2.5)$$

где R_1 , R_2 , R_n — термическое сопротивление теплопередаче отдельных слоев ограждающей конструкции, (м² °C)/Вт.

Сопротивление теплопередаче i-го однородного слоя ограждающей конструкции определяется по формуле

$$R_i = \frac{\delta_i}{\lambda_i} , \qquad (2.6)$$

где δ_i - толщина i-го слоя ограждающей конструкции, м,

 λ_i - расчетный коэффициент теплопроводности материала *i*-го слоя ограждающей конструкции, $Bt/(M\cdot{}^{\circ}C)$.

Условия эксплуатации определяются по прил. 2 [24], в зависимости от влажностного режима помещений и зоны влажности района строительства.

Подставив в (2.2) значения соответствующих величин, получим:

$$\Gamma$$
СОП = (20 - (-5,2))· 203 = 5115,6 (0 С· сут)/год

 $R^{mp} = 3,19 \text{ (м}^2. {}^{\circ}\text{C})/\text{Вт}$ - стена наружная

 $R^{mp} = 4.2 \, (\mathrm{M}^2.\,{}^{\circ}\mathrm{C})/\mathrm{BT}$ - кровля

 $R^{mp} = 0,53 \, \text{ (м}^2.\,^{\circ}\text{C})/\text{Вт}$ - окна и балконные двери

Наружная стена

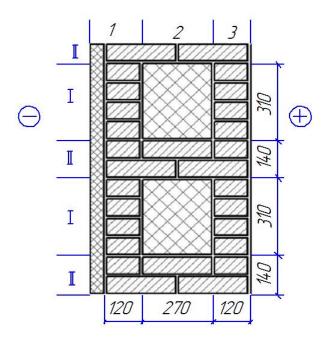


Рисунок 2.1-Конструкция стены

Состав:

- 1. Утеплитель мин.плита Rockwool $\delta = ?$ м; $\lambda = 0.041$ Bт/м $^{\rm o}$ C
- 2. Кладка из керамического кирпича на цементно-песчанном растворе (с включенными в конструкцию пеноблоками $\delta_{\kappa.\kappa.}$ =0,25м; λ =0,33 Вт/(м° · C) δ =0,51; λ =0,52 Вт/(м· °C)
- 7. Гипсовая штукатурка
 δ =0,01м; λ=0,19 Bт/(м·°C)

Толщину утеплителя определяем из неравенства (2.1), приняв:

$$R_0=R^{mp},$$

Преобразовав формулы (2.4), (2.5) и (2.6) получим

$$R_o = \frac{1}{\alpha_{\scriptscriptstyle G}} + \frac{\delta_1}{\lambda_1} + R_{\scriptscriptstyle Cm} + \frac{\delta_3}{\lambda_3} + \frac{1}{\alpha_{\scriptscriptstyle H}}, \qquad (2.7)$$

где $R_{\scriptscriptstyle 0}$ - приведенное сопротивление теплопередаче ограждающих конструкций, $({\it M}^2\cdot{}^{\it o}\,C)/\it Bm$,

 R^{mp} - требуемое значение сопротивления теплопередаче наружной стены, $R^{mp} = 3{,}19 \quad ({\scriptstyle M^2}\cdot^o C)/Bm$

Ограждение неоднородно по материалу в направлениях, параллельном и перпендикулярном тепловому потоку.

Определяем:

$$R_{cm\perp}=R_1+R_2+R_3=0.23+0.69+0.23=1.15~({\it M}^2\cdot{}^oC)/{\it Bm}$$
 ;
 где $R_1=rac{\delta_{{\it \kappa}.{\it \kappa}.}}{\lambda}=rac{0.12}{0.52}=0.23~({\it M}^2\cdot{}^oC)/{\it Bm}$;

$$R_{2} = (F_{I} + F_{II}) \frac{1}{\frac{F_{I}}{R_{I,2}} + \frac{F_{II}}{R_{II,2}}} = (0.31 + 0.14) \frac{1}{\frac{0.31}{0.82} + \frac{0.14}{0.52}} = 0.69 \quad (M^{2} \cdot {}^{o}C) / Bm ;$$

$$R_{I,2} = \frac{\delta_{nen}}{\lambda_{nen}} = \frac{0.27}{0.33} = 0.82 \quad (M^{2} \cdot {}^{o}C) / Bm ;$$

$$R_{II,2} = \frac{\delta_{\kappa\kappa}}{\lambda_{\kappa\kappa}} = \frac{0.27}{0.52} = 0.52 \quad (M^{2} \cdot {}^{o}C) / Bm ;$$

$$R_{3} = \frac{\delta_{\kappa\kappa}}{\lambda} = \frac{0.12}{0.52} = 0.23 \quad (M^{2} \cdot {}^{o}C) / Bm ;$$

Определяем

$$\begin{split} R_{cmII} &= \left(F_I + F_{II}\right) \frac{1}{\frac{F_I}{R_I} + \frac{F_{II}}{R_{II}}} = \left(0.31 + 0.14\right) \frac{1}{\frac{0.31}{1.28} + \frac{0.14}{0.98}} = 1.18 \quad (\textit{M}^2 \cdot ^{o}C) / \textit{Bm} \; ; \\ \text{где} \qquad R_I &= \frac{\delta_{_{KK}}}{\lambda_{_{KK}}} + \frac{\delta_{_{neh}}}{\lambda_{_{neh}}} + \frac{\delta_{_{KK}}}{\lambda_{_{KK}}} = \frac{0.12}{0.52} + \frac{0.27}{0.33} + \frac{0.12}{0.52} = 1.28 \quad (\textit{M}^2 \cdot ^{o}C) / \textit{Bm} \; ; \\ R_I &= \frac{\delta_{_{KK}}}{\lambda_{_{KK}}} = \frac{0.51}{0.52} = 0.98 \quad (\textit{M}^2 \cdot ^{o}C) / \textit{Bm} \; ; \end{split}$$

Тогда

$$R_{cm} = \frac{2 \cdot R_{cmII} + R_{cm\perp}}{3} = \frac{2 \cdot 1,18 + 1,15}{3} = 1,17 \ (M^2 \cdot C) / Bm.$$

Так как $R_0 < R^{mp}$, то конструкция стены не удовлетворяет техникоэкономическим требованиям, поэтому рекомендуем утеплить наружные стены жилого дома слоем минеральной ваты.

Определим толщину утеплителя

$$3,19 = \frac{1}{8,7} + \frac{0,01}{0,19} + 1,17 + \frac{\delta_y}{0,041} + \frac{1}{23}$$
, решая уравнение получим $\delta_y = 0,074$ м

принимает $\delta_y = 0.08 \, M$, тогда

$$R_o = \frac{1}{8.7} + \frac{0.01}{0.19} + 1.17 + \frac{0.08}{0.041} + \frac{1}{23} = 3.33 \ (\text{M}^2 \cdot ^o C) / Bm \ ;$$

$$R_o \ge R^{mp} \quad 3.33 \ge 3.19 \ (M^2 \cdot {}^o C) / Bm$$
.

Определяем коэффициент теплопередачи ограждающих конструкций k, $\mathrm{Bt/(m^2~^oC)},$ по формуле:

$$k = \frac{1}{R_o},$$

$$k = \frac{1}{R_o} = \frac{1}{3,33} = 0.3 \ Bm/(M^2 \cdot C)$$
(2.8)

Окно

К установке принимаем окна "ФАВОРИТ" по каталогу [11]. Большая ширина профиля окон "ФАВОРИТ - 71мм" - позволяет установить широкий стеклопакет, что способствует сохранению тепла в доме. В окно вставлен двух камерный стеклопакет с тройным остеклением с $R^{o\kappa}_{0} = 0,55$ (м²·°C)/Вт.

$$k = \frac{1}{R_o} = \frac{1}{0.55} = 1.82 \text{ BT/ (M}^2 \cdot {}^{\circ}\text{C}).$$

Пол цокольного этажа (утепленный по грунту)

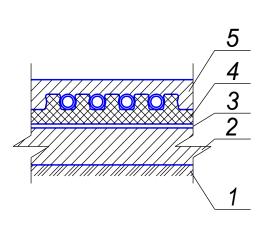


Рисунок 2.3 - Конструкция пола по грунту

- Грунт
 зона R₃ -2,1 (м²·°С)/Вт
 зона R₃ 4,3 (м²·°С)/Вт
 зона R₃ 8,6 (м²·°С)/Вт
 зона R₃ 14,2 (м²·°С)/Вт
- 2. Бетон δ=0,2 м; λ=1,74 Вт/м °С
- 3. Раствор "Водостоп" с выходом на стены $\delta = 0{,}003$ м; $\lambda = 0{,}74$ Вт/м $^{\rm o}$ С
- 4. Подложка под теплый пол "Rexau" $\delta = 0{,}02 \text{ m}; \, \lambda = 0{,}052 \text{ Bt/m} \text{ }^{\text{o}}\text{C}$
- 5. Песчано-цементная стяжка $\delta = 0.05 \; \text{м}; \; \lambda = 0.76 \; \text{Вт/м} \; ^{\text{o}}\text{С}$

Сопротивление теплопередачи для утепленных полов на грунте, с коэффициентом теплопроводности $\lambda_h < 1,2$ $Bm/(M^2 \cdot {}^o C)$ утепляющего слоя определяют по формуле

$$R_h = R_c + \sum \frac{\delta}{\lambda_h},\tag{2.9}$$

где R_c — сопротивление теплопередачи, $(M^2 \cdot {}^o C)/Bm$, неутепленного пола, расположенного непосредственно на грунте, принимается равным:

$$R_{II} = 2.1 + \frac{0.003}{0.74} + \frac{0.02}{0.052} + \frac{0.05}{0.76} = 2.55 \ (\text{M}^2 \cdot ^{\circ} C) / \text{Bm} \ ;$$

$$R_{III} = 4.3 + \frac{0.003}{0.74} + \frac{0.02}{0.052} + \frac{0.05}{0.76} = 4.75 \ (\text{M}^2 \cdot ^{\circ} C) / \text{Bm} \ ;$$

$$R_{III} = 8.6 + \frac{0.003}{0.74} + \frac{0.02}{0.052} + \frac{0.05}{0.76} = 9.05 \ (\text{M}^2 \cdot ^{\circ} C) / \text{Bm} \ ;$$

$$R_{III} = 14.2 + \frac{0.003}{0.74} + \frac{0.02}{0.052} + \frac{0.05}{0.76} = 14.65 \ (\text{M}^2 \cdot ^{\circ} C) / \text{Bm} \ ;$$

$$k_{II} = \frac{1}{R_{II}} = \frac{1}{2.55} = 0.392 \text{Bm} / (\text{M}^2 \cdot ^{\circ} C) \ ;$$

$$k_{III} = \frac{1}{R_{III}} = \frac{1}{9.05} = 0.110 \ \text{Bm} / (\text{M}^2 \cdot ^{\circ} C) \ ;$$

$$k_{III} = \frac{1}{R_{III}} = \frac{1}{9.05} = 0.068 \ \text{Bm} / (\text{M}^2 \cdot ^{\circ} C) \ .$$

Наружная дверь

Подставив полученные значения в формулу, получим

$$R_0 = 0.6 \cdot 1.44 = 0.862 \ (m^2 \cdot {}^{o}C) / Bm$$

$$k = \frac{1}{R_o} = \frac{1}{0.862} = 1.16 \quad Bm/(M^2 \cdot ^o C).$$

Кровля

Состав

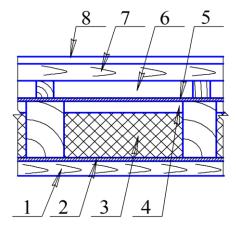


Рисунок 2.4 - Конструкция кровли

1. Доска сосновая (поперек волокон)

$$\delta = 12 \text{ MM}, \lambda = 0.14 \text{ BT/(M} \cdot ^{\circ}\text{C})$$

2. Пароизоляционная

$$\delta = 0.5 \text{ MM}, \ \lambda = 0.2 \text{ BT/(M} \cdot ^{\circ}\text{C})$$

3. Утеплитель мин. плита

$$\delta = 210 \text{ MM}, \lambda = 0.06 \text{ BT/(M} \cdot ^{\circ}\text{C})$$

- 4. Воздушный зазор
- 5. Мембрана гидроизоляционная

$$\delta = 2 \text{ MM}, \ \lambda = 0.17 \text{ BT/(M} \cdot ^{\circ}\text{C})$$

- 6. Воздушный зазор
- 7. Доска сосновая (поперек волокон)

$$\delta = 12 \text{ MM}, \lambda = 0.14 \text{ BT/(M} \cdot ^{\circ}\text{C})$$

5. Черепица

$$\delta = 12 \text{ mm}, \ \lambda = 0.32 \text{ BT/(m} \cdot ^{\circ}\text{C)}$$

Вычисляем R_0

$$R_0 = \frac{1}{8.7} + \frac{0.012}{0.14} + \frac{0.005}{0.2} + \frac{0.21}{0.06} + 0.16 + \frac{0.002}{0.17} + 0.16 + \frac{0.012}{0.14} + \frac{0.012}{0.32} + \frac{1}{23} = \frac{1}{23} + \frac{0.012}{0.14} + \frac{0.005}{0.14} + \frac{0$$

$$= 0.115 + 0.086 + 0.025 + 3.5 + 0.16 + 0.012 + 0.16 + 0.086 + 0.038 + 0.043 =$$

$$= 4,21 \text{ (M}^2 \cdot ^{\circ}\text{C})/\text{BT}$$

$$R_o \ge R^{mp} \quad 4,21 \ge 4,2 \ (M^2 \cdot {}^o C) / Bm$$

$$k = \frac{1}{R_o} = \frac{1}{4,21} = 0,238 \ Bm/(M^2 \cdot {}^o C).$$

Все теплотехнические

характеристики

ограждающих

конструкций сводим в табл. 2.1

 Таблица
 2.1 - Теплотехнические характеристики ограждающих конструкций

Наименование ограждающей конструкции	$\delta_{\scriptscriptstyle Y},$ $_$	δ,м	R_o , $(M^2 \cdot {}^o C)/Bm$	$k, Bm/(M^2 \cdot {}^{o}C)$
Наружная стена	0,08	0,6	3,33	0,30
Кровля	0,15	0,027	4,21	0,238
	I s	I зона 2,55		0,392
П	II	зона	4,75	0,210
Пол по зонам	III	зона	9,05	0,110
	IV	зона	14,65	0,068
Окно	Тройное, в пластиковых переплетах		0,55	1,82
Наружная дверь	Двойная	с тамбуром	0,862	1,16

Расчетный температурный перепад Δt_0 , °C, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин Δt_0 , °C, установленных в [24, таб.5], и определяется по формуле

$$\Delta t_0 = \frac{n(t_{\scriptscriptstyle g} - t_{\scriptscriptstyle H})}{R_0 \alpha_{\scriptscriptstyle g}} \quad , \tag{2.9}$$

где *п* -коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху и приведенный в [24,таб.6]

Наружная стена:
$$\Delta t_o = 1 \cdot \frac{\left(20 - (-30)\right)}{8.7 \cdot 3.33} = 1,73 \, ^{\circ}\text{C} < 3^{\circ}\text{C}$$

Кровля:
$$\Delta t_o = 1 \cdot \frac{(20 - (-30))}{8.7 \cdot 4.21} = 1.3^{\circ} C < 3^{\circ} C$$

Температуру внутренней поверхности окна следует определять по формуле:

$$\tau_{\scriptscriptstyle g}^{\scriptscriptstyle OK} = t_{\scriptscriptstyle g} - \frac{\left(t_{\scriptscriptstyle g} - t_{\scriptscriptstyle n}\right)}{\alpha_{\scriptscriptstyle g} \cdot R_{\scriptscriptstyle o}^{\phi a \kappa m}} \ge 3^{\circ} C, \qquad (2.10)$$

Окно
$$au_{s}^{o\kappa} = t_{s} - \frac{\left(t_{s} - t_{n}\right)}{\alpha_{s} \cdot R_{o}^{\phi a \kappa m}} \ge 3^{o} C$$

$$\tau_{g}^{o\kappa} = 20 - \frac{(20+30)}{(0.55\cdot8.7)} = 9.6^{\circ}C \ge 3^{\circ}C$$
 конденсат не выпадает.

Тепловая мощность отопительной установки $Q_{\it om}$ для компенсации дефицита теплоты помещений равна:

$$Q_{om} = Q_{\mu\alpha\rho,o\rho\rho} + Q_{u\mu\phi} - Q_{\delta\omega} \tag{2.11}$$

где $Q_{\it быт}$ - тепловыделения в помещении, принимаем в жилых помещениях и кухне равными $10~{\rm Bt}$ на $1~{\rm m}^2$ пола.

Расчет тепловой мощности отопительной установки помещения Q_{om} сводим в таблицу A.1

2.2 Расчет теплопотерь здания

Основные и добавочные потери теплоты через ограждающие конструкции помещений определяются по формуле

$$Q = F \cdot (t_{\scriptscriptstyle g} - t_{\scriptscriptstyle u}) \cdot (1 + \sum \beta) \cdot n / R_0, \qquad (2.12)$$

где F – расчетная площадь ограждающей конструкции м 2 ;

 R_0 – сопротивление теплопередачи ограждающей конструкции,

$$(M^2 \cdot {}^{\circ} C) / Bm$$
, принимается по таблице 2.1;

 β – добавочные потери теплоты в долях от основных потерь.

Для учета дополнительных потерь теплоты β приняты добавки:

а) в помещениях любого назначения через стены, двери и окна, обращенные на: -север, восток, северо-восток, северо-запад -0.1

-юго-восток, запад
$$-0.05$$

$$-юг - 0$$

- б) в угловых помещениях дополнительно на каждую стену, дверь и окно, если одно из ограждений ориентировано на:
 - -север, восток, северо-запад, северо-восток -0.05
 - -в остальных случаях -0.1
- в) добавка на врывание холодного воздуха через наружные двери при их кратковременном открывании при высоте здания Н, м:
 - -для двойных дверей -0.27 H.

Расход теплоты $Q_{un\phi}$, Вт, на нагревание инфильтрационного воздуха определяем по формуле:

$$Q_{undp} = 0.28 \cdot L_n \cdot \rho \cdot c \cdot (t_g - t_H) \cdot k, \qquad (2.13)$$

- где L_n расход удаляемого воздуха, м³/ч, не компенсируемый подогретым приточным воздухом; удельный нормативный расход 3 м³/ч на 1 м² помещений;
 - p плотность воздуха в помещении, 1,2 кг/м³.
 - с удельная теплоемкость воздуха, равная 1 кДж/(кг.°С);
- t_{s} , t_{h} расчетные температуры воздуха, °C, соответственно в помещении и наружного воздуха в холодный период года;
 - k коэффициент учета влияния встречного теплового потока в конструкциях, равный 0,7 для стыков панелей стен и окон с тройными переплетами.

Расчет расхода теплоты $Q_{u+\phi}$, Вт, на нагревание инфильтрационного воздуха сводим в таблицу А.1 Приложения А.

3 Теплоснабжение

3.1 Конструирование системы отопления

Система отопления состоит из котла, магистралей, отдельных стояков и ветвей с приборными узлами.

В проекте принята двухтрубная горизонтальная система отопления с тупиковым движением теплоносителя, с перепадом температуры в 15 °C ($t_r = 70$ °C, $t_o = 55$ °C). Данный перепад позволит применить в качестве теплогенератора конденсатный котел с высоким коэффициентом полезного действия

В системе отопления применяются трубы из армированного полипропилена PN 25. Регулировка теплоотдачи отопительных приборов осуществляется ручными клапанами RTD-N с термостатической головкой согласно каталогу [12].

Принимаем к установке алюминиевый радиатор Global ISEO-500 согласно каталогу [10]. Присоединение труб к приборам нижнее (вход – внизу, выход – внизу с противоположной стороны). Общий вид алюминиевого радиатора приведен на рисунок 3.1.

Габаритные размеры:

$$A = 582 \text{ mm}, B = 80 \text{ mm}, D = 500 \text{ mm}, C = 80 \text{ mm}$$

Рисунок 3.1- Общий вид (а) и габаритные размеры (б)

$$\Delta P_{pu} = \Delta P_{H} + 0.4 \cdot \Delta P_{e}, \qquad (3.1)$$

Насосное циркуляционное давление принимаем по расходу и каталогу насосов UPS 25 - 60 [10] $\Delta P_{_{H}} = 35000$ Па см. рисунок 3.2.

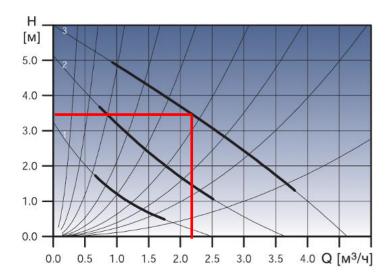


Рисунок 3.2 - Выбор насосного циркуляционного давления

Естественное циркуляционное давление определяется по формуле:

$$\Delta P_e = g \cdot h \cdot \beta_t (t_o - t_z), \qquad (3.2)$$

h - вертикальное расстояние между условным центрам охлаждения в приборе горизонтальной ветки и центром нагревания в системе, м;

 β_t - среднее приращение плотности при понижении температуры воды на 1 °C. Для расчетной разности температуры β_t =0,55.

Подставляя данные в формулу для каждого этажа находим ΔP_e :

$$\Delta P_{eu} = g \cdot h_1 \cdot \beta_t (t_c - t_o) = 9,81 \cdot (-0,6) \cdot 0,55 \cdot (70 - 55) = -48 \text{ \Pia};$$

$$\Delta P_{e1} = g \cdot h_1 \cdot \beta_t (t_c - t_o) = 9.81 \cdot 2 \cdot 0.55 \cdot (70 - 55) = 162 \text{ }\Pi a;$$

$$\Delta P_{e2} = g \cdot h_2 \cdot \beta_t (t_z - t_o) = 9.81 \cdot 5.3 \cdot 0.55 \cdot (70 - 55) = 429 \text{ }\Pi\text{a} \text{ }.$$

Так как ΔP_e составляет менее 10 % от $\Delta P_{_H}$,то его можно не учитывать в дальнейших расчетах.

Гидравлический расчёт системы отопления ведём по удельным линейным потерям давления по длине в соответствии с [2]. Потери давления

на трение и местное сопротивление на участке определяем раздельно по формуле

$$\Delta P_{vy} = R \cdot \ell_{vy} + Z, \qquad (3.3)$$

где R - удельные потери давления на трение на длине 1 м, Па/м, определяется по тех. справочникам;

 ℓ_{yy} - длина расчётного участка, м;

Z - потери давления на местные сопротивления, Па.

Потери давления в отопительном приборе главного циркуляционного кольца учитываем коэффициентом местного сопротивления, добавляя потери на полностью открытом клапане RTD-N [12] по номограмме (рисунок 6.5).

Увязку приборов осуществляем подбором положения клапана RTD-N по рисунок 3.3

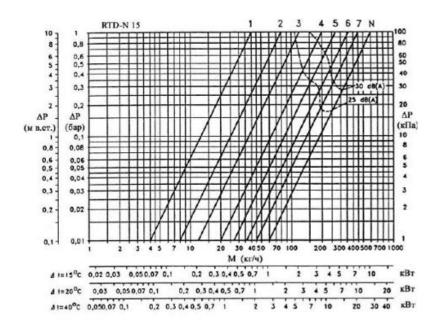


Рисунок 3.3 - Гидравлические характеристики терморегуляторов «Данфосс»: RTD-N 15 при различных уровнях монтажной настройки клапана.

Гидравлический расчёт системы отопления сведён в таблицу Б.1

Приложения Б

Эпюры давлений сведены в приложения В

К установке принимаются алюминиевые радиаторы Global ISEO-500 согласно каталогу [10]. Площадь нагревательной поверхности одной секции $A=0.39~{\rm M}^2$, номинальный тепловой поток с одной секции $Q_{{\scriptscriptstyle HOM}}^{{\scriptscriptstyle CEK}}=179~{\rm BT}$, масса 1,05 кг. Присоединение труб к приборам двустороннее снизу.

Теплоотдача одной секции прибора Q_{np} , определяется по формуле:

$$Q_{np}^{cek} = Q_{hom}^{cek} \left(\frac{\Delta t_{cp}}{70}\right)^{1+n} \cdot \left(\frac{G_{np}}{360}\right)^{P}$$
(3.5)

где $Q_{\scriptscriptstyle nom}^{\scriptscriptstyle cek}$ - номинальная теплоотдача одной секции для нормальных условий прибора ($\Delta t_{\scriptscriptstyle cp}=70\,$ и $G_{\scriptscriptstyle np}=360$), Bт/сек;

 $\Delta t_{cp} = 0.5 \cdot (t_{ex} + t_{ebx}) - t_{e}$ - температурный напор прибора, °C;

n и P - экспериментальные числовые показатели [2]

$$n = 0,3, P = 0,01;$$

Расчет площади нагревательной поверхности отопительных приборов ведется в следующей последовательности

Вычисляется число секций отопительного прибора:

$$N_{np} = \frac{Q_{np}}{Q_{np}^{ce\kappa}} \tag{3.6}$$

Теплопоступления от прибора находятся из выражения:

$$Q_{np} = Q_{nom} - \beta_{mp} \cdot Q_{mp} \tag{3.7}$$

где $\beta_{\it mp}$ - поправочный коэффициент, учитывающий долю теплоотдачи теплопроводами; при нашей прокладке теплопроводов $\beta_{\it mp}$ = 0.

Расчетная тепловая мощность отопительного прибора с учетом дополнительных теплопотерь вычисляется по формуле:

$$Q_{np,pac4} = Q_{np} \cdot \beta_1 \cdot \beta_2 \tag{3.8}$$

Расчет площади отопительных приборов сведен в таблицу 3.1.

Таблица № 3.1 - Подбор числа секций отопительных приборов системы отопления

№пр по час. стр	Qпр	в1	в2	Q тр	Gпр	tBX	tвых	∂ tcp	n	р	$\left(\frac{\Delta t_{cp}}{70}\right)^{1+n}$	$\left(rac{G_{np}}{360} ight)^{\!P}$	Qнy	Qпp	N
Контур мансардного этажа															
1	1071	1,025	1,022	0	64	70,0	55,0	42,5	0,3	0,01	0,523	0,983	179	92,0	12
2	1071	1,025	1,022	0	64	70,0	55,0	42,5	0,3	0,01	0,523	0,983	179	92,0	12
3	623	1,025	1,022	0	37	70,0	55,0	42,5	0,3	0,01	0,523	0,978	179	91,5	7
4	503	1,025	1,022	0	30	70,0	55,0	42,5	0,3	0,01	0,523	0,976	179	91,3	6
5	974	1,025	1,022	0	58	70,0	55,0	42,5	0,3	0,01	0,523	0,982	179	91,9	11
6	974	1,025	1,022	0	58	70,0	55,0	42,5	0,3	0,01	0,523	0,982	179	91,9	11
7	1310	1,025	1,022	0	79	70,0	55,0	42,5	0,3	0,01	0,523	0,985	179	92,2	15
8	1959	1,025	1,022	0	118	70,0	55,0	42,5	0,3	0,01	0,523	0,989	197	101,8	20
9	1807	1,025	1,022	0	109	70,0	55,0	42,5	0,3	0,01	0,523	0,988	197	101,8	18
10	920	1,025	1,022	0	55	70,0	55,0	42,5	0,3	0,01	0,523	0,981	179	91,8	11
							Кон	тур перво	го этах	ĸa					
1	874	1,025	1,022	0	52	70,0	55,0	42,5	0,3	0,01	0,523	0,981	179	91,8	10
2	874	1,025	1,022	0	52	70,0	55,0	42,5	0,3	0,01	0,523	0,981	179	91,8	10
3	1040	1,025	1,022	0	62	70,0	55,0	42,5	0,3	0,01	0,523	0,983	179	91,9	12
4	1175	1,025	1,022	0	71	70,0	55,0	42,5	0,3	0,01	0,523	0,984	179	92,1	13
5	1175	1,025	1,022	0	71	70,0	55,0	42,5	0,3	0,01	0,523	0,984	179	92,1	13
6	1175	1,025	1,022	0	71	70,0	55,0	42,5	0,3	0,01	0,523	0,984	179	92,1	13
7	1211	1,025	1,022	0	73	70,0	55,0	42,5	0,3	0,01	0,523	0,984	179	92,1	14
8	2320	1,025	1,022	0	139	70,0	55,0	42,5	0,3	0,01	0,523	0,991	197	102,0	23
9	2320	1,025	1,022	0	139	70,0	55,0	42,5	0,3	0,01	0,523	0,991	197	102,0	23
10	936	1,025	1,022	0	56	70,0	55,0	42,5	0,3	0,01	0,523	0,982	179	91,8	11
11	936	1,025	1,022	0	56	70,0	55,0	42,5	0,3	0,01	0,523	0,982	179	91,8	11
12	1189	1,025	1,022	0	71	70,0	55,0	42,5	0,3	0,01	0,523	0,984	179	92,1	13
		T	T					р цоколь							
1	951	1,025	1,022	0	57	70,0	55,0	42,5	0,3	0,01	0,523	0,982	179	91,9	11
2	753	1,025	1,022	0	45	70,0	55,0	42,5	0,3	0,01	0,523	0,979	179	91,6	9
3	560	1,025	1,022	0	34	70,0	55,0	42,5	0,3	0,01	0,523	0,977	179	91,4	7
4	1088	1,025	1,022	0	65	70,0	55,0	42,5	0,3	0,01	0,523	0,983	179	92,0	12
5	1939	1,025	1,022	0	116	70,0	55,0	42,5	0,3	0,01	0,523	0,989	197	101,8	20
6	1441	1,025	1,022	0	87	70,0	55,0	42,5	0,3	0,01	0,523	0,986	179	92,2	16
7	1441	1,025	1,022	0	87	70,0	55,0	42,5	0,3	0,01	0,523	0,986	179	92,2	16
8	1604	1,025	1,022	0	96	70,0	55,0	42,5	0,3	0,01	0,523	0,987	179	92,3	18

Задаемся температурой теплоносителя в теплых полах — вода с температурой 35 °C ÷ 30 °C. С помощью номограммы см. рисунок 3.4, определим теплоотдачу квадратного метра теплого пола с шагом труб 200 мм.

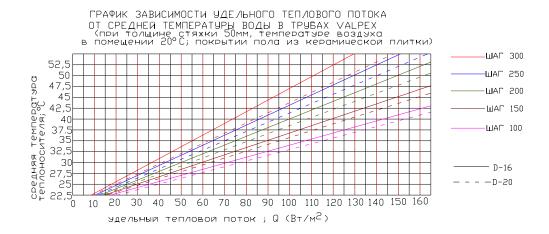


Рисунок 3.4 Номограмма теплового потока теплого пола $q_{200} = 67 \; \mathrm{Bt/m^2}$

Определяем температуру на поверхности пола при шаге труб 200 мм по рисунку 3.5

ГРАФИК ЗАВИСИМОСТИ СРЕДНЕЙ

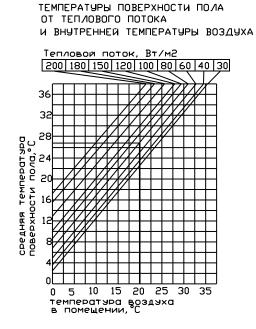


Рисунок 3.5 Номограмма температуры теплого пола

Температура на поверхности пола составит 26 °C, что не превышает максимально допустимую в 29 °C.

Теплоотдача теплых полов в различных помещениях определяется по формуле

$$Q_{m.n.} = q_{uaz} \cdot F \tag{3.9}$$

Расчет сведен в таблицу 3.2

Таблица 3.2 – Расчет теплоотдачи теплого пола

No	Шаг,	q,	F,	Q,	G,	L,
пом	MM	B_T/M^2	M^2	Вт	Кг/ч	M
003	200	67	3,55	344,35	59,23	19,88
004	200	67	7,81	757,57	130,30	43,74
005	200	67	8,79	852,63	146,65	49,22
008	200	67	4,96	481,12	82,75	27,78
009	200	67	7,11	689,67	118,62	39,82
107a	200	67	11	1067	183,52	61,6
107б	200	67	12,47	1209,59	208,05	69,83
108	200	67	5,19	503,43	86,59	29,06
109a	200	67	10	970	166,84	56
109б	200	67	11,71	1135,87	195,37	65,58
208	200	67	7,31	709,07	121,96	40,94
209	200	67	12,82	1243,54	213,89	71,79
				9963,84	1713,78	575,2

Максимальная скорость движения теплоносителя в трубах теплого пола должна находиться в пределах от 0,15 до 1 м/с.

Принимаем трубу с наружным диаметром 16 мм, как менее дорогую.

Гидравлический расчет системы теплых полов сводится в таблицу.

Таблица 3.3 – Гидравлический расчет теплоотдачи теплого пола

№ пом	Q, BT	G, кг/час	L, м	D, mm	R Па/м	RL Па	V, м/с	Рд, Па	КМС	Ζ, Па	Р Па	Ркл, Па
003	344,35	59	19,88		34	675	0,15	10,4	22	228	904	34096
004	757,57	130	43,74		150	6560	0,32	50,2	22	1104	7665	27335
005	852,63	146	49,22		180	8860	0,36	63,6	22	1399	10259	24741
008	481,12	82	27,78		60	1666	0,20	20,2	22	445	2112	32888
009	689,67	118	39,82		120	4778	0,29	41,6	22	915	5693	29307
107a	1067	183	61,6	16	280	17248	0,45	99,6	22	2190	19438	15562
107б	1209,59	208	69,83	10	360	25139	0,51	128,0	22	2815	27954	7046
108	503,43	86	29,06		65	1889	0,21	22,2	22	488	2377	32623
109a	970	166	56		225	12600	0,41	82,3	22	1810	14410	20590
109б	1135,87	195	65,58		315	20656	0,48	112,8	22	2482	23139	11861
208	709,07	121	40,94		130	5321	0,30	44,0	22	967	6289	28711
209	1243,54	213	71,79		380	27281	0,53	135,2	22	2975	30256	4744

Потери давления ΔP кл, Па настраиваем на клапане скрытой регулировки см рисунок 3.6 установленном в коллекторе на обратном трубопроводе.

Потребитель может осуществлять индивидуальную регулировку теплоотдачи каждого контура теплого пола краном на подающем коллекторе см. рисунок.3.7.

Рисунок 3.6 - Обратный коллектор с встроенными клапанами скрытой регулировки FAR

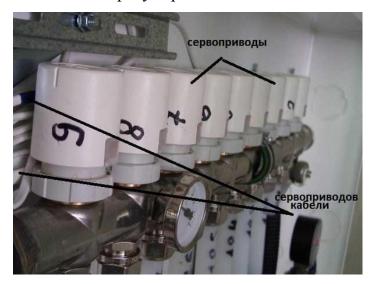


Рисунок 3.7 - Подающий коллектор с встроенными регулировочным клапаном

3.2 Горячее водоснабжение

Горячее водоснабжение осуществляется от бойлера. Подающий стояк проходит в ванной комнате. Система горячего водоснабжения смонтирована из полипропиленовых труб. Горизонтальная разводка теплопроводов от стояка к водоразборным приборам осуществляется на высоте 200 мм от пола с уклоном труб 0,002 м. Выпуск воздуха

осуществляется в верхней точке циркуляционного кольца через автоматический воздухоотводчик.

Запорная арматура предусмотрена на трубопроводе у водонагревателя, на ответвлениях от стояков к приборам. Установлены шаровые краны из латуни.

Расчет выполнен согласно методики [3].

U = 4 чел – число водопотребителей;

N = 9 пр — число санитарно-технических приборов;

 $q_0^h = 0.18 \text{ л/c}$ — секундный расход холодной воды одним санитарнотехническим прибором с наибольшим расходом [3, прил.2];

 $q_{0,hr}{}^{h} = 200 \text{ л/ч} - \text{часовой расход холодной воды одним санитарно-техническим прибором [3, прил.2];}$

 $q_{hr,u}{}^h = 10 \ л$ - норма расхода воды одним потребителем в час наибольшего водопотребления [3, прил.3];

 $q_u{}^h = 120 \,$ л - норма расхода воды одним потребителем в сутки наибольшего водопотребления [3, прил.3].

Определяем наибольший суточный расход воды в здании по формуле

$$q_u = \frac{q_u^h \cdot U}{1000}, \, \text{m}^3/\text{cyr}$$
 (3.10)

$$q_u = \frac{120 \cdot 4}{1000} = 0,48 \text{ m}^3/\text{cyt}$$

Максимальный секундный расход воды находим по формуле

$$q_0 = 5q_0^h \cdot \alpha \,, \, \, \pi/c$$
 (3.11)

где α – коэффициент, определяемый согласно [3, прил.4], в зависимости от общего числа приборов на расчетном участке сети и вероятности их одновременного действия.

Вероятность одновременного действия приборов вычисляем по формуле

$$P = \frac{q_{hr,u}^h \cdot U}{3600q_0^h \cdot N} \tag{3.12}$$

$$P = \frac{10 \cdot 4}{3600 \cdot 0,18 \cdot 9} = 0,02$$

$$NP = 0.02 \cdot 9 = 0.18 = 0.289$$

Максимальный секундный расход воды находим по формуле (3.11)

$$q_0 = 5 \cdot 0.18 \cdot 0.289 = 0.26$$
 π/c

Максимальный часовой расход воды определяем по формуле

$$q_{hr} = 0.005 q_{0,hr}^h \cdot \alpha_{hr}, \, \text{M}^3/\text{Y}$$
 (3.13)

где α_{hr} – коэффициент, определяемый в зависимости от общего числа приборов на расчетном участке сети и часовой вероятности их одновременного действия [3, прил.4].

Часовую вероятность одновременного действия приборов находим по формуле

$$p_{hr} = \frac{3600P \cdot q_0^h}{q_{0,hr}^h} \tag{3.14}$$

$$p_{hr} = \frac{3600 \cdot 0,02 \cdot 0,18}{200} = 0,065$$

$$NP_{hr} = 0.065 \cdot 3 = 0.195 = 0.444$$

Максимальный часовой расход воды определяем по формуле (3.13)

$$q_{hr} = 0.005 \cdot 200 \cdot 0.444 = 0.444 \text{ m}^3/\text{q}$$

Гидравлический расчет сведен в таблицу 10.1

Таблица 3.4 - Гидравлический расчет системы горячего водоснабжения

Расчетный	L, м	N	P	NP	α	q ₀ ,	d,	V,	i,M	li, м
участок						л/с	MM	м/с		
1-2	2,95	1	0,02	0,02	0,215	0,19	20	1,03	0,17	0,5015
2-3	2,10	2	0,02	0,06	0,221	0,20	20	1,12	0,19	0,399
3-4	3,5	4	0,02	0,08	0,239	0,22	20	1,36	0,21	0,735
4-5	2,9	7	0,02	0,14	0,265	0,25	25	1,01	0,14	0,406
5-6	3,1	9	0,02	0,18	0,289	0,26	25	1,1	0,18	0,558
	<u>'</u>		•	•					•	2,5995

3.3 Расчет и подбор оборудования котельной

Источником теплоты является газовый котел фирмы «Vaillant» согласно каталогу [13], установленный в цокольном этаже в помещении котельной. В котельной установлен водоподогреватель (бойлер) косвенного нагрева, циркуляционные насосы, необходимая регулирующая арматура, запорная арматура и автоматика. Теплоноситель вода - с параметрами $t_r = 70$ °C, $t_o = 55$ °C.

Холодная вода поступает в системы из городского водопровода. Сточные воды транспортируются в городскую канализацию. Источником газа является городский газопровод.

Для предотвращения аварийной разморозки водяных систем в котельной предусмотрен электрический котел «Руснит», согласно каталогу [16].

4 Вентиляция

4.1 Определение требуемых воздухообменов

Расчет воздухообмена котельной определим по нормируемой кратности воздухообмена согласно [25]:

$$L = k \cdot V, \tag{4.1}$$

где k — нормируемая кратность воздухообмена;

V – внутренний объём помещения, в M^3 .

Расчет воздухообмена котельной приведен в табл. 8.1.

В помещении бассейна определение воздухообмена ведется исходя из уравнения воздушного баланса по влаге согласно методике описанной в [30]:

$$L_{an} = \frac{1000 \cdot W}{p \cdot \left(d_{v} - d_{n}\right)},\tag{4.2}$$

где p – плотность воздуха, ($p = 1.2 \ \kappa \text{Дж/(}M^{3 \ 0}C)$);

W – избытки влаги в помещении бассейна, $\kappa z/u$;

 $d_y; d_n$ — влагосодержание соответственно удаляемого из помещения и поступающего в помещение воздуха, г/кг.

Количество влаги, W, кг/ч, определяется эмпирической зависимостью:

$$W = (a + 0.131 \cdot \nu_{g}) (p_{nog} - p_{osp}) \frac{101,325}{B} F$$
 (4.3)

где a — коэффициент, зависящий от температуры поверхности испарения $t_{n.u},\ a=0{,}02$

 $p_{\scriptscriptstyle nos}$, $p_{\scriptscriptstyle o\kappa p}$ — парциальное давление водяного пара,.Па

$$p_{nos} = 479 + (11,52 + 1,62 \cdot 18)^2 = 2134 \,\Pi a$$

 $p_{osp} = 479 + (11,52 + 1,62 \cdot 20)^2 \cdot 0,65 = 1565 \,\Pi a;$

 $\upsilon_{_{g}}$ — скорость воздуха над поверхностью испарения, $\upsilon_{_{g}}=0.2\,\mathrm{m/c}$;

F – площадь поверхности испарения, 10 м^2 .

Тогда

$$W = (0.02 + 0.131 \cdot 0.2)(2.134 - 1.565) \cdot \frac{101.325}{99.0} \cdot 10 = 0.269 \kappa z/u$$

Для теплого периода:

$$L_{ex} = \frac{1000 \cdot 0,269}{1,2 \cdot (12,8-11,1)} = 130 \text{ m}^3 / \text{vac}$$

Для холодного периода:

$$L_{ai} = \frac{1000 \cdot 0,269}{1,2 \cdot (12,8-0,5)} = 17 \ \text{m}^3 / \text{vac}$$

Принимаем расход воздуха по теплому периоду $L_{\rm gg} = 130~{\rm M}^3 / {\rm g}$

Тогда пересчитаем d_y для зимнего периода $d_y = \frac{1000 \cdot 0,269}{1,2 \cdot 130} + 0,5 = 2,2$ г/кг, что при 25 С дает относительную влажность в 12 %. Поэтому для экономии энергоресурсов целесообразно оснастить системы приточной и вытяжной вентиляции (П1 и В1) психрометрическим датчиком ДВТ-RST-10 [12] см. рисунок 4.1. 10 и оснащаем систему устройством плавного пуска Emotron MSF [14].

Рисунок 4.1. Психрометрический датчик ДВТ-RST-10

Для обеспечения расчетного воздухообмена в помещении тренажерного зала приток осуществляется с помощью системы П2, а вытяжка — через систему В2. Расчет воздухообмена определим по нормируемому расходу воздуха на 1 человека:

$$L = n \cdot l, \tag{4.4}$$

где n — число занимающихся n=4 человека;

l — нормируемый расход воздуха на 1 человека $l=80~{\it m}^3/({\it uen}\cdot u)$ тогда $L=4\cdot 80=320~{\it m}^3/{\it uac}$

Расчет воздухообмена произведен в соответствии с [26].

Из помещения кухни вытяжка осуществляется через систему BE3 в размере $60 \text{ m}^3/\text{ч}$, а из сан узлов (BE2, BE3, BE5, BE6) в размере $25 \text{ m}^3/\text{ч}$. Расчет воздухообмена кухни и сан. узлов приведен в табл. 4.1.

Таблица 4.1 – Расчетный воздухообмен

Помещение	Площадь, м ²	Объём,	Нормир кратнос		Расчетный воздухообмен, $M^3/4$		
	M	M	Приток	Вытяжка	Приток	Вытяжка	
Кухня	21,7	65,4	-	60 м ³ /ч	-	60	
Сан.узел				25 м ³ /ч	0	25	
Бассейн	35,3м ²		-	-	130	130	
Трен. зал	49,07		80 м ³ /чел	80 м ³ /ч	320	320	
Котельная	9,61	28,83		3	-	90	
Гостиная	27,6	82,8	-	40 м ³ /ч	-	40	
Зал	18,2	54,6		40 м ³ /ч		40	
Раздевалка	7,81	23,4	-	10 м ³ /ч	-	10	
Кабинет	20,29	60,87	-	20 м ³ /ч		20	
Бильярдная	36,31	108,9	-	80 м ³ /ч	-	80	
Спальная	27,6	82,8	-	40 м ³ /ч	-	40	
Гардеробная	7,8	23,4	-	10 м ³ /ч	-	10	
Детская комната	38,21	114,63	-	40 м ³ /ч	-	40	

4.2 Выбор принципиальных решений и конструирование

В данном проекте предусмотрена естественная вытяжка из помещения котельной (BE1), кухни (BE3), санузлов (BE2, BE3, BE5, BE6), бильярдной (BE7), кабинета (BE7), спальни (BE5) и искусственная вытяжка из помещений бассейна (B1) и тренажерного зала (B2).

Системы приточной механической вентиляции проектируются в помещениях бассейна (П1) и тренажерного зала (П2).

4.3 Аэродинамический расчет

В качестве расчетной температуры наружного воздуха в аэродинамическом расчете вытяжных систем с естественным побуждением движения воздуха принимается $t_H = +5$ °C.

Расчетное гравитационное давление, Па, определяют по формуле:

$$P_{pacn} = h \cdot (\rho_{hap} - \rho_{gh}) \cdot g \tag{4.5},$$

где h - высота воздушного столба, м;

 $\rho_{\text{нар}}; \rho_{\text{вн}}$ - плотность наружного воздуха при t = 5 °C и внутреннего воздуха, кг/м³;

g - ускорение свободного падения, $g = 9.81 \text{ м/c}^2$.

Величину запаса при определении потери давления в основном расчетном направлении принимают от 5 до 10%, т.е.

$$5 \le \frac{P_{pacn} - (Rl + Z)_{cucm}}{P_{pacn}} \cdot 100 \le 10 \%$$

Результаты расчета сведены в табл. 4.2. Приложение Γ

Аэродинамический расчет механических систем вентиляции

Потери давления Δp , Πa , на участке воздуховода длиной l, м, определяют в соответствии с формулой :

$$\Delta p = R \cdot l + Z, \Pi a \tag{4.6}$$

где R – удельная потеря давления на 1 м стального воздуховода, Па/м;

Z – потеря давления в местных сопротивлениях.

Общие потери давления в системе равны сумме потерь по магистрали в вентиляционном оборудовании:

$$\Delta p = \Sigma (R \cdot 1 + Z)_{\text{Max}} + \Delta p_{\text{offan}}, \Pi a \tag{4.7}$$

Расчет систем П1, В1 и П2, В2 сводим в таблицу Г.1 Приложения Г. Расчетные схемы сведены в приложение Д.

При входе воздушной струи в P3 или в обратном потоке воздуха, проходящем по этим зонам, скорости движения приточного воздуха должны быть не более

$$V_{x} = k * V, \tag{4.8}$$

где V_x – требуемая скорость движения воздуха в местах пребывания людей, м/с;

к – коэффициент, перехода от требуемых скоростей на рабочем месте
 к их максимальному значению в струе или в обратном потоке,
 принимается по прил.6 [4] равным 2 – при выполнении работы
 средней тяжести

Тогда для бассейна и тренажерного зала:

$$V_r = 0.2 * 2 = 0.4 \text{ m/c}$$

Для бассейна и тренажерного зала, а также остальных помещений примем к установке решетку воздухоприточную регулируемую РР Скорость воздуха на выходе из воздухораспределительных устройств, в м/с, определяется по формуле:

$$V_0 = \frac{L}{n * F_0 * 3600}, M/c \tag{4.9}$$

где L_0 – объем воздуха, который необходимо подать, в м³час,

- бассейн: $L_0 = 130$;
- тренажерный зал: $L_0 = 320$.

n – количество устройств (решеток), в шт.,

- бассейн : n = 4 шт;
- тренажерный зал: n = 4 шт.

 F_0 – площадь сечения, в M^2 , (F_0 =0,064 M^2);

Тогда для бассейна:

$$V_0 = \frac{130}{4 * 0.064 * 3600} = 0.14 \, \text{m/c},$$

Тогда для тренажерного зала:

$$V_0 = \frac{320}{4*0,064*3600} = 0.34 \,\text{m/c}.$$

4.4 Расчет и подбор оборудования

По программе расчета [16] «ЛОТ ВЕНТ СЕРВИС» принимаем к установке в системе П1 канальную вентиляционную систему ВКС – 100д, П2 канальную вентиляционную систему ВКК – 100д.

Система комплектуется фильтром ФКК, электро калорифером ВЭК-3, вентилятором и шумоглушителем.

5 Водоснабжение и водоотведение

5.1 Холодное водоснабжение

Водоснабжение дома осуществляется от централизованной наружной сети водоснабжения.

В котельной дома установлен счетчик холодной воды. Система водоснабжения дома обеспечивает подачу требуемого количества воды.

Расчет водопровода выполнен согласно методики [3].

U = 4 чел – число водопотребителей;

N = 13 пр — число санитарно-технических приборов;

Hg = 25 м – гарантированный напор в наружной водопроводной сети;

 $q_0^c = 0.18$ л/с — секундный расход холодной воды одним санитарнотехническим прибором с наибольшим расходом [3, приложение 2];

 $q_{0,hr}{}^c = 200\,$ л/ч — часовой расход холодной воды одним санитарнотехническим прибором [3, приложение 2];

 $q_{hr,u}^{tot} = 13$ л - норма расхода воды одним потребителем в час наибольшего водопотребления [3, приложение 3];

 $q_u^{tot} = 250 \ \pi$ - норма расхода воды одним потребителем в сутки наибольшего водопотребления [3, приложение 3];

 $K_{\text{сут}} = 1,2$ — коэффициент суточной неравномерности принимаемый по [3]

Определяем наибольший суточный расход воды в здании по формуле

$$q_u = \frac{q_u^{tot} \cdot U \cdot K_{cym}}{1000}, \, \text{M}^3/\text{cyT}$$
 (5.1)

$$q_u = \frac{250 \cdot 4 \cdot 1,2}{1000} = 1,2 \text{ M}^3/\text{cyt}$$

Максимальный секундный расход воды находим по формуле

$$q_0 = 5q_0^c \cdot \alpha, \quad \pi/c \tag{5.2}$$

где α – коэффициент, определяемый согласно [3, приложение 4],

Вероятность одновременного действия приборов вычисляем по формуле

$$P = \frac{q_{hr,u}^{tot} \cdot U}{3600q_0^c \cdot N} \tag{5.3}$$

$$P = \frac{13 \cdot 4}{3600 \cdot 0.18 \cdot 13} = 0,0062$$

$$NP = 0.0062 \cdot 13 = 0.08 = \alpha = 0.318$$

Максимальный секундный расход воды находим по формуле (5.2)

$$q_0 = 5.0,18.0,318 = 0,286$$
 π/c

Максимальный часовой расход воды определяем по формуле

$$q_{hr} = 0.005 q_{0 hr}^c \cdot \alpha_{hr}, \, \text{M}^3/\text{Y}$$
 (5.4)

где α_{hr} – коэффициент, определяемый в зависимости от общего числа приборов на расчетном участке сети и часовой вероятности их одновременного действия [15, приложение 4].

Часовую вероятность одновременного действия приборов находим по формуле

$$p_{hr} = \frac{3600P \cdot q_0^c}{q_{0\,hr}^c} \tag{5.5}$$

$$p_{hr} = \frac{3600 \cdot 0,062 \cdot 0,18}{200} = 0,02$$

$$NP_{hr} = 0.02 \cdot 13 = 0.261 = 0.228$$

Максимальный часовой расход воды определяем по формуле (5.4)

$$q_{hr} = 0.005 \cdot 200 \cdot 0.228 = 0.228 \text{ м}^3/\text{ч}$$

Гидравлический расчет внутреннего водопровода

Подбираем диаметры труб на расчетных участках исходя из наиболее экономичных скоростей движения воды (v = 1,5-2 м/c).

Гидравлический расчет сведен в таблицу 5.1

Таблица 5.1 - Гидравлический расчет внутреннего водопровода

Расчет	L, м	N,шт	P	NP	α	q ₀ , л/с	d,	V,	i,M	li, м
ный							MM	м/с		
участо										
К										
1-2	6	1	0,0062	0,006	0,2	0,18	20	1,3	0,18	1,4
2-3	0,5	3	0,0062	0,019	0,212	0,1908	20	1,35	0,19	0,12
3-4	4,5	6	0,0062	0,037	0,25	0,225	25	1,1	0,1	0,585
4-5	6,5	10	0,0062	0,062	0,292	0,2628	25	1,3	0,11	0,93
5-6	4,5	13	0,0062	0,081	0,318	0,2862	25	1,4	0,12	0,7
	•									3,8

Определяем требуемый напор в сети водопровода по формуле

$$H_{TD} = H_{1} + H_{2} + H_{3} + H_{4}, M$$
 (5.6)

где $H_{1,tot} = 3.8 \text{ м}$ - сумма потерь напора в сети;

 $H_2 = 3 \text{ м} - \text{свободный напор у диктующего прибора [3, приложение 2];}$

Н₃ = 5,55 м – геодезическая высота расположения точки

Н - потери напора в водосчетчике, определяемые по формуле

$$H = S \cdot q_0^2, M \tag{5.7}$$

где $S = 14,5 \text{ м/}(\pi \cdot c)^2 - \text{гидравлическое сопротивление счетчика}$

$$H = 14,5 \cdot 0,28^2 = 2,0 \text{ M}$$

Требуемый напор в сети водопровода находим по формуле (9.6)

$$H_{\text{Tp}} = 3.81 + 3 + 5.55 + 2.0 = 13.76 \text{ M} < H_{\text{r.c}} = 25 \text{ M}$$

На участке 5-6 установлен счетчик универсальный крыльчатого типа ВСХ диаметром условного прохода 15 мм.

5.2 Водоотведение

Внутренняя канализация смонтирована из полипропиленовых труб. Во избежание засорения трубопровода укладка труб производится с уклоном 2 см на 1 метр погонный трубы.

Глубина заложения колодца – 4,5 м.

Расчет выполнен согласно методики [3].

U = 4 чел – количество жителей;

N = 13 пр — число санитарно-технических приборов;

 $q_0^{tot} = 0,25$ л/с — общий секундный расход воды одним прибором с наибольшим расходом [3, приложение 2];

 $q_0^s = 1,6$ л/с - расход стоков от прибора (унитаз со смывным бачком) [12, прил.2];

 $q_{hr,u}{}^{tot} = 10,5\,$ л - норма расхода воды одним потребителем в час наибольшего водопотребления [3, приложение 3].

Определяем расход выпуска по формуле

$$q^{s} = q^{tot} + q_{0}^{s}, \pi/c$$
 (5.8)

где ${\bf q}^{tot}$ - максимальный секундный расход воды, определяемый по формуле

$$q^{tot} = 5q_0^{tot} \cdot \alpha , \quad \pi/c$$
 (5.9)

где α – коэффициент, определяемый согласно [3, приложение 4], в зависимости от общего числа приборов на расчетном участке сети и вероятности их одновременного действия.

Вероятность одновременного действия приборов вычисляем по формуле

$$P = \frac{q_{hr,u}^{tot} \cdot U}{3600 q_0^{tot} \cdot N}$$
 (5.10)

$$P = \frac{10.5 \cdot 4}{3600 \cdot 0.25 \cdot 13} = 0.00583$$

$$NP = 0.00583 \cdot 13 = 0.047 = 0.047$$

Максимальный секундный расход воды находим по формуле (5.9)

$$q^{tot} = 5 \cdot 0.25 \cdot 0.268 = 0.34$$
 π/c

Расход выпуска определяем по формуле (11.1)

$$q^s = 0.34 + 1.6 = 1.94 \text{ m/c}$$

Принимаем диаметр трубы выпуска равным диаметру стояка (110 мм), следовательно

- скорость движения жидкости v = 0.956 м/с;
- наполнение h/d = 0.3;
- уклон і= 0,04

Расчет самотечных канализационных трубопроводов следует производить, чтобы выполнялось условие

$$V\sqrt{\frac{h}{D}} \ge 0.5\tag{5.11}$$

 $0.956\sqrt{0.3} = 0.52$ - условие выполняется;

 $1_{\text{вып}} = 3 \text{ м}.$

Находим глубину заложения выпуска по формуле:

$$h_{\text{вып}} = h_{\text{пром.}} - \kappa, \, M$$
 (5.12)

где $h_{\text{пром}} = 1.8 \text{ м} - \text{глубина промерзания;}$

 $\kappa = 0.3 \text{ м} - \text{поправочная величина}$

$$h_{\text{вып.}} = 1.8 - 0.3 = 1.5 \text{ м}.$$

Глубину заложения лотка колодца вычисляем по формуле:

$$h_{\pi} = h_{\text{вып}} + d_{\text{вып}} + i \cdot l_{\text{вып.}}, \, M$$
 (5.13)

где $d_{\text{вып}}$ – диаметр выпуска, м;

 $i \cdot l_{\text{вып}}$ - падение трубопровода выпуска, м;

$$h_{\pi} = 1.5 + 0.11 + 0.04 \cdot 3 = 1.73 \text{ m}.$$

Гидравлический расчет канализации

Определяем длины и расчетный расход на участках, назначаем диаметры труб, определяем уклон трубопроводов.

Гидравлический расчет сведен в таблицу 5.2

Таблица 5.2 - Гидравлический расчет канализации

Расчетный	L, м	N	P	NP	α	q,	d, мм	i
участок						л/с		
1-2	2,19	2	0,00583	0,012	0,200	0,25	50	0,03
2-3	3,11	4	0,00583	0,023	0,222	0,28	50	0,03
3-4	2,80	5	0,00583	0,029	0,235	0,29	110	0,02
4-5	3,65	13	0,00583	0,047	0,268	1,94	110	0,04

Из-за недостаточной величины расхода бытовых сточных вод, безрасчетные участки трубопроводов диаметром 50 мм следует прокладывать с уклоном 0,03, а диаметром 110 мм — с уклоном 0,02, в соответствии с п. 18.2 [3].

6.Газоснабжение 6.1 Конструирование системы газоснабжения

В доме имеется газовый котел. Ввод газопровода надземный. Отключающие устройства намечено установить на вводе в здание, перед счётчиком и каждым газоиспользующим прибором.

Высота этажа равна 3 м. Толщина перекрытий между этажами принята 0,3 м.

6.2 Гидравлический расчёт внутренней системы

Расчёт часовых расходов газа в участках.

В участках расчетного направления часовые расходы определяются, по формуле:

$$Q_d^h = q_{nom}, (6.1)$$

где q_{nom} – номинальный расход газа прибором или группой приборов, \mathbf{m}^3/\mathbf{q} ;

Номинальный расход газа прибором определяется по формуле:

$$q_{nom} = 3600 \frac{N}{Q_H^C}, (6.2)$$

где Q_H^C – низшая теплота сгорания газа, кДж /м³;

$$Q_H^C = 35180$$
кДж/м³;

N – мощность прибора, принимается для котла- $40~{\rm kBt}$.

Номинальный расход газа котлом:

$$q_{nom} = 3600 \frac{44,1}{35180 \cdot 1.07} = 4,5 M^3 / q$$

1,07- КПД котла

Гидростатический напор в расчетах не учитываем.

Предварительно подбираются диаметры труб для участков расчётного направления. Для этого вычисляется средний гидравлический уклон R_{cp} , $\Pi a/M$ по формуле:

$$R_{CP} = \frac{\Delta P_{\partial on}}{1.3 \sum l_i} = \frac{\Delta P_{3II} - \Delta P_{IIP} - \Delta P_{CY}}{1.3 \sum l_i},$$
(6.3)

где $\Delta P_{\partial on}$ — допустимое падение (потери) давления во внутренней сети;

 $\Delta P_{_{\!\!\!M\!\!\!/}}$ — падение (потери) давления во внутренней сети, при $P_0=1,3$ кПа;

 $\Delta P_{3/I}$ принимается 250 Па;

 $\Delta P_{\Pi P}$ — падение (потери) давления в трубах и арматуре прибора, (для котла 100Па);

 ΔP_{CY} – падение (потери) давления в счётчике, принимаем 100 Па;

 $\sum l_i$ — сумма действительных длин участков расчётного направления, м.

$$R_{cp.}^{\kappa om.} = \frac{250 - 100}{1.3 \cdot 20} = 3,4 \Pi a / M$$

По величинам Q_d^h и R_{cp} с помощью номограммы [6, приложение 5] подбираются диаметры труб для участков.

Вычисляются расчётные длины участков по формуле:

$$l = l_1 + \sum \xi \cdot ld , \qquad (6.4)$$

где l_1 – действительная длина участка, м;

 $\Sigma \; \xi$ — сумма коэффициентов местных сопротивлений участка;

ld — эквивалентная длина прямолинейного участка газопровода, м, потери

давления, на котором равны потерям давления в местном сопротивлении

со значением коэффициента $\xi = 1$.

Коэффициенты местных сопротивлений участка суммируются. Эквивалентная длина зависит от величины расхода газа в участке и для принятого диаметра труб находится по номограмме [6, приложение 6].

Вычисляются потери давления в участках Rl и суммарные потери в расчётном направлении ΣRl .

Результаты расчетов заносим в таблицу 6.1.

Подбор запорной арматуры

В качестве запорной арматуры устанавливаются краны шаровые муфтовые [18],[19,[20] «Бологовский арматурный завод», модель 11Б27п.

Таблица 6.1 - Гидравлический расчет внутренней газовой сети

№ участка	<i>l</i> 1, M	Qd ^h ,M	d _y , мм	Местные сопротивления и их коэффициенты	Σξ	ld, мм	Σξ <i>l</i> d, м	<i>l</i> , м	R, Па/м	R <i>l</i> , Па
1	2	3	4	5	6	7	8	9	10	11
1-2	20	4,5	25	5 отводов-0,3*5=1,5; Кран шаровой- 2,0	4,85	0,67	3,25	12,45	3	37,35

 $P_{\phi} < P_{\partial on}$ 37,35<50

7 Контроль и автоматизация

Котлы, эксплуатируемые в индивидуальных домах и работающие на газообразном или топливе, должны быть жидком полностью требованиям автоматизированы, отвечать повышенным безопасности, надежности и отличаться простотой обслуживания. Для автоматизации применяют пневматические, электрические, но чаще комбинированные электропневматические АСР (автоматические системы регулирования).

Автоматизация водяных систем теплоснабжения способствует поддержанию заданных гидравлических и тепловых режимов в различных точках системы согласно [1].

Автоматизация систем отопления и горячего водоснабжения повышает эффективность и упорядоченность процесса, создаёт более комфортные условия, снижает расход топлива.

В системах отопления часто применяют два метода регулирования теплоотдачи системы отопления: качественный и количественный.

Качественное регулирование достигается путем изменения температуры теплоносителя.

Количественное регулирование осуществляется изменением количества теплоносителя.

По принципу регулирования параметра различают 3 вида систем автоматического регулирования:

- 1. «По отклонению» регулируемого параметра, заключается в определении воздействий на объект регулирования по величине изменения регулируемого параметра. Например, при понижении температуры воздуха в помещении автоматический регулятор изменяет температуру теплоносителя в системе отопления.
- 2. «По возмущению», заключается в том, что воздействие регулятора на объект начинается еще до того, как произойдет отклонение регулируемой

величины от заданного значения. Например, при изменении температуры наружного воздуха.

3. Комбинированный, когда используются оба принципа.

В данном проекте применяется комбинированная система автоматического регулирования.

Описание схемы работы

Индивидуальное автоматическое регулирование обеспечивает надлежащий тепловой режим помещений. К основному оборудованию относится: бойлер котёл и насосные установки. Котел полностью автоматизирован, имеет жидкокристаллический дисплей на который выводится вся информация о работе и ошибках, отвечает повышенным требованиям безопасности, надежности. Автоматика имеет датчик температуры, поддерживающий температуру горячей воды изменением расхода топлива. Автоматика бойлера имеет регулируемый рабочий термостат, термостат безопасности, термометр, жидкокристаллический дисплей, регулятор температуры воды.

В случае аварийных ситуациях устройства технологической защиты должны перевести котел в режим пониженной нагрузки, либо произвести полную остановку.

Горелка котла полностью автоматизирована, имеет встроенную систему безопасности, прекращает подачу газа при:

- 1. повышении и понижение давления газа, более заданных пределов (1-2,5мбар);
 - 2. превышении максимальной температуры котла (95°C);
- 3. неполном выполнении цикла розжига: возникновении пламени раньше подачи искры, отсутствие пламени после времени розжига;

4. загазованности помещения

Получив данные от датчика температуры внутреннего воздуха о снижении температуры ниже установленной, автоматика включает насос системы отопления, контролируя температуру в подающей линии в

соответствии с установленной или получив данные от датчика температуры наружного воздуха о изменении температуры, контролирует температуру в подающей линии в соответствии с графиком. При показаниях датчика соответствующих установленным, насос продолжает прокачивать теплоноситель через отопительные приборы.

Система автоматики управляет нагревом бойлера в режиме годового, недельного и суточного программирования с возможностью борьбы с бактериями путем кратковременного нагрева его один раз в неделю до 70 °C.

При возникновении водоотбора из бойлера температура внутри бойлера понижается за счет поступления холодной водопроводной воды. Получив от датчика температуры ГВС информацию о снижении температуры в бойлере ниже установленной, автоматика отключает насос отопления, затем включает насос бойлера и если температура котла ниже 75 °С, то дает команду на запуск горелки. При достижении в бойлере установленной температуры, насос бойлера выключается и насос системы отопления начинает работать до достижения теплоносителем необходимой температуры.

Такой способ управления системы позволяет ограничить максимальную мощность котла необходимую для системы отопления или для нагрева бойлера. В противном случае необходимая мощность котла была бы суммируемой мощностью системы отопления и ГВС. Такая система регулировки применяется только при периодическом использовании ГВС то есть с емкостным подогревателем.

8 Безопасность и экологичность технического объекта

Монтаж трубопроводов систем отопления должен производиться в соответствии с требованиями безопасности, санитарии и гигиены труда, устанавливаемыми строительными нормами и правилами по безопасности труда в строительстве.

Технологическая характеристика объекта

Таблица 8.1 – Технологический паспорт объекта

Технологический процесс	Технологическая операция, вид выполняемых работ	Наименование должности работника, выполняющего технологически й процесс	Оборудование, устройство, приспособление	Материалы, вещества
Монтаж системы отопления	Прокладка трубопроводов, установка регулирующей арматуры, установка отопительных приборов и приборов учета	Монтажник системы отопления	Паяльник для полипропилена, перфоратор, отбойные молотки, ножницы, набор слесарных инструментов, компрессор.	Полипропил еновые трубы, алюминиев ые радиаторы, кронштейны

Идентификация профессиональных рисков

В результате выполнения технологического процесса, согласно [ГОСТ 12.0.003-74] на монтажника воздействуют ряд вредных производственных факторов, которые приведены в таблице.

Таблица 8.2 – Идентификация профессиональных рисков

п/п	Технологическая операция, вид выполняемых работ	Опасный и вредный производственный фактор	Источник опасного и вредного производственного фактора
		Повышенный уровень вибрации и шума	При работе с ручным электроинструментом, перфоратор, болгарка
	Монтаж системы отопления	Повышенная запыленность воздуха рабочей зоны	Штробление стен для укладки трубопроводов, работа с перфоратором
		Недостаточная освещенность рабочего места	Монтажные работы в труднодоступных местах, при работе с контрольно-измерительными приборами

	Повышенное значение напряжение в электрической цепи.	При работе с электроинструментом
	Острые кромки, заусенцы и шероховатость на поверхностях заготовок, инструментов и оборудования	При резке и сборке трубопроводов
	Пары полипропилена.	При использовании паяльника для полипропилена.

Методы и средства снижения профессиональных рисков

В результате выполнения технологического процесса на рабочего воздействуют вредные производственные факторы. Средста индивидуально защиты выбраны в соответствии с [Приказ министерства здравоохранения и социального развития российской федерации от 16 июля 2007 г. № 477] Таблица 8.3 — Методы и средства снижения воздействия опасных и вредных производственных факторов

Опасный и	Методы и средства защиты,	
вредный	снижения, устранения опасного и	Средства индивидуальной
производственный	вредного производственного	защиты работника
фактор	фактора	
Повышенный		
уровень вибрации	Статическая и динамическая	
и шума на	балансировка прибора	
рабочем месте		Костюм хлопчатобумажный
Повышенная		для защиты от общих
запыленность и	Гигиеническое нормирование	производственных
загазованность	содержание аэрозолей в воздухе	загрязнений и механических
воздуха рабочей	рабочей зоны	воздействий; перчатки;
зоны		защитные экраны или очки
Недостаточная	Использование источников	
освещенность	искусственного освещения	
Повышенная	Необходимо использовать	

напряженность	устройства защитного заземления,	
электрического	изоляция токоотводящих частей и	
поля	ее непрерывный контроль,	
	защитное отключение, применения	
	малого напряжения	

Обеспечение пожарной безопасности технического объекта

Таблица 8.4- Идентификация классов и опасных факторов пожара

Участоі подразд	*	Оборудование	Класс опасности	Опасные факторы пожара	Сопутствующие проявления факторов пожара
Индиви жилой д	дуальный цом	Ручной перфоратор, электрический паяльник	A	Пламя и искры, повышенная концентрация токсичных продуктов горения и термического разложения	Осколки, части разрушившихся зданий, технологический установок, оборудования, агрегатов, изделий и иного имущества

Таблица 8.5– Средства обеспечения пожарной безопасности

Первичные	Мобильные	Установки	Средства	Пожарное	Средства	Пожарный	Пожарные
средства	средства	пожаротушения	пожарной	оборудование	индивидуальной	инструмент	сигнализация,
пожаротушения	пожаротушения		автоматики		защиты и		связь и
					спасения людей		оповещение
					при пожаре		
Огнетушители,	Огнетушители	Пожарные		Огнетушители,	Респираторы,	Огнетушители,	Пожарная
вода, песок,		гидранты, щит		щит с	противогазы,	вода, песок,	сигнализация,
ведро, лопата,		с средствами		средстами	пожарные	ведро, лопата,	телефон
лом.		пожаротушения		пожаротушения	лестницы	ЛОМ	«112» и «01»

Мероприятия по предотвращению пожара

Таблица 8.6- Мероприятия по обеспечению пожарной безопасности

Наименование	технологического	Наименован	ие видов работ		ребования по обеспечению
процесса, вид объек	та				пожарной безопасности
Монтаж системы отопл	іения	Прокладка	трубопроводов,	установка	Соблюдение противопожарных норм
		регулирующей	й арматуры,	установка	и правил при устройстве, установке и
		отопительных	приборов и прибор	оов учета	эксплуатации оборудования в
					соответствии с [ФЗ-123 Федеральный
					закон технический регламент]

Обеспечение экологической безопасности технического объекта

Таблица 8.7- Идентификация экологических факторов

Наименование технического объекта, технологического процесса	Структурные составляющие технического объекта, технологического процесса	Воздействие объекта на атмосферу	Воздействие объекта на гидросферу	Воздействие объекта на литосферу
Монтаж системы отопления	Прокладка трубопроводов, установка регулирующей арматуры, установка отопительных приборов и приборов учета	Вредных газов и пылевых выбросов при работе в здании не происходит	Объект подключен к городской сети водоснабжения и канализации	Твердые отходы, мусор, остатки материалов после окончания работ

Мероприятия по снижению антропогенного воздействия на окружающую среду технического объекта представлены в таблице.

Таблица 8.8 – Мероприятия по снижению антропогенного воздействия на окружающую среду

Наименование технического объекта	Оздоровительный центр
Мероприятия по снижению	Материалы, при строительстве, должны
антропогенного воздействия на атмосферу	быть экологически безопасны
Мероприятия по снижению антропогенного воздействия на	Вредные растворы должны быть
гидросферу	утилизированны
Мероприятия по снижению	Отходы складируются в мусорных баках и
антропогенного воздействия на литосферу	вывозятся на городскую свалку

9 Организация монтажных работ

В данном разделе разработан ППР на монтаж внутренних инженерных систем жилого дома в городе Тольятти.

Исходные данные и краткая характеристика объекта

Источником тепла для системы отопления является котел с автоматическим управлением регулирования, который расположен в подвале в отдельном помещении, массой 45 кг.

В проекте разработана система отопления с горизонтальной разводкой из полипропиленовых труб, система газоснабжения, система горячего и холодного водоснабжения и водоотведения. Перевозка труб может быть осуществлена любым видом транспорта (желательно в крытых автомашинах и вагонах) в отрезках или бухтах, в горизонтальном положении. При погрузочно-разгрузочных работах, транспортировании и хранении трубы необходимо оберегать механических повреждений. Запрещается OTсбрасывать трубы с транспортных средств или волочить по любой поверхности. Во время погрузки следует применять стропы из мягкого материала. Хранить трубы необходимо в закрытом помещении на ровном полу, настиле, оберегая от прямых солнечных лучей. Для изоляции труб проложенных В полу применяется теплоизоляционный материал Энергофлекс.

Определение объемов работ

Подсчет объемов строительных и монтажных работ производится по рабочим чертежам дипломного проекта. При этом должны учитываться единицы измерения, принятые в [7],[8],[9].

Перед подсчетом объемов работ необходимо разбить всю систему на примерно равновеликие по трудоемкости технологические участки с целью последовательного и равномерного ввода в эксплуатацию законченных участков:

1 захватка – система горячего, холодного водоснабжения и водоотведения, система газоснабжения;

2 захватка – система отопления.

Таблица 9.1 - Ведомость объемов работ

№ п/п	Наименование работ	Един Изм.	рабо захва	ьем от по откам	Итого
1	Разметка мест прокладки трубопроводов с вычерчиванием эскизов систем отопления ГВ и ХВ	100 M	- 0,65	3,36	3,36 0,65
	Канализ Газоснаб		0,40 0,21	-	0,40 0,21
2	Сверление и пробивка отверстий в стенах и перекрытиях глубиной до 150 мм до 500 мм	100	0,27 0,14	0,43 0,14	0,7 0,14
3	Монтаж котла Valliant VU OE 466-7 E	1 шт.	-	1	1
4	Установка группы безопасности котла ESBI манометр, термометр, автомат. воздухоудалитель RBM	1 шт.	-	2 8 2	2 8 2
5	Монтаж расширительного бака	1 шт.	-	1	1
6	Монтаж центрального распределительного коллектора	1 шт.	-	1	1
7	Монтаж насоса UPS 32-60, UPS 25-40, UPS 25-60 обратных клапанов RBM, задвижек	1 шт. 1 шт. 1 шт.	3 4 4	1 2 2	4 6 6
8	Монтаж бойлера Vih R200	1 шт.	1	-	1

				I	1
9	Монтаж воздухоудалителей	1 шт.	-	30	30
10	Установка радиаторов на кронштейнах	1шт.	-	27	27
11	Прокладка полипропиленовых труб диаметром 20 25 32 40 50	1 M 1 M 1 M 1 M 1 M	48 17 6 0	96 197 6 2 5	144 214 12 2 5
12	Прокладка стальных труб диаметром 15 32	1м 1м	1 20	- -	1 20
13	Прокладка пластиковых труб диаметром 50 100	1м 1м	18 22	-	18 22
14	Установка сан приборов Мойка Умывальник Ванна Унитаз	1шт. 1шт. 1шт. 1шт.	1 4 3 4	- - -	1 4 3 4
15	Установка смесителей для раковин смесителей для ванн кранов на унитаз	1шт.	5 3 4	- - -	5 3 4
16	Испытание систем отопления ГВ и ХВ Канализ Газоснаб	1м	65 40 21	302	302 65 40 21

Литература

- 1. Автоматика и автоматизация систем теплогазоснабжения и вентиляции: Учеб. для вузов/А.А. Калмаков, Ю.Я. Кувшинов, С.С. Романова, С.А. Щелкунов; Под ред. В.Н. Богословского.- М.: Стройиздат, 1986. 479 с.
- 2. Внутренние санитарно-технические устройства. 3ч. Ч.1. Отопление/В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под. ред. И.Г. Староверова и Ю.И. Шиллера.-4-е изд., перераб. И доп.-М.:Стройиздат, 1990.-344 с.
- 3. Внутренние санитарно-технические устройства. 3ч. Ч.2. Водопровод и канализация /В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под. ред. И.Г. Староверова и Ю.И. Шиллера.-4-е изд., перераб. И доп.-М.:Стройиздат, 1990.-344с.
- 4. Внутренние санитарно-технические устройства. 3ч. Ч.3. Вентиляция и кондиционирование /Н.Н. Павлов, и др.; Под. ред. И.Г. Павлова и Ю.И. Шиллера.-4-е изд., перераб. И доп.-М.:Стройиздат, 1990.-344с.
- 5. В.А. Пчелинцев Охрана труда в строительстве:: учебное пособие. / Д.В. Коптев, Г.Г. Орлов М.: Издательство Ассоциации строительных вузов, 2005. 96 с.
- 6. ГОСТ 30494-96. Здания жилые и общественные. Параметры микроклимата в помещениях. МНТКС М.: Госстрой России, ГУП ЦПП, 1999.-10 с.
- 7. ЕНиР. Сборник Е9. Вып. 1. Санитарно-техническое оборудование зданий и сооружений/Госстрой СССР.-М.: Издательство Стройиздат, 1987,79 с.
- 8. ЕНиР. Сборник Е11. Изоляционные работы/Госстрой СССР.-М.: Издательство Стройиздат, 1988.-64 с.
- 9. ЕНиР. Сб. Е22. Сварочные работы. Вып. 2. Трубопроводы / Госстрой СССР. М.: Издательство Стройиздат, 1987. 112 с.
- 10. Каталог оборудования Global.— Режим доступа: http:// http://www.boilerberg.ru/catalog/pribory_otopleniya/

- 11. Каталог оборудования Deceuninck [Электронный ресурс]— Режим доступа: http://deceuninck.ru/products/windows_and_doors/profile_favorit_space/
- 12. Каталог оборудования Danfoss [Электронный ресурс]— Режим доступа: http:// http://products.danfoss.ru/home/
- 13. Каталог оборудования Тэра [Электронный ресурс]. Режим доступа: http://www.ao-tera.com.ua/commonfiles/rh-sensors.pdf
- 14. Каталог оборудования Валиант [Электронный ресурс]. Режим доступа: http:// http://products.vaillant.ru/home/
- 15. Каталог оборудования Emotron [Электронный ресурс]. Режим доступа: http://www.emotron.su/index.php?page=emotron_pyskatel
- 16. Каталог оборудования Лотвентсервис [Электронный ресурс]— Режим доступа: http://www.lot.su/lot_catalog.php
- 17. Каталог оборудования Руснит [Электронный ресурс]. Режим доступа: http://spectrmarket.ru/catalog/sistemy-otopleniya/kotly/
- 18. Каталог оборудования Komarma [Электронный ресурс]. Режим доступа: http://komarma.ru/schetchik-gaza-sgk
- 19. Каталог оборудования Orion [Электронный ресурс]. Режим доступа: https://orion-gaz.ru/gazoanalizatoryi-i-signalizatoryi-zagazovannosti/
- 20. Каталог оборудования ОЗНО [Электронный ресурс]. Режим доступа: http://ozngo.ru/izoliruyushcheye-soyedineniye-dlya-gazoprovoda
- 21. Мухин О.А. Автоматизация систем теплогазоснабжения и вентиляции: учеб. пособие.-М.: Выш. шк., 1986. 304 с.
- 22. Отопление и вентиляция жилых и гражданских зданий: Проектирование, Справочник/ Г.В. Русланов, М.Я. Розкин и др.-Киев.: Будивельник, 1983. 272с.
- 23. СП 131.13330.2012. Строительная климатология. Актуализированная редакция СНиП 23-01-99 [Электронный ресурс]. Введ. 2013.- 01. 01. Режим доступа: http://docs.cntd.ru/document/1200095546

- 24. СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 [Электронный ресурс]. Введ. 2013.- 07. 01 . Режим доступа http://http://docs.cntd.ru/document/1200095525
- 25. СНиП II-3-79**. Строительная теплотехника. [Электронный ресурс]. Введ. 1979.07.01. Режим доступа: http://http://docs.cntd.ru/document/871001234
- 26. СП 41.101.95. –Проектирование тепловых пунктов. [Электронный ресурс]. Введ. 2013.- 01. 01. Режим доступа http://www.rosteplo.ru/Npb_files/npb_shablon.php?id=236
- 27. СП 31.106.2002. –Проектирование и строительство инженерных систем одноквартирных жилых домов. [Электронный ресурс]. Введ. 2013.- 01. 01. Режим доступа http://meganorm.ru/Data2/1/4294846/4294846937.pdf
- 28. СНиП 12-03-2001.- Безопасность труда в строительстве [Электронный ресурс]. Введ. 2001.09. 01. Режим доступа: http://gostbank.metaltorg.ru/data/norms_new/snip/98.pdf
- 29. СНиП 41-01-2003— Отопление, вентиляция и кондиционирование. [Электронный ресурс]. Введ. 2004.- 01. 01 . Режим доступа: http://gostbank.metaltorg.ru/data/norms_new/snip/66.pdf
- Титов.В.П. Курсовое и дипломное проектирование по вентиляции гражданских и промышленных зданий: Учебное пособие. /В.П. Титов,
 Э.В. Сазонов, Ю.С. Краснов, В.И. Новожилов. М.: Издательство Стройиздат, 1985.-208 с.

Приложение А

Расчет теплопотерь

Таблица А.1

№ поме	Наим. помещен	Наим. огражден	ориент	F,м2	$k, \frac{Bm}{M^{2} {}^{o}C}$	Δt,°C	Q, Вт	До коэд	обавочны официен	ый т, %	$(1+\sum \beta)$	$Q \cdot (1 + \sum \beta)$,	Обыт., Вт	Оинф, Вт	Орасч, Вт
щен	,	ий.	ация	,	M^{2} C	,		ориент.	проч.	сумма		Вт	,	(1)	α ,
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001	Тепловой пункт	НС	Ю	6,643	0,30	50	99,7	0	5	5	1,05	104,7			
	20°C	I зона	-	10,22	0,39	50	200,4	0	5	5	1,05	210,4			
		ОК	Ю	1,5	1,52	50	113,8	0	5	5	1,05	119,5			
		НС	3	3,64	0,30	50	54,7	5	5	10	1,1	60,1			
		I зона	-	5,6	0,39	50	109,8	0	5	5	1,05	115,3			
		ПОЛ													
		II зона	-	9,06	0,21	50	95,4	0	0	0	1	95,4			
		III зона	-	0,55	0,11	50	3,0	0	0	0	1	3,0			
			S	9,61								708,5	96,1	339,0	951
002	Вспомогательное	НС	3	5,395	0,30	48	81,0	5	5	10	1,1	89,1			
	помещение	I зона	-	8,3	0,39	48	162,7	0	5	5	1,05	170,9			
	18°C	I зона	-	16,863	0,39	48	330,6	0	5	5	1,05	347,2			
		ПОЛ													
		II зона	-	11,86	0,21	48	124,8	0	0	0	1	124,8			
		III зона	-	3,75	0,11	48	20,7	0	0	0	1	20,7			
			S	15,61								752,7	0	0	753
003	Сан.узел	ПОЛ													
	25°C	II зона	-	3,55	0,21	55	37,4	0	0	0	1	37,4			
			S	3,55								37,4	0	0	37

	цолжение тао.	лицы А.	. 1												
№	Harris Bartaman	Наим.	ориент	F,м2	_l Bm	Δt,°C	Q, Вт		бавочн		$(1+\sum \beta)$	$Q \cdot (1 + \sum \beta)$,	Ofria Da	Qинф, Вт	Орасч, Вт
поме щен	Наим. помещен	огражден ий.	ация	F,MZ	$k, \frac{Bm}{M^{2} {}^{o}C}$	Δι, С	Q, BT	ориент	официен проч	сумм	$\left\{ \left(1 + \sum_{i} p_{i} \right) \right\}$	Вт	Оонт., Бт	Qинф, Б т	Орасч, Бт
004	Раздевалка	I зона	-	16,566	0,39	50	324,8	0	0	0	1	324,8			
	20°C	I зона	-	7,821	0,39	50	153,4	0	0	0	1	153,4			
		ПОЛ													
		II зона	-	7,81	0,21	50	82,2	0	0	0	1	82,2			
			S	7,81								560,4	0	0,0	560
005	Коридор	ПОЛ													
	20°C	II зона	-	0,59	0,21	50	4,3	0	0	0	1	4,3			
		III зона	-	8,2	0,11	50	31,7	0	0	0	1	31,7			
			S	8,79								36,1	0	0,0	36
006	Кабинет	НС	В	6,32	0,30	50	94,9	10	5	15	1,15	109,1			
000	20°C	І зона	-	9,72	0,39	50	190,6	0	5	5	1,05	200,1			
		ОК	В	1,68	1,52	50	127,5	10	5	15	1,15	146,6			
		НС	С	7,16	0,30	50	107,6	10	5	15	1,15	123,7			
		I зона	-	11,02	0,39	50	216,1	0	5	5	1,05	226,9			
		I зона	-	20,06	0,39	50	393,4	0	5	5	1,05	413,1			
		ПОЛ													
		II зона	-	18,96	0,21	50	199,6	0	0	0	1	199,6			_
		III зона	-	1,33	0,11	50	7,3	0	0	0	1	7,3			
			S	20,29								1426,4	202,9	715,8	1939

	цолжение тао		. 1	1	1	1					1	1	1		T
No		Наим.	ориент		, Bm				обавочні			$Q \cdot (1 + \sum \beta)$,			
поме	Наим. помещен	огражден	ация	F,м2	$k, \frac{Bm}{M^{2} {}^{o}C}$	Δt,°C	Q, Bt		фициен		$(1+\sum \beta)$	BT	Qбыт., Вт	Qинф, Вт	Орасч, Вт
щен		ий.	,				44.0	ориент	проч	сумм	1.1.5				
007	Бильярдная	НС	С	2,73	0,30	50	41,0	10	5	15	1,15	47,1			
	20°C	I зона	-	4,2	0,39	50	82,4	0	5	5	1,05	86,5			
		ОК	С	0,78	1,52	50	59,2	10	5	15	1,15	68,1			
		HC	В	8,61	0,30	50	129,2	10	5	15	1,15	148,6			
		I зона	-	13,24	0,39	50	259,6	0	5	5	1,05	272,6			
		ОК	В	3,36	1,52	50	255,0	10	5	15	1,15	293,2			
		НС	Ю	2,73	0,30	50	41,0	0	5	5	1,05	43,0			
		I зона	-	4,2	0,39	50	82,4	0	5	5	1,05	86,5			
		ОК	Ю	0,78	1,52	50	59,2	0	5	5	1,05	62,1			
		I зона	-	7,821	0,39	50	153,4	0	5	5	1,05	161,0			
		ПОЛ													
		II зона	-	31,7	0,21	50	333,7	0	0	0	1	333,7			
		III зона	-	14,64	0,11	50	80,9	0	0	0	1	80,9			
		IV зона	-	0,96	0,07	50	3,3	0	0	0	1	3,3			
			S	47,3								1686,6	473	1668,7	2882
008	Бассейн	HC	Ю	6,90	0,30	55	103,6	0	5	5	1,05	108,8			
	25°C	I зона	-	10,62	0,39	55	208,2	0	5	5	1,05	218,6			
		НС	В	7,42	0,30	55	111,5	10	5	15	1,15	128,2			
		I зона	-	11,42	0,39	55	223,9	0	5	5	1,05	235,1			
		ОК	В	1,68	1,52	55	127,5	10	5	15	1,15	146,6			
		ПОЛ													
		II зона	-	14,98	0,21	55	157,7	0	0	0	1	157,7			
		III зона	-	6,98	0,11	55	38,6	0	0	0	1	38,6			
		IV зона	-	0,53	0,07	55	1,8	0	0	0	1	1,8			
			S	22,49								1035,4	0	579,4	1604

	цолжение тао.	ицы л.	. 1										, ,		T
$N_{\underline{0}}$		Наим.	ориент		. Bm				обавочні		$(1 \cdot \nabla \alpha)$	$Q \cdot (1 + \sum \beta),$ BT	0.5		
поме	Наим. помещен	огражден	ация	F,м2	$k, \frac{Bm}{M^{2} {}^{\circ}C}$	Δt,°C	Q, Bt		фициен	1	$(1+\sum \beta)$	B _T	Qбыт., Вт	Qинф, Вт	Орасч, Вт
щен	TC	ий.	,					ориент	проч	сумм		Бі			
009	Коридор	ПОЛ		1.05	0.21	7 0	10.5	0		0		10.5			
	20°C	II зона	-	1,86	0,21	50	19,6	0	0	0	1	19,6			
		III зона	-	5,25	0,11	50	29,0	0	0	0	1	29,0			
			S	7,11							111	48,6	0	0,0	49
010	Парная	HC	Ю	6,01	0,30	50	90,2	0	5	5	1,05	94,7			
	20°C	I зона	-	9,24	0,39	50	181,2	0	5	5	1,05	190,2			
		ОК	Ю	0,04	1,52	50	3,0	0	5	5	1,05	3,2			
		HC	В	2,74	0,30	50	41,2	10	5	15	1,15	47,4			
		I зона	-	4,22	0,39	50	82,7	0	5	5	1,05	86,9			
		HC	3	2,74	0,30	50	41,2	5	5	10	1,1	45,3			
		I зона	-	4,22	0,39	50	82,7	0	5	5	1,05	86,9			
		ПОЛ													
		II зона	-	11,5	0,21	50	121,1	0	0	0	1	121,1			
			S	11,5								558		405,7	966
101	Гостиная	НС	Ю	16,86	0,30	50	253,2	0	5	5	1,05	265,9			
	20°C	ОК	Ю	2,07	1,52	50	157,1	0	5	5	1,05	164,9			
		НС	3	23,17	0,30	50	347,8	5	5	10	1,1	382,6			
		ОК	3	2,07	1,52	50	157,1	5	5	10	1,1	172,8			
		НС	С	3,66	0,30	50	55,0	10	5	15	1,15	63,3			
			S	27,6								1049,5	276	973,7	1747
102	Зал	НС	3	16,50	0,30	50	247,7	5	0	5	1,05	260,1			
	20°C	ОК	3	4,02	1,52	50	305,1	5	0	5	1,05	320,3			
			S	18,16			*				-	580,4	181,6	640,7	1040

11007	donwelline 1403	<u>тицы 11.</u>	· ·									т			
No		Наим.	ориент	'	Bm				обавочны	ый		$O \cdot (1 + \sum \beta)$			
поме	Наим. помещен	огражден	ация	F,м2	$k, \frac{Bm}{M^{2 \circ} C}$	Δt,°C	Q, Bt		ффициен	лт, %	$(1+\sum \beta)$	BT	Qбыт., Вт	Qинф, Вт	Орасч , Вт
щен		ий.					252.2	ориент	-	сумм					
103	Тренажерный зал		3	23,46	0,30	48	352,3	5	5	10	1,1	387,5			<u> </u>
<u></u>	18°C	ОК	3	2,07	1,52	48	157,1	5	5	10	1,1	172,8			
<u></u>		HC	С	28,45	0,30	48	427,1	10	5	15	1,15	491,2			
<u> </u>		ОК	С	4,59	1,52	48	348,3	10	5	15	1,15	400,6			
		НС	В	4,32	0,30	48	64,9	10	5	15	1,15	74,6			
		ПОЛ	<u> </u>												
		I зона	-	27,6	0,39	48	541,2	0	0	0	1	541,2			
		II зона	-	15,87	0,21	48	167,1	0	0	0	1	167,1			
		III зона	-	8,4	0,11	48	46,4	0	0	0	1	46,4			
		IV зона	-	0,96	0,07	48	3,3	0	0	0	1	3,3			
			S	49,07							1	2284,6	490,7	1731,2	3525
104	Прихожая	НС	В	20,16	0,30	48	302,7	10	5	15	1,15	348,2			
	18°C	ОК	В	2,52	1,52	48	191,2	10	5	15	1,15	219,9			
		НД	С	2,00	1,16	48	116,0	10	183	193	2,93	339,9			
		НС	С	17,52	0,30	48	263,1	10	5	15	1,15	302,6			
			S	14,37							1	1210,5	0	0,0	1211
								+							
105	Вестибюль	НС	С	13,86	0,30	50	208,1	10	5	15	1,15	239,3			
	20°C	ОК	С	3,51	1,52	50	266,4	10	5	15	1,15	306,3			
	+	НС	В	43,69	0,30	50	656,0	10	5	15	1,15	754,4			†
		ОК	В	15,12	1,52	50	1147,4	10	5	15	1,15	1319,5			
	 	HC	Ю	13,86	0,30	50	208,1	0	5	5	1,05	218,5			
	+	ОК	Ю	3,51	1,52	50	266,4	0	5	5	1,05	279,7	+		
	-	ПТ	-	46,128		50	549,1	0	0	0	1,03	549,1	1		
 	-	111	S	38,44	0,2.		517,1				1	3666,9	384,4	1356,2	4639
				30,		+			 	+		3000,2	JUT,7	1330,2	T037
106	Холл		S	16,36		 	+	-	 	 	-	0,0	0	0,0	0
100	AUJIJI	<u></u>	ט	10,50	'			<u> </u>	<u> </u>			0,0	U	0,0	U

<u>ттрод</u> №	олжение тао. Г	Наим.	. 1		1	1	<u> </u>	П	обавочн	тй			I		
поме	Наим. помещен	огражден	ориент	F,м2	$k, \frac{Bm}{M^{2} {}^{o}C}$	Δt,°C	Q, Bt		рфициен		$(1+\sum \beta)$	$Q \cdot (1 + \sum \beta)$,	Qбыт., Вт	Оинф, Вт	Qрасч, Вт
щен	таны. помещен	ий.	ация	1,1112	$^{\kappa}$, $^{2}{}^{o}C$	Δι, Ο	Q, Bi	ориент	проч	сумм		Вт	Qовіт., Б т	ζιπφ, Βτ	Qpac i, D
107	Столовая	НС	В	18,84	0,30	50	282,9	10	5	15	1,15	325,4			
	20°C	ОК	В	2,52	1,52	50	191,2	10	5	15	1,15	219,9			
		НС	Ю	17,52	0,30	50	263,1	0	5	5	1,05	276,3			
		ОК	Ю	1,62	1,52	50	122,9	0	5	5	1,05	129,1			
		НД	Ю	2	1,16	50	116,0	0	183	183	2,83	328,3			
			S	23,47								1278,9	234,7	828,0	1872
100	Common		C .	5 10								0.0	0	0.0	0
108	Сан.узел		S	5,19								0,0	0	0,0	0
109	Кухня	НС	Ю	15,25	0,30	48	228,9	0	5	5	1,05	240,4			
	18°C	ОК	Ю	2,07	1,52	48	157,1	0	5	5	1,05	164,9			
		НС	В	6,96	0,30	48	104,5	10	5	15	1,15	120,2			
		НС	3	6,96	0,30	48	104,5	5	5	10	1,1	115,0			
			S	21,71								640,5	217,1	765,9	1189
201	Спальня	НС	Ю	16,86	0,30	50	253,2	0	5	5	1,05	265,9			
201	20°С	ОК	Ю	2,07	1,52	50	157,1	0	5	5	1,05	164,9			
	20 C	HC	3	23,17	0,30	50	347,8	5	5	10	1,03	382,6			
		ОК	3	2,07	1,52	50	157,1	5	5	10	1,1	172,8			
		HC	C	3,66	0,30	50	55,0	10	5	15	1,15	63,3			
		ПТ	-	33,12	0,24	50	394,3	0	0	0	1	394,3			
			S	27,6	- ,							1443,7	276	973,7	2141
_															
202	Гардеробная	HC	3	8,68	0,30	50	130,3	5	0	5	1,05	136,8			
	20°C	ПТ	-	11,76	0,24	50	140,0	0	0	0	1	140,0			
			S	9,8								276,8	0	0	276,8
203	Гардеробная	НС	3	7,39	0,30	50	111,0	5	0	5	1,05	116,5			
	20°C	ПТ	-	9,36	0,24	50	111,4	0	0	0	1	111,4			
			S	7,8	<u> </u>	-	,			-		228,0	0	275,2	503

11po ₂	tonikeline 1ao.	лицы т.	. 1												
No		Наим.	ориент		Bm				обавочні			$O(1+\sum \beta)$			
поме	Наим. помещен	огражден	ация	F,м2	$k, \frac{Bm}{M^{2o}C}$	Δt,°C	Q, Bt		ффициен		$(1+\sum \beta)$	$\mathcal{Q}^{*}(\Gamma^{\dagger} \underline{\sum} p)^{*}$	Qбыт., Вт	Qинф, Вт	Орасч, Вт
щен		ий.						ориент	проч	сумм					
204	Детская	HC	3	17,29	0,30	50	259,6	5	5	10	1,1	285,6			
	комната	ОК	3	2,07	1,52	50	157,1	5	5	10	1,1	172,8			
	20°C	НС	C	27,75	0,30	50	416,7	10	5	15	1,15	479,2			
		ОК	С	4,59	1,52	50	348,3	10	5	15	1,15	400,6			
		НС	3	4,32	0,30	50	64,9	5	5	10	1,1	71,4			
		ПТ	-	45,85	0,24	50	545,9	0	0	0	1	545,9			
			S	38,21								1955,4	382,1	1348,0	2921
205	Зимний сад	HC	В	7,50	0,30	48	108,1	10	5	15	1,15	124,3			
	18°C	ОК	-	9,00	1,52	48	655,6	0	5	5	1,05	688,4			
		НС	C	14,52	0,30	48	209,3	10	5	15	1,15	240,7			
		ПТ	-	22,85	0,24	48	261,1	0	0	0	1	261,1			
			S	19,04								1314,6	0	644,9	1959
206	Холл	ПТ	-	28,32	0,24	50	337,1	0	0	0	1	337,1			
	20°C		S	23,6								337,1	0	0,0	337
207	Кабинет	НС	В	19,50	0,30	50	292,8	10	5	15	1,15	336,8			
	20°C	ОК	В	2,52	1,52	50	191,2	10	5	15	1,15	219,9			
		НС	Ю	17,52	0,30	50	263,1	0	5	5	1,05	276,3			
		HC	C	2,65	0,30	50	39,8	10	5	15	1,15	45,8			
		ПТ	-	28,16	0,24	50	335,3	0	0	0	1	335,3			
			S	23,47								1214,0	234,7	828,0	1807
208	Сан.узел	ПТ	-	8,77	0,24	55	104,4	0	0	0	1	104,4			
	25°C		S	7,31								104,4	0	0,0	104
• • • • •	~	****		17.55	0.00				_	_		- 10 1			
209	Сан.узел	HC	Ю	15,25	0,30	55	228,9	0	5	5	1,05	240,4			
	25°C	ОК	Ю	2,07	1,52	55	157,1	0	5	5	1,05	164,9			
		НС	В	6,96	0,30	55	104,5	10	5	15	1,15	120,2			
		НС	3	6,96	0,30	55	104,5	5	5	10	1,1	115,0			
		ПТ	-	14,74	0,24	55	175,4	0	0	0	1	175,4			
			S	12,28								816,0	0	0,0	816
														СУММА	36214
								1				1		C y IVIIVIA	30214

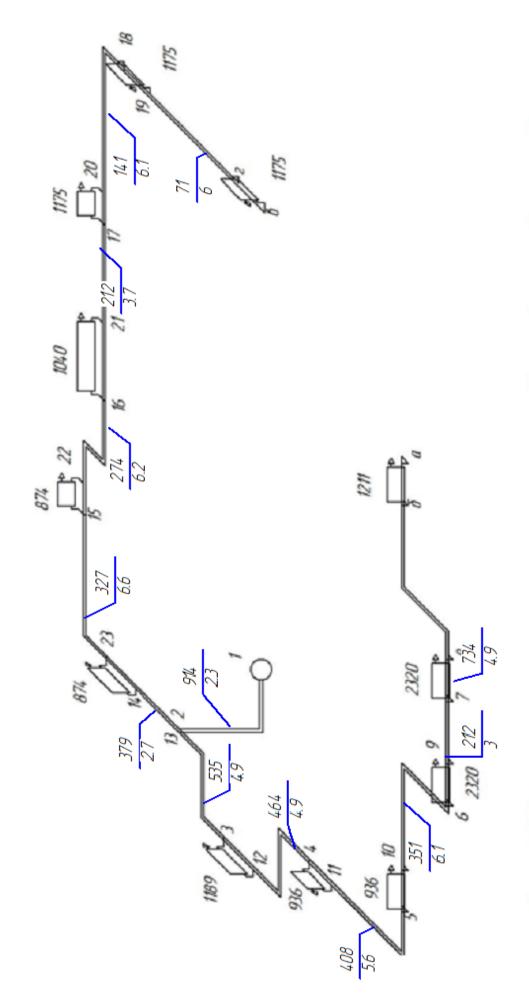


Рис. 6.2 Расчетная схема системы отопления. Первый этаж. Ветвь А,Б.

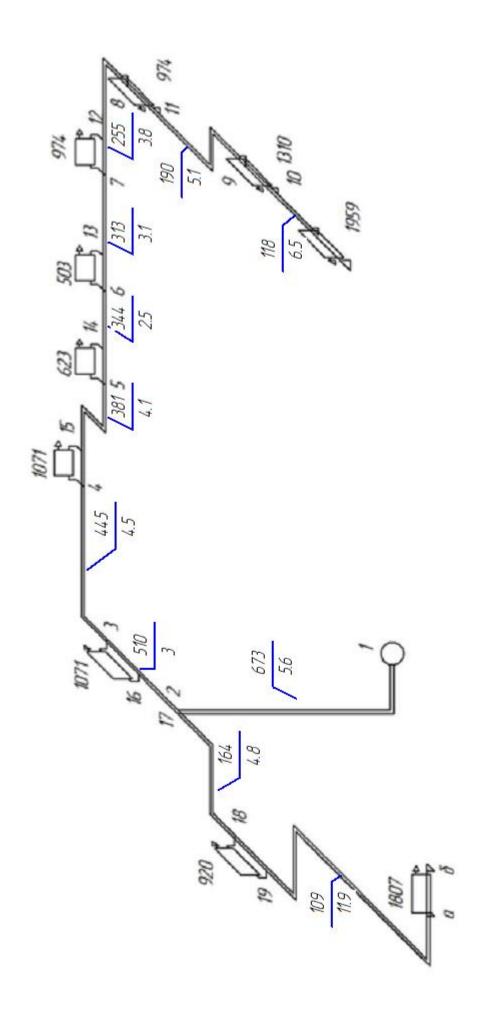


Рис. 6.1 Расчетная схема системы отопления. Второй этаж. Ветвь А,Б.

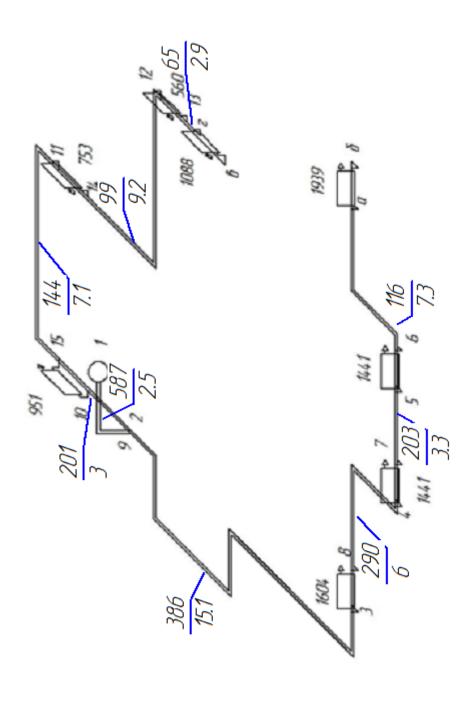


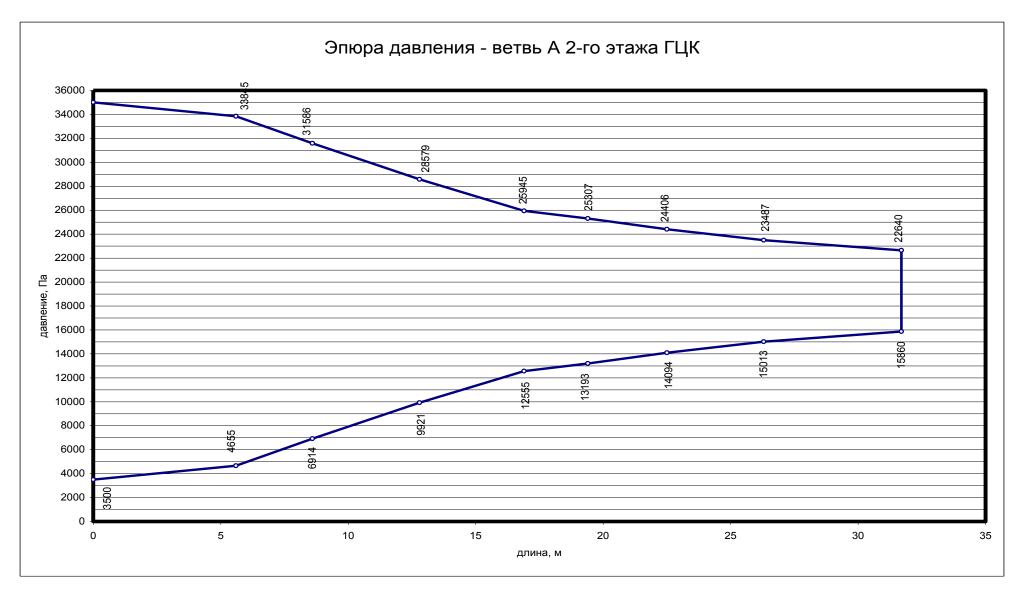
Рис. 6.3 Расчетная схема системы отопления. Цокольный этаж. Ветвь А,Б

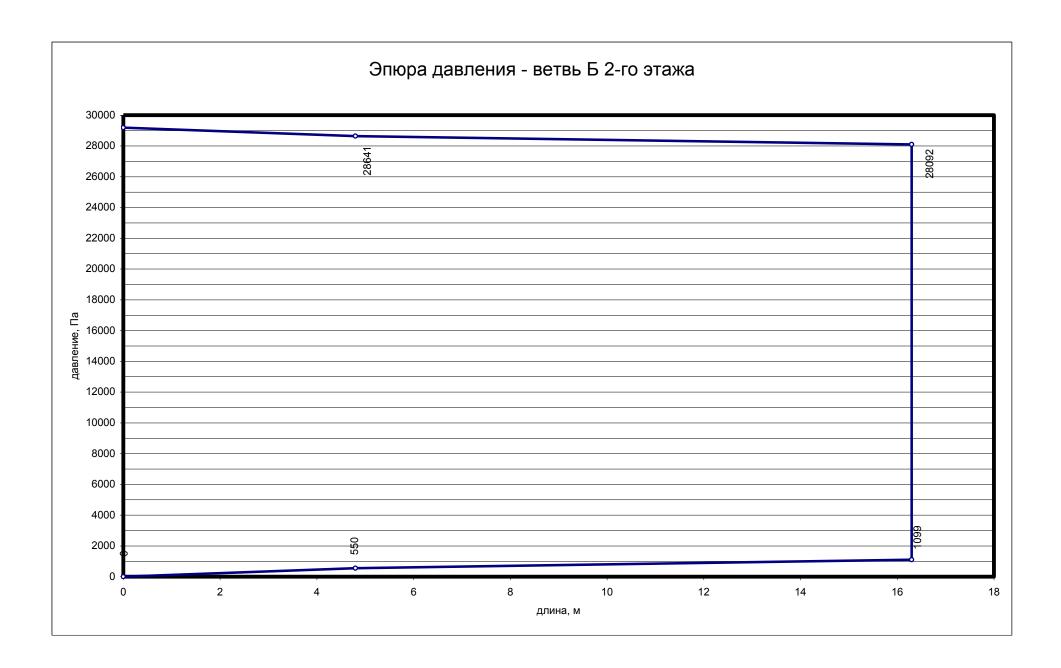
Приложение Б.1 Гидравлический расчёт системы отопления

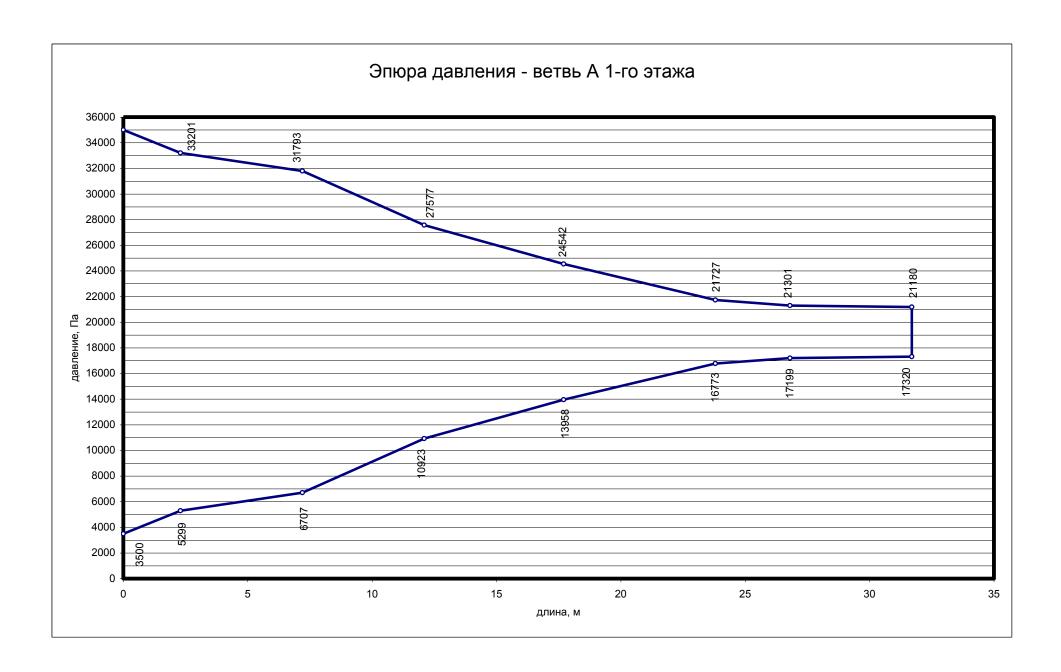
Таблица Б.1

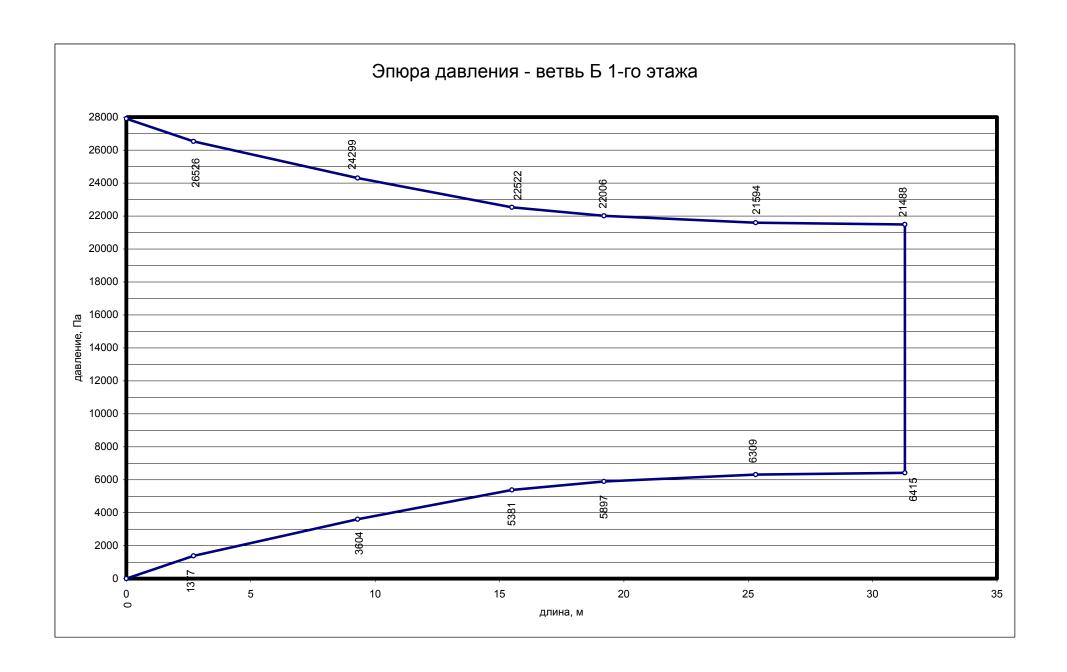
№ участка	Тепловая нагрузка	Расход участка G, кг/ч	Длина участка ℓ, м	Диаметр , dн ,мм	Удельные потери давления R, Па/м	Потери давления на трение $R \times \ell$, Па	Скорость воды W, м/с	Динамическо е давление (г×w2)/2, Па	Сумма КМС	Потери давления на местное сопротивле ние Z, Па	Потери давления на участке R×ℓ+Z, Па	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13
	1		1	T	1	Ветка А 2 э	таж ∆ Рр=35	000 Па		T	<u> </u>	
1-2	11212	673	5,6	25	130	728	0,66	213,3	2	427	1155	Отвод
2-3	8485	510	3,0	20	615	1845	0,92	414,4	1	414	2259	Тр. на пов.
3-4	7414	445	4,2	20	490	2058	0,80	316,4	3	949	3007	Тр. на прох+отвод
4-5	6343	381	4,1	20	360	1476	0,69	231,6	5	1158	2634	Тр.на прох+2отвод
5-6	5720	344	2,5	20	180	450	0,62	188,3	1	188	638	Тр.на прох.
6-7	5217	313	3,1	20	240	744	0,57	156,6	1	157	901	Тр.на прох.
7-8	4243	255	3,8	20	160	608	0,46	103,6	3	311	919	Тр.на прох+2отв.
8-9	3269	196	5,4	20	100	540	0,35	61,5	5	308	848	Тр.на прох+2отв.
9-10	1959	118	6,5	20	38	247	0,21	22,1	22	486	733	RTD – N 6047 Па
10-11	3269	196	5,4	20	100,0	540	0,4	61,5	5	308	848	Тр.на прох+2отв.
11-12	4243	255	3,8	20	160,0	608	0,5	103,6	3	311	919	Тр.на прох+2отв
12-13	5217	313	3,1	20	240,0	744	0,6	156,6	1	157	901	Тр.на прох.
13-14	5720	344	2,5	20	180,0	450	0,6	188,3	1	188	638	Тр.на прох.
14-15	6343	381	4,1	20	360,0	1476	0,7	231,6	5	1158	2634	Тр.на прох+2отвод
15-16	7414	445	4,2	20	490,0	2058	0,8	316,4	3	949	3007	Тр. на прох+отвод
16-17	8485	510	3,0	20	615,0	1845	0,9	414,4	1	414	2259	Тр. на пов.
17-1	11212	673	5,6	25	130,0	728	0,7	213,3	2	427	1155	Отвод
										Сумма	31500	

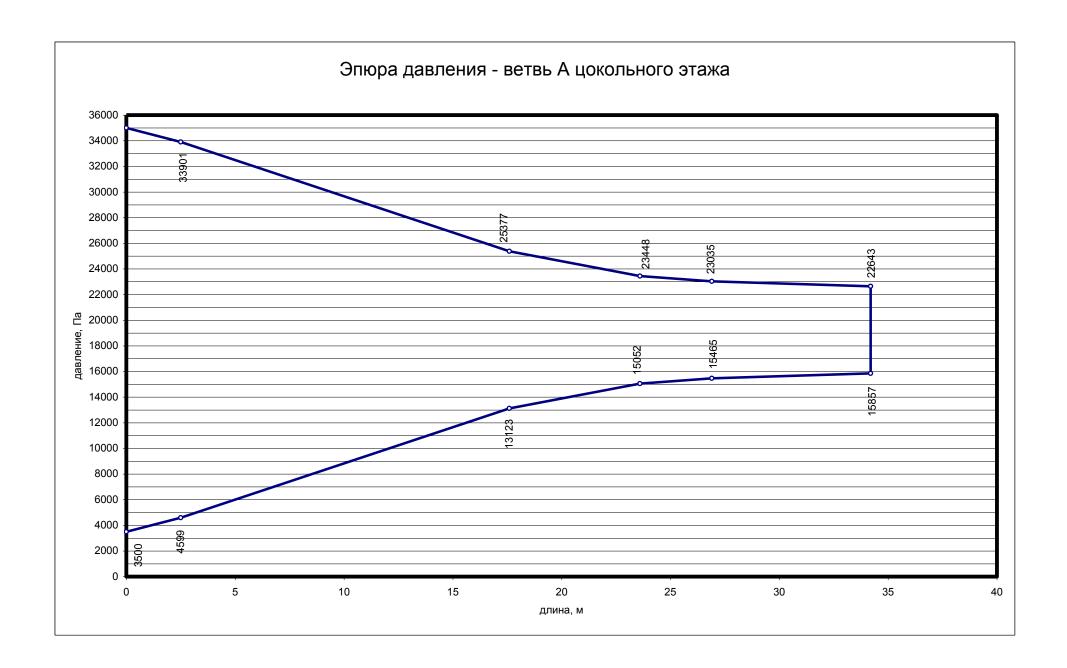
тродо	лжение	гаолицы	D. 1									
№ участка	Тепловая нагрузка	Расход участка G, кг/ч	Длина участка ℓ, м	Диаметр dн ,мм	Удельные потери давления R, Па/м	Потери давления на трение $R \times \ell$, Па	Скорость воды W, м/с	Динамическо е давление (r×w2)/2, Па	Сумма КМС	Потери давления на местное сопротивле ние Z, Па	Потери давления на участке R×ℓ+Z, Па	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13
						Ветка Б 2 з	таж ∆ Рр=29	191 Па				
2-18	2727	164	4,8	20	70	336	0,30	42,8	5	214	550	Тр.на пов.+2отвд.
18-a	1807	109	11,5	20	33	380	0,20	18,8	3	169	549	Тр.на прох.+отвод
а-б	1807	109	0,6	20	33	20	0,20	18,8	18	338	358	RTD – N 26636 Па
б-19	1807	109	11,5	20	33,0	380	0,2	18,8	3	169	549	Тр.на прох.+отвод
19-17	2727	164	4,8	20	70,0	336	0,3	42,8	5	214	550	Тр.на пов.+2отвд
										Сумма	29191	
						ветка А 1 э	таж ∆ Рр=35	000 Па				
1-2	15225	914	2,3	25	440	1012	0,90	393,3	2	787	1799	Отвод
2-3	8912	535	4,9	25	150	735	0,52	134,8	5	674	1409	Тр. на пов.+2отвд.
3-4	7723	464	4,9	20	510	2499	0,84	343,3	5	1716	4215	Тр.на прох+2отвод
4-5	6787	408	5,6	20	400	2240	0,74	265,1	3	795	3035	Тр.на прох+отвод
5-6	5851	351	6,1	20	300	1830	0,63	197,0	5	985	2815	Тр.на прох+2отвод
6-7	3531	212	3,0	20	118	354	0,38	71,8	1	72	426	Тр.на прох
7-a	1211	73	4,9	20	16	78	0,13	8,4	5	42	121	Тр.на прох+2отвод
а-б	1211	73	0,6	20	16	10	0,13	8,4	18	152	162	RTD – N 3700 Па
б-8	1211	73	4,9	20	16,0	78	0,1	8,4	5	42	121	Тр.на прох+2отвод
8-9	3531	212	3,0	20	118,0	354	0,4	71,8	1	72	426	Тр.на прох
9-10	5851	351	6,1	20	300,0	1830	0,6	197,0	5	985	2815	Тр.на прох+2отвод
10-11	6787	408	5,6	20	400,0	2240	0,7	265,1	3	795	3035	Тр.на прох+отвод
11-12	7723	464	4,9	20	510,0	2499	0,8	343,3	5	1716	4215	Тр.на прох+2отвод
12-13	8912	535	4,9	25	150,0	735	0,5	134,8	5	674	1409	Тр. на пов.+2отвд.
13-1	15225	914	2,3	25	440,0	1012	0,9	393,3	2	787	1799	Отвод
										Сумма	31500	

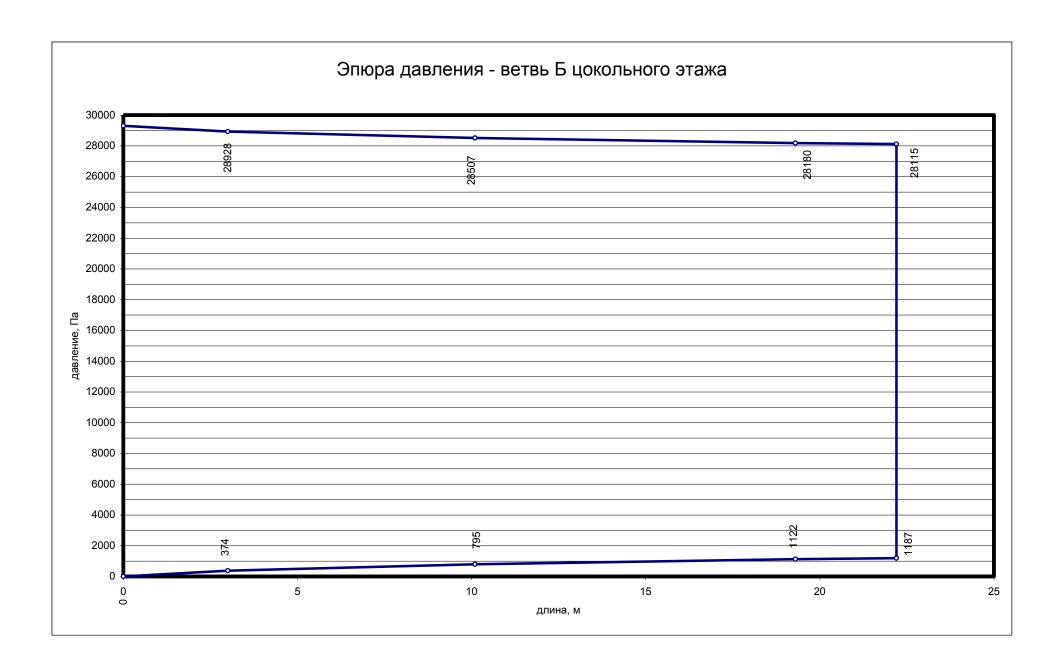

Продолжение таблицы Б.1


№ участка	Тепловая нагрузка	Расход участка G, кг/ч	Длина участка ℓ, м	Диаметр dн ,мм	Удельные потери давления R, Па/м	Потери давления на трение R×ℓ, Па	Скорость воды W, м/с	Динамическо е давление (r×w2)/2, Па	Сумма КМС	Потери давления на местное сопротивле ние Z, Па	Потери давления на участке R×ℓ+Z, Па	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13
Ветка Б 1 этаж Δ Рр=27903 Па									I			
2-14	6313	379	2,7	20	340	918	0,68	229,4	2	459	1377	Тр на пов.
14-15	5439	327	6,6	20	260	1716	0,59	170,3	3	511	2227	Тр.на прох+отв.
15-16	4565	274	6,2	20	190	1178	0,49	119,9	5	600	1778	Тр на прох+2отвд.
16-17	3525	212	3,7	20	120	444	0,38	71,5	1	72	516	Тр.на прох.
17-18	2350	141	6,1	20	52	317	0,25	31,8	3	95	413	Тр на прох+отвд.
18-в	1175	71	6,0	20	15	90	0,13	7,9	2	16	106	Тр.прох+отвод
В-Г	1175	71	0,6	20	15	9	0,13	7,9	18	143	152	RTD – N 14921 Па
г-19	1175	71	6,0	20	15,0	90	0,1	7,9	2	16	106	Тр.прох+отвод
19-20	2350	141	6,1	20	52,0	317	0,3	31,8	3	95	413	Тр на прох+отвд.
20-21	3525	212	3,7	20	120,0	444	0,4	71,5	1	72	516	Тр.на прох.
21-22	4565	274	6,2	20	190,0	1178	0,5	119,9	5	600	1778	Тр на прох+2отвд
22-23	5439	327	6,6	20	260,0	1716	0,6	170,3	3	511	2227	Тр.на прох+отв.
23-13	6313	379	2,7	20	340,0	918	0,7	229,4	2	459	1377	Тр на пов.
										Сумма	27903	


Продолжение таблицы Б.1


№ участка	Тжение т Тепловая нагрузка	Расход участка G, кг/ч	Длина участка ℓ, м	Диаметр dн ,мм	Удельные потери давления R, Па/м	Потери давления на трение $R \times \ell$, Па	Скорость воды W, м/с	Динамическо е давление (r×w2)/2, Па	Сумма КМС	Потери давления на местное сопротивле ние Z, Па	Потери давления на участке $R \times \ell + Z$, Па	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13
	ветка А цокольный этаж Δ Рр=35000 Па											
1-2	9777	587	2,5	25	180	450	0,58	162,2	2	649	1099	Отвод
2-3	6425	386	15,1	20	360	5436	0,70	237,6	12	3089	8525	Тр.на прох+5отвод.
3-4	4821	290	6,0	20	210	1260	0,52	133,8	5	669	1929	Тр.на прох+2отвод.
4-5	3380	203	3,3	20	105	347	0,37	65,8	1	66	412	Тр на прох.
5-a	1939	116	7,3	20	36	263	0,21	21,6	6	130	393	Тр на прох.+2отв.
а-б	1939	116	0,6	20	36	22	0,21	21,6	18	390	411	RTD – N 6375 Па
б-6	1939	116	7,3	20	36,0	263	0,2	21,6	6	130	393	Тр на прох.+2отв.
6-7	3380	203	3,3	20	105,0	347	0,4	65,8	1	66	412	Тр на прох.
7-8	4821	290	6,0	20	210,0	1260	0,5	133,8	5	669	1929	Тр.на прох+2отвод.
8-9	6425	386	15,1	20	360,0	5436	0,7	237,6	13	3089	8525	Тр.на прох+5отвод.
9-1	9777	587	2,5	25	180,0	450	0,6	162,2	2	649	1099	Отвод
										Сумма	31500	
					Ber	гка Б цоколы	ный этаж∆ Рј	р=29302 Па				
2-10	3352	201	3,0	20	103	309	0,36	64,7	1	65	374	Тр. на пов.
10-11	2401	144	7,1	20	36	256	0,26	33,2	5	166	421	Тр. на прох.+2отв
11-12	1648	99	9,2	20	27	248	0,18	15,6	5	78	327	Тр. на прох.+2отв
12-в	1088	65	2,9	20	13	38	0,12	6,8	4	27	65	Тр. на прох.+отв
В-Г	1088	65	0,6	20	13	8	0,12	6,8	18	123	130	RTD – N 26798 Па
г-13	1088	65	2,9	20	13,0	38	0,1	6,8	4	27	65	Тр. на прох.+отв
13-14	1648	99	9,2	20	27,0	248	0,2	15,6	5	78	327	Тр. на прох.+2отв
14-15	2401	144	7,1	20	36,0	256	0,3	33,2	5	166	421	Тр. на прох.+2отв
15-9	3352	201	3,0	20	103,0	309	0,4	64,7	1	65	374	Тр. на пов.
											29302	


Приложение В.1 Эпюры циркуляционных давлений



Приложение Г.1 Аэродинамический расчет систем естественной вентиляции.

Таблица Г.1

	•				BE1						∆Р расп=	6,31
№ уч	І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, м/c	R, Па/м	n	R*I, ∏a	KMC	Рдин, Па	dРуч, Па
1'		90	140x140	140	0,015393	1,3				2,3	0,16	0,368
1	8,3	90	140x140	140	0,015393	1,3	0,04	1,3	0,43	2,2	0,16	0,79
							невязка, %	81,6			Рсист=	1,158
								Рреш=	4,2	полож Д	невязка, %	9,45
					BE2						Ррасп=	6,31
№ уч	І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1'	,	35	140x140	140	0,015393	0,9	,			2,3	0,49	1,127
1	8,3	35	140x140	140	0,015393	0,9	0,115	1,45	1,38	2,2	0,49	2,46
											Рсист=	3,587
								Рреш=	1,5	полож В	невязка, %	6,3
					BE3						Ррасп=	4,03
№ уч	І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, м/с	R, Па/м	n	R*I	KMC	Рдин	dРуч
1'		60	270x270	270	0,057254	0,44				2,3	0,11	0,253
1	5,3	60	270x270	270	0,057254	0,44	0,02	1,3	0,14	2,2	0,11	0,39
							невязка, %	84,0			Рсист=	0,643
								Рреш=	2,8	полож В	невязка, %	9,5
					BE4						Ррасп=	4,03
№ уч	І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, м/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1'		80	270x140	184	0,026703	0,52				2,3	0,16	0,368
1	5,3	80	270x140	184	0,026703	0,52	0,035	1,3	0,24	2,2	0,16	0,6
							невязка, %	76,0			Рсист=	0,968
								Рреш=	2,5	полож Д	невязка, %	7,01

Продолжение таблицы Г.1

					BE5						Ррасп=	1,52
№ уч	l, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1'		80	270x270	270	0,057254	0,24				2,3	0,04	0,092
1	2	80	270x270	270	0,057254	0,24	0,01	1,2	0,02	2,2	0,04	0,1
							невязка, %	87,4			Рсист=	0,192
								Рреш=	1,2	полож Б	невязка, %	5,07
					DE0						Б	4.50
		T	1	1	BE6			1			Ррасп=	1,52
№ уч	І, м	L, куб.м/ч	ахв, мм	дэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1'		45	270x270	270	0,057254	0,2				2,3	0,04	0,092
1	2	45	270x270	270	0,057254	0,2	0,01	1,2	0,02	2,2	0,04	0,1
							невязка, %	87,4			Рсист=	0,192
								Dnouve	1,2	полож Б	HODGOKO 0/	5
								Рреш=	1,2	полож в	невязка, %	<u> </u>
					DE7			Рреш-	1,2	полож в		
Na		1 6/.		4	BE7		D. Flate				∆Р расп=	6,31
№ уч	І, м	L, куб.м/ч	ахв, мм	дэкв, мм	f, KB.M	V, M/C	R, Па/м	n	R*I, Па	КМС	∆Р расп= Рдин, Па	6,31 dРуч, Па
№ уч 1'	,	100	140x140	140	f, кв.м 0,015393	1,3	·	n	R*I, Па	KMC 2,3	∆Р расп= Рдин, Па 0,16	6,31 dРуч, Па 0,36
	l, м 8,3			· · · · · · · · · · · · · · · · · · ·	f, KB.M		0,04	n 1,3		КМС	∆Р расп= Рдин, Па	6,31 dРуч, Па
	,	100	140x140	140	f, кв.м 0,015393	1,3	·	n	R*I, Па	KMC 2,3	ΔР расп= Рдин, Па 0,16 0,16 Рсист=	6,31 dРуч, Па 0,36
	,	100	140x140	140	f, кв.м 0,015393	1,3	0,04	n 1,3	R*I, Па	KMC 2,3	ΔР расп= Рдин, Па 0,16 0,16	6,31 dPyч, Πa 0,36 0,65
	,	100	140x140	140	f, KB.M 0,015393 0,015393	1,3	0,04	n 1,3 81,6	R*I, Па	KMC 2,3 2,2	ΔР расп= Рдин, Па 0,16 0,16 Рсист= невязка, %	6,31 dPy4, Πa 0,36 0,65 1,1 9,45
	,	100	140x140	140	f, кв.м 0,015393	1,3	0,04 невязка, %	n 1,3 81,6	R*I, Па 0,43 4,2	КМС 2,3 2,2 полож Д	ΔР расп= Рдин, Па 0,16 0,16 Рсист=	6,31 dPy4, Πα 0,36 0,65 1,1 9,45
	,	100	140x140	140	f, KB.M 0,015393 0,015393	1,3	0,04	n 1,3 81,6	R*I, Па	KMC 2,3 2,2	ΔР расп= Рдин, Па 0,16 0,16 Рсист= невязка, %	6,31 dPy4, Πa 0,36 0,65 1,1 9,45
1'	8,3	100	140x140 140x140	140 140	f, KB.M 0,015393 0,015393 BE8	1,3 1,3	0,04 невязка, %	л 1,3 81,6 Рреш=	R*I, Па 0,43 4,2	КМС 2,3 2,2 полож Д	ΔР расп= Рдин, Па 0,16 0,16 Рсист= невязка, % Ррасп=	6,31 dPyч, Πα 0,36 0,65 1,1 9,45
1' 1 Nº yч	8,3	100 100 L, куб.м/ч	140x140 140x140 axb, mm	140 140 140	f, кв.м 0,015393 0,015393 ВЕ8 f, кв.м	1,3 1,3	0,04 невязка, %	л 1,3 81,6 Рреш=	R*I, Па 0,43 4,2	КМС 2,3 2,2 полож Д	ΔР расп= Рдин, Па 0,16 0,16 Рсист= невязка, % Ррасп= Рдин	6,31 dPy4, Па 0,36 0,65 1,1 9,45 1,52 dPy4
1' 1 Nº yч 1'	8,3 I, M	100 100 L, куб.м/ч 50	140x140 140x140 axb, mm 270x270	140 140 140 dэкв, мм 270	f, кв.м 0,015393 0,015393 ВЕ8 f, кв.м 0,057254	1,3 1,3 v, m/c 0,18	0,04 невязка, % R, Па/м	л 1,3 81,6 Рреш=	R*I, Па 0,43 4,2	КМС 2,3 2,2 полож Д КМС 2,3	ΔР расп= Рдин, Па 0,16 0,16 Рсист= невязка, % Ррасп= Рдин 0,04	6,31 dPy4, Па 0,36 0,65 1,1 9,45 1,52 dPy4 0,092

Таблица Г.2 - Аэродинамический расчет систем механической вентиляции.

Nº	L, м³/ч	I,M	d ,mm	f, M ²	v, м/c	R, Па	RI Πa	КМС	Рд, Па	Z	RI+Z, Па	Сум RI+Z, Па	
						Ma	гистраль Г	11					
Вр	33				0,14			2,2	0,012	0,03	0,03		
1	33	0,84	100	0,01	1,2	0,289	0,2	0,65	0,9	0,6	0,8	0,83	отвод+тр
2	66	0,84	100	0,01	2	0,7	0,6	0,3	2,4	0,7	1,3	2,13	тр.прох
3	99	0,84	100	0,01	3,5	1,38	1,2	0,15	7,4	1,1	2,3	4,43	тр.прох
4	130	2,6	100	0,01	4,5	2,92	7,6	1,65	12,2	20,0	27,6	32	тр.прох +реш
					•	Отв	етвления	П1		•			
Вр	33				0,14			2,2	0,02	0,03	0,03		
5-7	33	0,2	100	0,01	1,2	0,289	0,1	0,65	0,9	0,6	0,6	0,63	отвод+тр
							Увязку	системы і	производи	м путем	изменени	я положения р	ешетки.
Nº	L, м³/ч	I,M	d ,mm	f, m ²	v, m/c	R, Па	Rl Πa	КМС	Рд, Па	Z	RI+Z, Па	Сум RI+Z, Па	
						Ma	гистраль В	31					
Вр	33				0,14		,	2,2	0,012	0,03	0,03		
1	33	0,84	100	0,01	1,2	0,289	0,2	0,65	0,9	0,6	0,8	0,83	отвод+тр
2	66	0,84	100	0,01	2	0,7	0,6	0,3	2,4	0,7	1,3	2,13	тр.прох
3	99	0,84	100	0,01	3,5	1,38	1,2	0,15	7,4	1,1	2,3	4,43	тр.прох
4	130	2,6	100	0,01	4,5	2,92	7,6	2	12,2	24,3	31,9	36,3	2 отвода+реш
	•	•				Отв	етвления	B1		•			
Вр	33				0,14			2,2	0,02	0,03	0,03		
5-7	33	0,2	100	0,01	1,2	0,289	0,1	0,65	0,9	0,6	0,6	0,63	отвод+тр

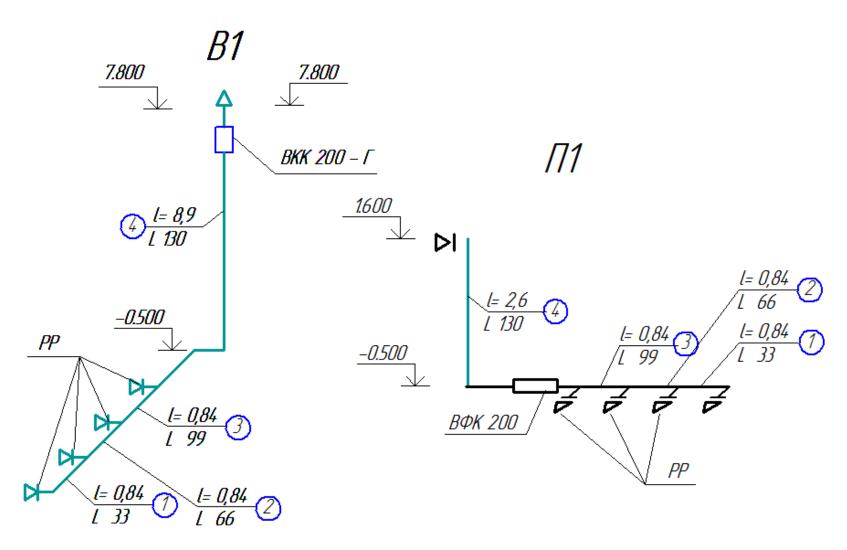
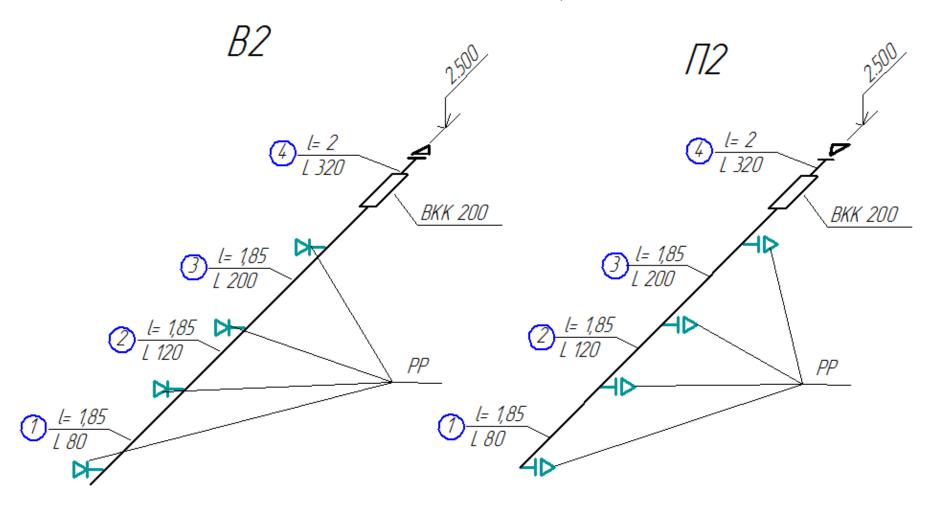

Увязку системы производим путем изменения положения решетки

Таблица Г.2 - Аэродинамический расчет систем механической вентиляции.


Nº	L, м³/ч	I,M	d ,mm	f, m ²	v, m/c	R, Па	Rl ∏a	КМС	Рд, Па	Z	Rl+Z, ∏a	Сум RI+Z, Па	
Магистраль П2													
Вр	80				0,14			2,2	0,012	0,03	0,03		
1	80	1,85	100	0,01	2,5	1,04	1,9	0,65	3,8	2,4	4,4	4,43	отвод+тр
2	160	1,85	100	0,01	5,5	4,15	7,7	0,3	18,2	5,4	13,1	17,53	тр.прох
3	240	1,85	100	0,01	8	7,99	14,8	0,15	38,4	5,8	20,5	38	тр.прох
4	320	2	100	0,01	9	12,4	24,8	1,3	48,6	63,2	88,0	126,03	реш
						Отв	етвления	П2					
Вр	33				0,14			2,2	0,02	0,03	0,03		
5-7	80	1,85	100	0,01	2,5	1,04	1,9	0,65	3,8	2,4	4,4	4,43	отвод+тр
							Увязку	системы і	производи	м путем	изменени	я положения р	ешетки.
Nº	L, м³/ч	I,M	d ,mm	f, M ²	v, м/c	R, Па	Rl ∏a	КМС	Рд, Па	Z	RI+Z, Па	Сум RI+Z, Па	
						Ma	гистраль В	2					
Вр	80				0,14			2,2	0,012	0,03	0,03		
1	80	1,85	100	0,01	2,5	1,04	1,9	0,75	3,8	2,8	4,7	5	отвод+тр
2	160	1,85	100	0,01	5,5	4,15	7,7	0,4	18,2	7,3	14,9	19,6	тр.прох
3	240	1,85	100	0,01	8	7,99	14,8	0,2	38,4	7,7	22,5	42,1	тр.прох
4	320	2	100	0,01	9	12,4	24,8	1,3	48,6	63,2	88,0	130	реш
	•	_				Отв	етвления	B2		•		•	
Вр	33				0,14			2,2	0,02	0,03	0,03		
5-7	80	1,85	100	0,01	2,5	1,04	1,9	0,65	3,8	2,4	4,4	4,47	отвод+тр

1,9 | 0,65 | 3,8 | 2,4 | 4,4 | 4,47 | отвод-

Приложение Д Расчетные схемы систем П1,В1.

Расчетная схема систем П2, В2.

