федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ

(институт)

«Теплогазоснабжение, вентиляция, водоснабжение и водоотведение» (кафедра)

270800.62 (08.03.01) «Строительство»

(код и наименование направления подготовки, специальности)

«Теплогазоснабжение и вентиляция»

(наименование профиля, специализации)

БАКАЛАВРСКАЯ РАБОТА

на тему г.Калининград. Здание пенсионного фонда. Отопление и вентиляция.

Студент(ка)	М.И. Петров	
-	(И.О. Фамилия)	(личная подпись)
Руководитель	Е.А. Усманова	
-	(И.О. Фамилия)	(личная подпись)
Консультанты	Е.А. Усманова	
-	(И.О. Фамилия)	(личная подпись)
	М.Н. Кучеренко	
_	(И.О. Фамилия)	(личная подпись)
	А.В. Щипанов	
_	(И.О. Фамилия)	(личная подпись)
Нормоконтроль	И.А. Живоглядова	
-	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
n		
заведующий кафедро	й _к.т.н., доцент М.Н. Кучеренко_	
	(ученая степень, звание, И.О. Фамилия)	(личная подпись)
« »	20 г.	

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ

(институт)

«Теплогазоснабжение, вентиляция, водоснабжение и водоотведение»

УТ	ВЕРЖДАЮ	
Зав	. кафедрой Т	ТВВиВ
		М.Н. Кучеренко
	(подпись)	(И.О. Фамилия)
‹ (»	20 г.

ЗАДАНИЕ на выполнение бакалаврской работы

Студент Петро	в Михаил І	Игоревич				
1.Тема <u>г. Кали</u>	ининград.	Здание	пенсионного	фонда.	Отопление	и вентиляция.
 Срок сдачи сту, 	дентом зако	онченной	выпускной кв	алификаци	ионной работь	ы20.06.2016
3. Исходные дан	ные к выг	іускной в	квалификацион	ной рабо	те <u>планы і</u>	и разрезы здания
4. Содержание в	ыпускной	квалифин	кационной раб	оты (пере	ечень подлеж	 :ащих разработке
вопросов, раздело	ов)					
Исходные даннь	іе, теплот	ехническі	ий расчет, от	опление,	вентиляция,	безопасность и
экологичность те	хнического	объекта	, контроль и	автоматиз	ация, организ	зация монтажных
работ						
5. Ориентировочн	ый перече	нь графич	еского и иллю	стративно	го материала	
Общие данные, п	лан техпод	цполья, п	лан первого эт	ажа, план	второго этах	жа, план третьегс
этажа, схема сист	емы отопле	ения, схем	ь ПВ1, П1, П2	2, П4, схем	- иы B1-B4	-
6. Консультанты і						3.
	дания « <u>20</u>	» <u>апр</u>	еля 20	_ <u>16</u> _г.		
Руководитель выг	іускной					
квалификационно	•					сманова
Задание принял к	исполнени	10		(подпись)	М.И. Г	(И.О. Фамилия) Тетрор
эадание принял к	пополнени	10	-	подпись)		(И.О. Фамилия)

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ

(институт)

«Теплогазоснабжение, вентиляция, водоснабжение и водоотведение» (кафедра)

УТ	ВЕРЖДАЮ)		
Зав	. кафедрой	ГГВВиВ		
		_М.Н. К	учеренко	
	(подпись)		(И.О. Фамилия)	
‹ ‹	>>	20	Γ.	

КАЛЕНДАРНЫЙ ПЛАН выполнения бакалаврской работы

Студента Петрова Михаила Игоревича

Руководитель выпускной

квалификационной работы

Задание принял к исполнению

по теме г. Кали	по теме <u>г. Калининград. Здание пенсионного фонда. Отопление и вентиляция</u>						
Наименование раздела работы	Плановый срок выполнения раздела	Фактический срок выполнения раздела	Отметка о выполнении	Подпись руководителя			
Исходные данные	21.04.2016	21.04.2016	Выполнено				
Теплотехнический расчет	25.04.2016	24.04.2016	Выполнено				
Отопление	30.04.2016	03.05.2016	Выполнено				
Вентиляция	15.05.2016	15.05.2016	Выполнено				
Безопасность и экологичность технического объекта	16.05.2016	16.05.2016	Выполнено				
Автоматизация	18.05.2016	17.05.2016	Выполнено				
Организация монтажных работ	20.05.2016	20.05.2016	Выполнено				
			E.A.	Усманова			

(подпись)

(подпись)

(И.О. Фамилия)

(И.О. Фамилия)

М.И. Петров

АННОТАЦИЯ

В данной бакалаврской работе были запроектированы системы отопления и вентиляции административного здания пенсионного фонда, расположенного в г. Калининграде. Был произведен теплотехнический расчет наружных ограждающих конструкций, расчет теплового баланса здания, гидравлический расчет системы отопления, расчет воздушного баланса, аэродинамический расчет систем вентиляции, подбор оборудования, описание системы автоматизации приточно-вытяжной вентиляционной камеры, дана оценка безопасности и экологичности технического объекта, составлена организация строительно-монтажных работ.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	2
1 Исходные данные	3
1.1 Сведения о функциональном назначении объекта, состав и	
характеристика производства	3
1.2 Сведения о климатических и метеорологических условиях района	
строительства, расчетных параметрах наружного воздуха	3
1.3 Сведения об источниках теплоснабжения, параметрах	
теплоносителей системы отопления и вентиляции	4
1.4 Параметры внутреннего микроклимата здания	4
2 Теплотехнический расчет	6
2.1 Теплотехнический расчет ограждающих конструкций	6
2.2 Расчет теплопотерь через наружные ограждающие конструкции	13
3 Отопление	22
3.1 Конструирование системы отопления	22
3.2 Гидравлический расчет системы отопления	23
3.3 Тепловой расчет системы отопления	28
4 Вентиляция	29
4.1 Определение требуемых воздухообменов	29
4.2 Конструирование системы вентиляции	34
4.3 Выбор и расчет воздухораспределительных устройств	35
4.4 Аэродинамический расчет систем вентиляции	35
4.5 Подбор оборудования	37
5 Безопасность и экологичность технического объекта	39
5.1 Безопасность жизнедеятельности	39
5.2 Пожарная безопасность и экология	42
6 Автоматизация	46
7 Организация монтажных работ	49
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	52
ПРИЛОЖЕНИЯ	

ВВЕДЕНИЕ

В современных зданиях для проживания и жизнедеятельности человека необходимо создавать комфортные условия, обеспечиваемые системами отопления, вентиляции и кондиционирования воздуха.

В данной дипломной работе производится расчет систем отопления и вентиляции в административном здании в соответствии с СП, СНиП и действующими нормативными документами.

Цель работы - обеспечение комфортных условий для жизнедеятельности человека путем создания в здании системы отопления, вентиляции и кондиционирования

Задачи:

- 1. Произвести теплотехнический расчет ограждающих конструкций
- 2. Сконструировать и произвести расчет системы отопления
- 3. Сконструировать и произвести расчет системы вентиляции

1 ИСХОДНЫЕ ДАННЫЕ

1.1 Сведения о функциональном назначении объекта, состав и характеристика производства

Административное здание управления пенсионного фонда Российской Федерации (УПФР) располагается в городе Калининграде. Координаты города 55°05° с.ш. 21°53° в.д. Здание управления предназначено для работы с населением по назначению и выплате государственных пенсий, организации и ведения персонифицированного учета сведений о застрахованных лицах и т.д.

Управление пенсионного фонда Российской Федерации представляет собой угловое трехэтажное здание округлой формы с техническим подпольем. На первом этаже располагаются комнаты для работы с населением, а также архивы, на втором и третьем этаже располагаются кабинеты различного назначения, на втором этаже также располагается актовый зал. В техподполье находится ИТП и венткамера. К зданию пристроен гараж с собственной механической вентиляцией.

Высота здания от уровня земли до шпиля составляет 20,3 м. Высота этажа 3,3 м, высота техподполья 2,0 м. Размеры здания в плане составляют 32,1 х 21,0 м. Здание занимает площадь 530,5 м 2 . Главный фасад здания ориентирован на запал.

Категория выполняемых работ Іб.

1.2 Сведения о климатических и метеорологических условиях района строительства, расчетных параметрах наружного воздуха

Температура наружного воздуха для района строительства г. Калининград. В качестве расчетных приняты следующие климатические условия согласно СП [1] и представлены в таблице 1.1.

Средняя температура отопительного периода $t_{\text{от.п.}}$, °C с температурой наружного воздуха ниже 8 °C равна плюс 1,2 °C;

Количество дней отопительного периода $z_{\text{от.п.}}$, дн, со среднесуточной температурой наружного воздуха ниже 8 °C составляет 188 дней.

Таблица 1.1 - Климатические условия

	e	Парам	етры А			Парам	етры Б		
Период года	Барометрическое давление, гПа	температура воздуха t _н , °C	Относительная влажность ф, %	Скорость ветра v _н , м/с	Энтальпия І _н , кДж/кг	температура воздуха t _н , °C	Относительная влажность ф, %	Скорость ветра v _н , м/с	Энтальпия І _н , кДж/кг
1	2	3	4	5	6	7	8	9	10
Тёплый	1014	22	77	3,6	56,8	25	75	3,6	
Холодный	-	-6		3,6		-19	85	3,6	-17,5

1.3 Сведения об источниках теплоснабжения, параметрах теплоносителей системы отопления и вентиляции

Параметры теплоносителя по контуру отопления и вентиляции составляют 80 – 60 °C. Перенос теплоносителя осуществляется по металлопластиковым трубам.

Источником теплоснабжения служат городские тепловые сети. Теплоноситель — вода с температурой $150-70\,^{\circ}\mathrm{C}$. Теплопередача от тепловых сетей к контурам отопления и вентиляции осуществляется через теплообменник.

1.4 Параметры внутреннего микроклимата здания

Параметры внутреннего микроклимата представлены в таблице 1.2 для каждого помещения согласно [2]. Влажностный режим и условия эксплуатации определены согласно [3]:

Зона влажности объекта строительства – нормальная;

Влажностный режим помещений в холодный период года – нормальный.

Согласно СП [3] условия эксплуатации помещений соответствуют параметрам Б.

Таблица 1.2 - Параметры внутреннего микроклимата

	Теп	Теплый период		Холодный период		
Наименование помещений	Температура t _в , ⁰ C	Относительна я влажность ф, %	Подвижность воздуха v _в , м/с	Температура t _в , ⁰ C	Относительна я влажность ф, %	Подвижность воздуха v _в , м/с
Тамбур	25	65	0,5	16	1	-
Холл	25	65	0,5	16	1	-
Помещение охраны	25	65	0,5	18	60	0,3
Медпункт	25	65	0,5	20	60	0,3
Клиентская служба	25	65	0,5	18	60	0,3
Подсобное помещение	25	65	0,5	18	60	0,3
Коридор	25	65	0,5	18	60	0,3
Кабинет	25	65	0,5	18	60	0,3
Гараж				10	60	
Санузел	25	65	0,5	18	60	0,3
Комната персонала	25	65	0,5	18	60	0,3
Лестница	25	65	0,5	16	60	0,3
Архив	25	65	0,5	18	60	0,3
Серверная	20	65	0,5	18	60	0,3
Актовый зал	25	65	0,5	18	60	0,3
Комната отдыха	25	65	0,5	18	60	0,3
Техподполье				5		

2 ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ

2.1 Теплотехнический расчет ограждающих конструкций

Основной задачей теплотехнического расчета ограждающих конструкций является определение минимально необходимой толщины утепляющего слоя в толще конструкции для определения приведенного сопротивления теплопередаче вкупе с остальными составляющими конструкции.

Наружные ограждения состоят из приведенных ниже конструкций. Расчетные коэффициенты теплопроводности взяты в зависимости от плотности материала согласно СП [4] для соответствующих материалов.

Наружные стены здания пенсионного фонда выполнены из газосиликатных блоков, слоя теплоизоляции и наружного слоя керамического кирпича. Характеристики ограждающей конструкции представлены в таблице 2.1.

Таблица 2.1 - Состав конструкции наружных стен

№ слоя	Слой	Толщина δ, м	Плотность γ , $\kappa \Gamma / M^3$	Расчетный коэффициент теплопроводности λ , $B_T/(M \cdot {}^0C)$
1	Газосиликатный блок	400	800	0,37
2	Маты минераловатные на синтетическом связующем	$\delta_{ ext{yT}}$	175	0,076
3	Кладка керамического пустотного кирпича на цементно- песчаном растворе	120	1600	0,64

Полы первого этажа на техподпольем состоят из линолеума на теплоизолирующей основе, цементно-песчаной стяжки, слоя полистирола, покрытого с двух сторон полиэтиленовой пленкой и монолитной

железобетонной плиты. Характеристики ограждающей конструкции представлены в таблице 2.2.

Таблица 2.2 - Состав конструкции полов 1-го этажа

№ слоя	Слой	Толщина δ, м	Плотность γ , $\kappa \Gamma/M^3$	Расчетный коэффициент Теплопроводности λ , Вт/(м \cdot 0 C)
1	Линолеум на теплоизолирующей основе	10	1800	0,38
2	Цементно-песчаная стяжка, армированная сеткой	50	1800	0,93
3	Пленка полиэтиленовая ГОСТ 10354-82*	1 слой		
4	Плиты полистирол ПСБ 35/250	$\delta_{ m y_T}$	35	0,031
5	Пленка полиэтиленовая ГОСТ 10354-82*	1 слой		
6	Монолитная ж/б плита	220	2500	2,04

Чердачное перекрытие состоит из цементно-песчаной стяжки, слоя полистирола, покрытого с двух сторон полиэтиленовой пленкой и монолитной железобетонной плиты. Характеристики ограждающей конструкции представлены в таблице 2.3.

Таблица 2.3 - Состав конструкции чердачного перекрытия

№ слоя	Слой	Толщина δ, м	Плотность γ , $\kappa \Gamma / M^3$	Расчетный коэффициент теплопроводности λ , $B\tau/(M\cdot {}^{0}C)$
1	Цементно-песчаная стяжка, армированная сеткой	50	1800	0,93
2	Пленка полиэтиленовая ГОСТ 10354-82*	1 слой		
3	Плиты полистирол ПСБ 35/250	$\delta_{y\scriptscriptstyle T}$	35	0,031
4	Пленка полиэтиленовая ГОСТ 10354-82*	1 слой		
5	Монолитная ж/б плита	220	2500	2,04

Теплотехнический расчет выполняется согласно методике, изложенной в [3].

Теплотехнический расчет наружных ограждающих конструкций выполняется из условия того, что приведенное сопротивление теплопередаче ограждения будет не меньше нормируемого значения, то есть:

$$R_0 \ge R_0^{mpe6}, \tag{2.1}$$

где R_0 — приведенное сопротивление теплопередаче ограждающих конструкций, (м² · °С)/Вт;

 $R_0^{\text{треб}}$ — нормируемое сопротивление теплопередаче ограждающих конструкций, (м $^2\cdot {}^{\circ}C$)/Вт.

Нормируемое сопротивление теплопередачи определяется в зависимости от градусо-суток района строительства ГСОП, °С·сут:

Градусо-сутки отопительного периода определяются по формуле:

$$\Gamma \text{CO}\Pi = (\mathbf{t}_{\scriptscriptstyle B} - t_{\scriptscriptstyle om.n.}) \cdot z_{\scriptscriptstyle om.n.}, \qquad (2.2)$$

где $t_{\scriptscriptstyle B}$ – расчетная температура воздуха в помещении, °C;

 $t_{\mbox{\tiny от.п.}}$ — средняя температура наружного воздуха отопительного периода, $^{\circ}C$;

 ${\bf z}_{_{{\rm or.n.}}}$ — продолжительность отопительного периода, сут.

Требуемое сопротивление теплопередаче R_0^{mpe6} , (м² · °C)/Вт, определяется по [3, табл.3] для соответствующего ограждения или по формуле:

$$R_0^{mpe\delta} = a * \Gamma CO\Pi + b, \qquad (2.3)$$

где a, b - коэффициенты, значения которых принимаются по [3].

Приведенное сопротивление теплопередачи R_0 , (м² · °С)/Вт, определяется по формуле:

$$R_0 = \frac{1}{a_s} + \sum \frac{\delta_i}{\lambda_i} + \frac{1}{a_u}, \qquad (2.4)$$

где $\alpha_{\text{в}}$ – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, $\text{Bt/}(\text{м}^2 \cdot ^{\circ}\text{C})$.

Для стен, полов и перекрытий $\alpha_B = 8.7$ Вт/(м².°С), для окон $\alpha_B = 8.0$ Вт/(м².°С), согласно [3];

 $\alpha_{\rm H}$ — коэффициент теплоотдачи наружной поверхности ограждающих конструкций, ${\rm BT/(m^2.°C)}$. Для стен и покрытий $\alpha_{\rm H} = 23~{\rm BT/(m^2.°C)}$, для перекрытий над неотапливаемыми подвалами $\alpha_{\rm H} = 6~{\rm BT/(m^2.°C)}$, согласно [3];

 $\sum \frac{\delta_i}{\lambda_i}$ – сумма термических сопротивлений слоев конструкции, (м².°С)/Вт,

где δ_i – толщина слоя, м;

 λ_i – теплопроводность, Bт/(м · °C) .

Величиной, обратной коэффициенту сопротивления теплопередачи R, $(M^{2.0}C)/BT$, является коэффициент теплопередачи k, $BT/(M^2 \cdot {}^0C)$, который определяется по формуле:

$$k = \frac{1}{R_0} \tag{2.5}$$

По формуле (2.2) определим градусо-сутки отопительного периода Γ COП = $(18-1,2) \cdot 188 = 3158,5$ ° $C \cdot cym$

По формуле (2.3) определим требуемое сопротивление теплопередаче наружных ограждающих конструкций и сведем результаты в таблицу 2.4.

Таблица 2.4 – Требуемое сопротивление теплопередаче

Наименование конструкции	Коэфф ициент а	Коэф фицие нт b	Расчет требуемого сопротивления теплопередаче, м ² .°С/Вт
Наружная стена	0,0003	1,2	$R_0^{\text{тр ст.}} = 0,0003 \cdot 3158,4 + 1,2 = 2,15$
Чердачное перекрытие	0,00035	1,3	$R_0^{\text{TP ct.}} = 0,00035 \cdot 3158,4 + 1,3 = 2,41$
Перекрытие над неотапливаемым подпольем	0,00035	1,3	$R_0^{\text{тр ст.}} = 0,00035 \cdot 3158,4 + 1,3 = 2,41$
Окно	0,00005	0,2	$R_0^{\text{тр ст.}} = 0,00005 \cdot 3158,4 + 0,2 = 0,36$

Теплотехнический расчет наружных стен

Толщину утеплителя δ_{vm} , м, выразим из формулы (2.3):

$$\delta_{ym} = 0.076 \cdot (2.15 - \frac{1}{8.7} - \frac{0.4}{0.37} - \frac{0.12}{0.64} - \frac{1}{23}) = 0.05M$$

Введем поправку на однородность согласно [5]:

$$\frac{R_0^{mpe6}}{r} = \frac{R_0^{mpe6}}{r_1 \cdot r_2} \tag{2.6}$$

где r – поправка на однородность конструкции;

 r_1 — коэффициент теплотехнической однородности, учитывающий однородность крепления утеплителя, его толщину и плотность;

 r_2 – коэффициент, учитывающий наличие оконных откосов в зависимости от их протяженности.

По справочнику [5], учитывая толщину утеплителя 50 мм, для трехслойной стены при несущим слое ячеистого бетона примем коэффициенты 0.78 и 0.90 для r_1 и r_2 соответственно.

Определим произведение коэффициентов из формулы (2.6)

$$r = 0.78 \cdot 0.9 = 0.7$$

Толщина утеплителя с учетом однородности конструкции:

$$\delta_{ym} = 0.076 \cdot (\frac{2.15}{0.7} - \frac{1}{8.7} - \frac{0.4}{0.37} - \frac{0.12}{0.64} - \frac{1}{23}) = 0.124 M$$

По сортаменту выпускаемой продукции [6] толщину утеплителя примем равной 150 мм.

С учетом толщины утеплителя определим фактическое сопротивление теплопередаче R_0^{ϕ} , (м² · °C)/Вт, по формуле (2.3):

$$R_0^{\phi} = \frac{1}{8.7} + \frac{0.4}{0.37} + \frac{0.15}{0.64} + \frac{0.08}{0.076} + \frac{1}{23} = 3.40 \,(\text{m}^2 \cdot {}^{\circ}\text{C})/\text{BT}$$

Проверим выполнения условия (2.1):

3.40≥3.06- условие выполняется

Аналогично выполняется расчет толщины утеплителя для чердачного перекрытия.

Теплотехнический расчет полов первого этажа

Расчет полов аналогичен расчету наружной стены.

Введем коэффициент п, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху:

$$n = \frac{t_{\scriptscriptstyle 6} - t_{\scriptscriptstyle no\partial 6ana}}{t_{\scriptscriptstyle 6} - t_{\scriptscriptstyle \mu}} \tag{2.7}$$

где $t_{no\partial sana}$ — температура воздуха в подвале, °С.

Вычислим коэффициент п по формуле (2.7):

$$n = \frac{18 - 5}{18 - (-19)} = 0.35$$

Требуемое сопротивление теплопередаче $R_0^{\it mpe6}$, (м² · °C)/Вт, с учетом коэффициента n:

$$R_0^{mpe6} = 2.41 \cdot 0.35 = 0.85 \text{ M}^{2.0}\text{C/BT}$$

Аналогично, выразим и определим толщину утеплителя из формулы:

$$\delta_{ym} = 0.031 \cdot (0.85 - \frac{1}{8.7} - \frac{0.01}{0.38} - \frac{0.05}{0.93} - \frac{0.22}{2.04} - \frac{1}{6}) = 0.012M$$

Округлим толщину до 0,02м. Определим фактическое сопротивление теплопередаче:

$$R_0^{\phi} = \frac{1}{8.7} + \frac{0.01}{0.38} + \frac{0.05}{0.93} + \frac{0.02}{0.031} + \frac{1}{6} = 1.11 \text{ m}^{2.0}\text{C/BT}$$

Проверим выполнение условия (2.1):

1.11≥0.85 - условие выполняется

Теплотехнический расчет светопрозрачных конструкций

По СП [3, табл. К.1] принимаем двухкамерный стеклопакет с стеклом без покрытий с заполнением воздухом с расстоянием между стеклами 10 мм и 10 мм с $R_0^{\phi} = 0.46 \, (\text{m}^{2.0}\text{C})/\text{Bt}$.

Теплотехнические характеристики наружных ограждающих конструкций сведены в таблицу 2.5.

Таблица 2.5 - Теплотехнические характеристики ограждающих конструкций

Наименован	Толщина	Толщина	Сопротивлен	Коэффициент
ие	утеплителя,	конструкци	ие	теплопередачи
ограждающе	$\delta_{ ext{yt.}}$,MM	и, δ, мм	теплопередач	$k, BT/(M^2.°C)$
й			$e, R_0^{\phi},$	
конструкции			(м ² .°C)/Вт	
Наружная	150	670	3.40	0.29
стена				
Чердачное	70	340	2.70	0.37
перекрытие				
Перекрытие	20	300	1.11	0.90
над				
подвалом				
Окно			0,46	2.17

Проверка выпадения конденсата на внутренней поверхности ограждающих конструкций

Вероятность выпадения конденсата на поверхности ограждения рассчитывается по методике, описанной в СП [4]. Вероятность вычисляется для наружной стены, чердачного перекрытия, окна и наружного угла.

Расчет сведен в таблицу 2.6.

Таблица 2.6 - Расчет температуры на внутренней поверхности ограждающих конструкций

Наименование конструкции	Температура	Примечание
1	2	3
Наружная стена	$\Delta t = \frac{(18 - (-19))}{3.4 * 8.7} = 1.25 ^{\circ}\text{C}$	Вероятность выпадения конденсата на внутренней поверхности наружной стены отсутствует, так как 1,25 < 4,5 удовлетворяет условие (2.8).
Наружный угол	$ \tau_{\rm B}^{\rm H.y.} = 18 - \frac{(18 - (-19))*0.75}{(3.4*8.7)^{\frac{2}{3}}} = 15,1 $ °C	Вероятность выпадения конденсата отсутствует, так как полученная температура превышает температуру точки росы $15,1 > 14,2$ °C, что удовлетворяет условию (2.11)
Чердачное перекрытие	$\Delta t = \frac{(18 - (-19))}{5,03*8,7} = 0,85 ^{\circ}\text{C}$	Вероятность выпадения конденсата на внутренней поверхности наружной стены отсутствует, так как 1,20 < 4 удовлетворяет условие (2.8).
Окно	$\tau_{\rm B}^{\rm B.K.} = 18 - \frac{(18 - (-19))}{(0.46 * 8)} = 7.95 {}^{\circ}{\rm C}$	Вероятность выпадения конденсата отсутствует, так как $7,95 > 4$ 0 С, что удовлетворяет условию (2.15).

2.2 Расчет теплопотерь через наружные ограждающие конструкции

Расчет теплопотерь ведется согласно [5].

Общая формула для определения величины потерь тепла через ограждающие конструкции Q, Вт, выглядит следующим образом:

$$Q = k \cdot F \cdot (t_{\scriptscriptstyle g} - t_{\scriptscriptstyle H}), \tag{2.8}$$

где F – площадь поверхности, M^2 .

Теплопотери, которые необходимо возместить с помощь систем отопления, вентиляции и кондиционирования, состоят из теплопотерь через наружные ограждения и теплозатрат на нагревание инфильтрирующегося воздуха. Расчет ведется на температуру воздуха наиболее холодной пятидневки по формуле:

$$Q_{o \delta u \mu e} = \sum Q \cdot (1 + \sum \beta) + Q_{u \mu \phi}, \qquad (2.9)$$

где $\sum \beta$ - сумма добавок в долях единицы, определяются согласно [5]; $Q_{\text{инф}}$ — потери тепла за счет инфильтрации, Вт.

Теплопотери, вызванные инфильтрацией, рассчитываются по формуле:

$$Q_{undp} = 0.28 \cdot G_{undp} \cdot c \cdot F_{okho} \cdot (t_{g} - t_{h}) \cdot \overline{k}, \qquad (2.10)$$

где $G_{{\scriptscriptstyle \!\mathit{U\!H\!d\!/}}}$ - расход инфильтрационного воздуха через окна, кг/ч;

c – теплоемкость воздуха, c = 1.005 кДж/(кг.°C);

F – площадь окон, M^2 ;

 \overline{k} — поправочный коэффициент, учитывающий влияние встречного теплового потока в конструкции окна, зависит от количества притворов. Для данной конструкции окна $\overline{k}=1.$

Расход инфильтрационного воздуха через окна $G_{un\phi}$, кг/(м²·ч), рассчитывается по формуле:

$$G_{un\phi} = \frac{1}{R_{un\phi}^{OKHO}} \cdot \left(\frac{\Delta P}{\Delta p_0}\right)^{2/3},\tag{2.11}$$

 $R_{un\phi}^{o\kappa no}$ - фактическое сопротивление воздухопроницанию, (м 2 ·ч)/кг, определяется по формуле:

$$R_{uh\phi}^{okho} = \frac{1}{G_{\mu}} \cdot \left(\frac{\Delta p}{\Delta p_0}\right)^{2/3}, \qquad (2.12)$$

где $G_{_{\!\scriptscriptstyle H}}$ - нормируемая воздухопроницаемость ограждающей конструкции, по [3, табл. 9] $G_{_{\!\scriptscriptstyle H}} = 5~{\rm kr/(m^2 \cdot y)};$

 Δp - разность давлений воздуха с наружной и внутренней сторон поверхности ограждений, Па, определяется по формуле:

$$\Delta p = 0.55 \cdot H \cdot g \cdot (\rho_{\scriptscriptstyle H} - \rho_{\scriptscriptstyle g}) + 0.3 \cdot \rho_{\scriptscriptstyle H} \cdot v_{\scriptscriptstyle H}^2, \tag{2.13}$$

 $\Delta p_{_0}$ - разность давлений воздуха с наружной и внутренней сторон светопрозрачной конструкции, при которой определяется сопротивление воздухопроницаемости, $\Delta p_{_0} = 10~\Pi a$ [3].

 ΔP - расчетная разность давлений воздуха с наружной и внутренней сторон поверхности ограждений, Па, определяется по формуле:

$$\Delta P = P_{u} - P_{e}, \qquad (2.14)$$

где $P_{\scriptscriptstyle H}$ – расчетное давление на наружной поверхности, Па, определяется по формуле:

$$P_{H} = (H - h) \cdot g \cdot (\rho_{H} - \rho_{g}) + 0.5 \cdot \rho_{H} \cdot v_{H}^{2} \cdot (c_{Hag} - c_{3ag}) \cdot k_{\partial}, \qquad (2.15)$$

где Н – высота здания до устья вытяжной шахты, м;

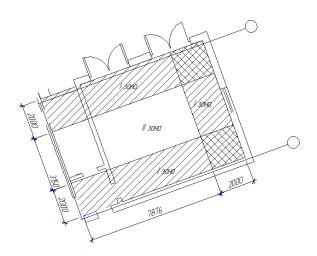
h – расчетная высота от уровня земли до верха окна, м;

g – ускорение свободного падения, $g = 9.81 \text{ м/c}^2$;

 $\rho_{_{^{\prime\prime}}}, \rho_{_{^{\prime\prime}}}$ – плотность наружного и внутреннего воздуха, соответственно, кг/м 3 , определяется по формуле:

$$\rho = \frac{353}{t + 273} \tag{2.16}$$

снав – коэффициент зоны наветренной стороны здания;


 $c_{3ав}$ — коэффициент зоны заветренной стороны здания;

 $k_{\text{д}}$ - коэффициент динамического сопротивления, зависит от высоты проектируемого здания, определяется по СП [3].

 $P_{\text{в}}$ – расчетное давление на внутренней поверхности, Па, определяется по формуле:

$$P_{s} = 0.5 \cdot H \cdot (\rho_{H} - \rho_{g}) \cdot g + 0.25 \cdot \rho_{H} \cdot v_{H}^{2} \cdot (c_{Hag} - c_{3ag}) \cdot k_{g}$$
(2.17)

Для помещения гаража (№115) необходимо произвести расчет

теплопотерь через полы, лежащие на грунте.

Рисунок 1 – Схема для расчета теплопотерь через полы гаража

Для расчета необходимо площадь разделить на две зоны (рисунок 1): 1-ю шириной 2 м и 2-ю — оставшаяся часть подвала. Разграничение зон для наружных стен от поверхности земли — вдоль стен, а затем по полу. В наружных углах ограждения выделим участки размером 2,0х2,0 м, площади которых увеличим в 2 раза для зон, в которые они попадают.

Теплопотери через полы, лежащие на грунте, определяются по формуле:

$$Q = k_{s} \cdot F \cdot (t_{s} - t_{u}), \qquad (2.18)$$

где k_3 – коэффициент теплопередачи зоны, $B\tau/(M^{2.0}C)$, определяется по формуле:

$$k_{_{3}} = \frac{1}{R_{_{3}} + \sum \frac{\delta}{\lambda}},\tag{2.19}$$

где R_3 — сопротивление теплопередаче соответствующей зоны ($R_I=2.1$ $M^{2.0}\text{C/Bt},\,R_{II}=4.3~M^{2.0}\text{C/Bt}$).

Определим теплопотери через полы, лежащие на грунте

$$Q_1 = \frac{1}{2.1 + \frac{1}{8.7} + \frac{0.08}{0.93} + \frac{0.2}{2.04} + \frac{1}{6}} \cdot 55.32 \cdot (16 - 5) = 745 \,\mathrm{BT}$$

$$Q_2 = \frac{1}{4.3 + \frac{1}{8.7} + \frac{0.08}{0.93} + \frac{0.2}{2.04} + \frac{1}{6}} \cdot 25.51 \cdot (16 - 5) = 187 \,\text{BT}$$

Общие теплопотери составляют:

$$Q_{non} = 745 + 187 = 932 \,\mathrm{BT}$$

Расчет теплопотерь через ограждающие конструкции и теплопотерь на нагрев инфильтрирующегося воздуха для 1-го этажа представлен в таблице 2.7, для остальных этажей в приложении A в таблицах A.1, A.2.

Таблица 2.7 – Расчет теплопотерь 1-го этажа

№ помещения	Наименование		Pa3		Размер, м лошадь, м² пошадь, м² глопередачи k, 2*С°) гератур Δt , °С ери Q, Вт ери Q, Вт учетом добавок ЗВ), Вт		льтра	му отопления г							
№ 11C	Наим				Площадь, м ²	н площа	теплопе (м ² *С ⁰)	мперату	Геплопотери Q,	цию	0	авок	гери с учетом $Q^*(1+\sum \beta)$, Вт	и от инфи О _{инф} , Вт	систему (Qor, Вт
		Ориентация по	A	Б	Пло	Полезная площадь,	Коэффициент теплопередачи k, $B_{\rm T}({\rm M}^2*{\rm C}^0)$	Перепад температур Δt,	Теплоп	На ориентацию	Прочие	Сумма добавок	Теплопотери с учетом добавок $Q^*(1+\sum \beta)$, Вт	Теплопотери от инфильтрации Q _{инф} , Вт	Нагрузка на систему отопления Qor, Вт
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
102 I	HC	3	2,00	3,70	7,40		0,29	35	76	0,05	0	0,05	80		
	O	3	3,96	3,00	11,88		2,17	35	904	0,05	0	0,05	5232*	477	6795
Ι	Пол				101,98		0,90	11	1006			0	1006		
				:	* - учтена	а доб	авка на	а врыв	ание хо	олодно)го воз,	духа чеј	рез двери	ſ	
103 H	HC1	C3	3,67	3,70	12,80		0,29	37	139	0,1	0,05	0,15	160		
F	HC2	ЮЗ	5,06	3,70	17,94		0,29	37	195	0	0,05	0,05	205		
	O1	C3	0,65	1,20	0,78		2,17	37	63	0,1	0,05	0,15	72	31	677
(O2	Ю3	0,65	1,20	0,78		2,17	37	63	0	0,05	0,05	66	31	
Ι	Пол				9,50		0,90	13	111			0	111		
104 I	НС	С	3,56	3,70	12,39		0,29	39	142	0,1	0	0,1	156		
	O	C	0,65	1,20	0,78		2,17	39	66	0,1	0	0,1	73	31	422
	Пол				12,00		0,90	15	161			0	161		

Продолжение таблицы 2.7

<u> 10лицы </u> 2.	продолжение та														
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
		95	0,1	0	0,1	86	37	0,29		7,92	3,70	2,35	С	НС	105
253	31	69	0,1	0	0,1	63	37	2,17		0,78	1,20	0,65	С	О	
		58	0			58	13	0,90		5,00				Пол	
		230	0,1	0,05	0,05	209	37	0,29		19,24	3,70	5,20	3	HC1	106
		146	0,05	0,05	0	139	37	0,29		12,80	3,70	3,67	ЮЗ	HC2	
		120	0,05	0,05	0	115	37	0,29		10,54	3,70	3,06	Ю	HC3	
		118	0,1	0,05	0,05	107	37	0,29		9,84	3,70	2,87	ЮВ	HC4	
2020		138	0,05	0,05	0	131	37	0,29		12,08	3,70	3,97	Ю	HC5	
2020	31	66	0,05	0,05	0	63	37	2,17		0,78	1,20	0,65	ЮЗ	O2	
	31	66	0,05	0,05	0	63	37	2,17		0,78	1,20	0,65	Ю	О3	
	31	69	0,1	0,05	0,05	63	37	2,17		0,78	1,20	0,65	ЮВ	O4	
	105	220	0,05	0,05	0	210	37	2,17		2,61	1,74	1,50	Ю	O5	
		648	0			648	13	0,90		55,56				пол	
471		471	0			471	13	0,90		40,35				Пол	107
		248	0,1	0	0,1	225	37	0,29		20,68	3,70	7,00	C3	НС	108
1362	209	462	0,1	0	0,1	420	37	2,17		5,22	1,74	3,00	СЗ	О	
		443	0			443	13	0,90		37,98				Пол	
		•													•
		100	0,1	0	0,1	91	37	0,29		8,34	3,70	2,96	C3	НС	109
631	105	231	0,1	0	0,1	210	37	2,17		2,61	1,74	1,50	Сз	О	
		195	0			195	13	0,90		16,72	5,65	2,96		пол	
ı				l									u l		l
		91	0,1	0	0,1	82	37	0,29		7,57	3,70	2,75	СЗ	НС	110
	105	231	0,1	0	0,1	210	37	2,17		2,61	1,74	1,50	СЗ	О	
607	105														

Продолжение таблицы 2.7

		ı		1			1	1		ı — —		1	1	продолжение та	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
111	НС	C3	3,25	3,70	9,42		0,29	37	102	0,1	0	0,1	113		
	O	Сз	1,50	1,74	2,61		2,17	37	210	0,1	0	0,1	231	105	662
	Пол		3,25	5,65	18,36		0,90	13	214			0	214		
112	HC1	C3	3,20	10,30	32,05		0,29	37	349	0,1	0,05	0,15	401		
	HC2	CB	7,85	7,30	54,58		0,29	37	594	0,1	0,05	0,15	683		
	HC3	ЮВ	3,20	10,30	32,96		0,29	37	359	0,05	0,05	0,1	394		
	ПЛ		3,20	7,85	25,12		0,90	13	293			0	293		
	O1	C3	0,75	1,21	0,91		2,17	37	73	0,1	0,05	0,15	84	25	2483
	O2-1	СВ	0,75	1,21	0,91		2,17	37	73	0,1	0,05	0,15	84	25	
	O2-2	СВ	0,75	1,21	0,91		2,17	37	73	0,1	0,05	0,15	84	8	
	O2-3	СВ	0,75	1,21	0,91		2,17	37	73	0,1	0,05	0,15	84	8	
	ПК		3,20	7,85	25,12		0,37	33,3	310				310		
			·		·					I			1		-
	HC1	C3	10,12	4,42	29,93		0,29	35	308	0,1	0,05	0,15	354		
	HC2	СВ	7,95	4,42	32,53		0,29	35	335	0,1	0,05	0,15	385		
	HC3	ЮВ	10,12	4,07	39,30		0,29	35	404	0,05	0,05	0,1	445		
113	Дв1	Сз	0,90	2,10	1,89		0,18	35	12	0,1	0,05	0,15	28		
114	Ворота1	Сз	4,80	2,69	12,91		2,78	35	1255	0,1	0,05	0,15	5210		8259
115	O2	СВ	1,50	1,74	2,61		2,17	35	199	0,1	0,05	0,15	228	105	
	ДВ3	ЮВ	0,90	2,10	1,89		0,18	35	12	0,05	0,05	0,1	13		
	ПОЛ		10,12	7,95	80,45		,	11	932		,	0	932		
	Пк		10,12	7,95	80,45		0,20	35	560				560		
		<u> </u>	- 1	1 - 7	· ·	vчтеі	1			ние хо	лодно	го возду			
116	ПОЛ				22,98		0,90	13	268			0	268		268
		1		<u>l</u>	,	I	-,			<u>I</u>	1				
117															
118	пол				13,53		0,90	13	158			0	158		158
119	11071				15,55		10,70	13	150				150		150
/	l	l l		1	1	l	I	l		l		l			I

Продолжение таблицы 2.7

														продолжение тасы	1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
120	HC1	СВ	7,10	3,70	21,05		0,29	37	229	0,1	0,05	0,15	263		
	HC2	В	1,60	3,70	5,02		0,29	37	55	0,1	0,05	0,15	63		
	O1	CB	3,00	1,74	5,22		2,17	37	420	0,1	0,05	0,15	483	209	1374
	O2	В	0,75	1,20	0,90		2,17	37	72	0,1	0,05	0,15	83	36	
	пол				20,22		0,90	13	236			0	236		
121	HC	Ю	5,25	3,70	14,21		0,29	37	155	0	0	0	155		
	O	Ю	3,00	1,74	5,22		2,17	37	420	0	0	0	420	209	1156
	Пол				31,90		0,90	13	372			0	372		
122	HC1	Ю	7,10	3,70	21,05		0,29	37	229	0	0,05	0,05	240		
	HC2	В	6,13	3,70	22,68		0,29	37	247	0,1	0,05	0,15	284		1625
	01	Ю	3,00	1,74	5,22		2,17	37	420	0	0,05	0,05	441	209	1025
	пол				38,61		0,90	13	450			0	450		

3 ОТОПЛЕНИЕ

3.1 Конструирование системы отопления

Система отопления подключается к ИТП в техническом подполье по двухтрубной схеме с принудительной циркуляцией. Заполнение и подпитка осуществляется в ИТП. Параметры теплоносителя по контуру системы отопления — $80\text{-}60\,^{\circ}\text{C}$.

Магистральный трубопровод прокладывается от ИТП до главного стояка, к которому на каждом этаже подключается коллектор системы отопления, а также стальной панельный радиатор, расположенный в гараже. От самих коллекторов разводятся трубы соединяемые с радиаторами системы отопления.

Прокладка труб в подвале – открытая, под потолком подвала; в коридорах и отапливаемых помещениях – скрытая, в каналах полов; подводки к приборам – открытые. Все трубы, за исключением подводок, покрыты теплоизоляцией из вспененного полиэтилена. Монтаж труб производить согласно [7].

Трубы изготовлены из универсальной металлополимерной трубы ТЕСЕflex, представляющая собой многослойную трубу, состоящую из сшитого полиэтилена марки PE-Xc, клеевого слоя, слоя алюминия и защитного слоя из полиэтилена.

В качестве нагревательных приборов в системе отопления приняты стальные радиаторы «Purmo» [8].

Удаление воздуха из системы производится в верхних точках стояков и через кран Маевского непосредственно на коллекторах и радиаторах. Опорожнение системы производится в ИТП и через коллекторы с помощью компрессора.

Главная магистраль прокладывается под потолком в подвале от ИТП до главного стояка Г.Ст.1, к которому последовательно подключаются коллекторы системы отопления, а также стальной радиатор отопления в гараже. От коллекторов в нишах полов прокладываются теплофикационные контуры до стальных радиаторов.

В местах установки запорно-регулирующей, сливной и воздухоудаляющей арматуры предусмотрены соответствующие лючки доступа.

Схемы с тепловыми мощностями, расходами теплоносителя и длинами для гидравлического расчета представлены в приложении Б на рисунках Б.1 – Б.4 и 5. На выносках с номером участка обозначен расход теплоносителя и длина участка.

3.2 Гидравлический расчет системы отопления

Методика расчета изложена согласно [9].

Расчет будет разделен на две части. Первая часть — расчет системы теплоснабжения распределителей, вторая — расчет системы теплоснабжения отопительных приборов.

Целью гидравлического расчета, при использовании располагаемого перепада давления на вводе системы отопления, является [9]:

- определение диаметров участков системы;
- подбор регулирующих клапанов, устанавливаемых на ветках, стояках и подводках отопительных приборов;
 - подбор перепускных разделительных и смесительных клапанов;
- подбор балансовых клапанов и определение величины их гидравлической настройки.

В качестве основного циркуляционного кольца для горизонтальной системы принимается кольцо через наиболее нагруженную ветвь нижнего этажа здания.

Согласно [9], примем для расчета первое направление гидравлического расчет для систем с независимым присоединением.

Требуемый напор циркуляционного насоса P_H , Па, для горизонтальных однотрубных и бифилярных, двухтрубных систем определяется по формуле:

$$P_{u} = \Delta P_{c.o.} - 0.4 \cdot P_{e}, \tag{3.1}$$

где $\Delta P_{\text{c.o.}}$ — потери давления в основном расчетном циркуляционном кольце, Πa ;

Ре – естественное циркуляционное давление, возникающее вследствие охлаждения воды в отопительных приборах и трубах, Па.

Потери давления в основном расчетном циркуляционном кольце ΔP_{co} , Πa , определяются по формуле:

$$\Delta P_{c.o.} = \sum \Delta P_{oo.} + \sum \Delta P_{yu.} + \Delta P_{pez.yu.}, \qquad (3.2)$$

где $\sum \Delta P_{\text{об.}}$ — потери давления на оборудовании (теплообменник, коллекторная гребенка и т.д.), Па;

 $\sum \Delta P_{y_{\text{ч.}}}$ – потери давления на расчетном участке, Па;

 $\Delta P_{\text{рег.уч.}}$ – потери давления на регулируемом участке, Па.

Регулируемым участком называется та часть расчетного циркуляционного кольца, на которую оказывает влияние работа балансировочного клапана.

$$\Delta P_{per,vu} = \Delta p_{per,vu} + \Delta P_{ku} \tag{3.3}$$

Где $\Delta p_{per.vq.}$ – потери давления в подводках, Па;

 $\Delta P_{\mbox{\tiny KЛ.}}$ — потеря давления в клапане (термостатическом или балансовом), Па.

Потери давления на участке определяются по упрощенной формуле Дарси-Вейсбаха:

$$\Delta P_{y_{u.}} = l_{y_{u.}} \cdot R + Z, \qquad (3.4)$$

где $l_{y^{\text{ч.}}}$ – длина участка, м;

R – удельная потеря давления на трение, Па/м;

Z – потеря давления на местные сопротивления, Па, определяется по формуле:

$$Z = \sum \xi \cdot \frac{\rho \cdot w^2}{2},\tag{3.5}$$

где $\sum \xi$ – сумма коэффициентов местных сопротивлений;

 ρ – плотность теплоносителя при его температуре, кг/м³;

w – скорость теплоносителя, м/с.

Удельные потери давления определяются по каталогам фирмпроизводителей [10]. Коэффициенты местных сопротивлений определяются согласно [11, табл.II.11].

Для равномерного распределения теплоносителя по основному и второстепенным циркуляционным кольцам необходимо, чтобы невязка потерь давления не превышала 10%. Невязка потерь давлений определяется по формуле:

$$\frac{\Delta P_{\text{\tiny OCH.}} - \Delta P_{\text{\tiny GM}}}{\Delta P_{\text{\tiny OCH.}}} \cdot 100\% \le 10\% , \qquad (3.6)$$

где $\Delta P_{\text{осн}}, \, \Delta P_{\text{вт}}$ – потери давления на основном и второстепенном участке, соответственно, Па.

Для того, чтобы невязка не превышала 10% и уравнивала потери давления между основным и второстепенным участком необходимо создавать дополнительные сопротивления. Дополнительные потери давления создаются с помощью термостатических и балансовых клапанов.

На принятых к расчету стальных пластинчатых радиаторах фирмы «Purmo» установлены встроенные термостатические балансовые клапаны. Потери давления в них определяются по номограмме на сайте производителя [8].

Клапан подбирается по его пропускной способности k_v , m^3/v , определяемой по формуле:

$$k_{v} = \frac{G}{(10 \cdot \Delta P_{vv})^{0.5}},\tag{3.7}$$

где G – расход теплоносителя, протекающий по участку, кг/ч.

Расход теплоносителя G, кг/ч, определяется по формуле:

$$G = \frac{3.6 \cdot Q \cdot \beta_1 \cdot \beta_2}{c \cdot (t_1 - t_2)},\tag{3.8}$$

где Q – расчетный тепловой поток, проходящий по участку, Вт;

 β_1 — коэффициент учета дополнительного теплового потока от устанавливаемых отопительных приборов, для принятых радиаторов $\beta_1 = 1,02$ [9, табл.3.1];

 β_2 — коэффициент учета дополнительных потерь теплоты отопительными приборами, расположенными у наружных ограждений, β_2 = 1,04 [9, табл.3.2];

c – удельная теплоемкость воды, $c = 4,19 \text{ кДж/(кг} \cdot ^{\circ}\text{C});$

 t_1, t_2 - температура подающего и обратного трубопровода, °С.

Клапан имеет широкие диапазоны для настройки. По номограмме на сайте производителя [8] задаваясь расходом q, кг/ч и потерями давления Δp , Πa , определяем значение предварительной настройки клапана.

Для гидравлического расчета система отопления была разбита на ветви и соответствующие им участки. За основное расчетное циркуляционное кольцо была принята горизонтальная ветвь ГВ1. Для гидравлического расчета второго и третьего этажей за основные кольца были взяты горизонтальные ветви ГВ10 и ГВ18 соответственно.

Гидравлические расчеты системы отопления представлены в приложении Б в таблицах Б.1, Б.2, Б.3 и Б.4.

Определение потерь давления в распределителе

Потери давления в распределителе $\Delta P_{\text{распр.}}$, Па, включают в себя потери давления в запорном вентиле $\Delta P_{\text{вент.}}$, Па, потери в фильтрах ΔP_{φ} , Па, и потери в регуляторе перепада давлений $\Delta P_{\text{per.}}$, и определяются по формуле:

$$\Delta P_{pacnp} = \Delta P_{genm.} + 2 \cdot \Delta P_{\phi.} + \Delta P_{per.} \tag{3.9}$$

Потери давления в запорном вентиле, Па, определяются в зависимости от расхода на участке и пропускной способности клапана, который выбирается по каталогам фирм-производителей [12].

$$\Delta P_{\kappa n} = \frac{G^2}{10 \cdot k_{\nu}^2} \tag{3.10}$$

Фильтр необходим в том случае, если имеет место смена материала труб, но так как в системе используются только металлопластиковые трубы, необходимость в применении фильтров на распределителе отпадает.

Из гидродинамики дроссельно-регулирующей арматуры известно [9], что для обеспечения качественного регулирования во всем диапазоне хода штока клапана необходимо, чтобы при степени открытия клапана 90% его гидравлическое сопротивление составляло не менее 60-100% сопротивления регулируемого участка сети:

$$\Delta P_{pez.} \in (0.6 \div 1.0) \cdot \sum \Delta P_{pez.yq.} \tag{3.11}$$

Тогда, для регулируемого участка Ветви А потери давления в регуляторе должны составлять:

$$\Delta P_{pez.} \in (4967 \div 8279) \Pi a$$

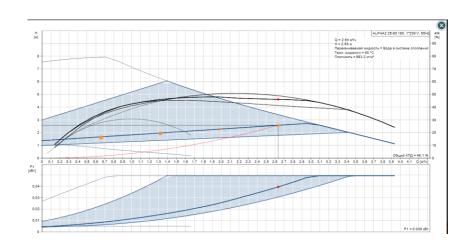
Примем потери в регуляторе равными 5000 Па

Тогда, пропускная способность регулировочного клапана составляет:

$$k_{\nu} = \frac{955.3}{(10 \cdot 5000)^{0.5}} = 4.27 \,\mathrm{m}^3/\mathrm{q}$$

По данной пропускной способности подбираем по [12] балансировочный клапан Броен V DN20 $k_v = 4.40~\text{м}^3/\text{ч}$. Остальные клапаны подбирают аналогично.

Расчет потерь давления на распределителях сведем в таблицу 3.1. Таблица 3.1 – Потери давления на оборудовании на распределителях


№ распр е- делит еля	Расход G, кг/ч	Запор ный клапа н	Потери в запорном вентиле ДР _{вент.} , Па	Потери в регуляторе АР _{рег} , Па	Регулятор давления	Суммарные потери давления на ответвлениях ∑∆Р, Па
1	2	3	4	5	6	7
№1	955	Броен Basic DN 40 габлицы	138,2	5000	Броен V DN20 (значение преднастройки 9,5)	14121
11родол	2	3	4	5	6	7
<u>N</u> <u>o</u> 2	571	Броен Basic DN 32	135,8	6450	Броен V DN20 (значение преднастройки 6,5)	14130
№3	739	Броен Basic DN 32	227,2	8150	Броен V DN20 (значение преднастройки 7)	14124
CV33- 090- 300	376	Броен Basic DN 25	258,7	697	Броен V DN20 (значение преднастройки 9,9)	13676

Подбор циркуляционного насоса

По формулам (3.1) и (3.2) определим необходимое циркуляционное давление:

$$\Delta P_{_{H}} = 5138 + 9600 + 8279 = 23017 \,\Pi a$$

По онлайн-программе производителя Grundfos [13] подберем насос с расходом равным 2642 кг/ч = 2,64 м 3 /ч и с давлением с 10%-м запасом равным 25319 Па = 2.58 м вод. ст. для системы отопления Alpha2 25-80 180-89649772

с данными графическими характеристиками, показанными на рисунке 3.1.

Рисунок 3.1 - Графические характеристики насоса системы отопления

3.3 Тепловой расчет системы отопления

Цель расчета заключается в определении типа и размера отопительного прибора при исходных условиях для запроектированной системы отопления. Расчет ведется согласно методики [9]. Тепловой расчет приборов представлен в приложении В в таблице В.1.

4 ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ

Системы вентиляции и кондиционирования предназначены для двух целей [14]:

- 1. Создание допустимых или оптимальных условий микроклмата в помещениях, предназначенных для пребывания работающих или отдыхающих людей.
- 2. Создание требуемых условий микроклимата для проведения технологических процессов с минимальным количеством брака.

Расчет вентиляции произведен согласно методик, изложенных в [14].

4.1 Определение требуемых воздухообменов

Требуемые воздухообмены определяются согласно норм, требований и рекомендаций нормативной и технической литературы [11, 15, 16, 17, 18, 19, 20], но не менее чем 40 м³/ч на одного человека [16].

Согласно указанных выше норм, требуемый воздухообмен допускается считать по кратности, за исключением помещений, которым предписывается проведение расчета на ассимиляцию теплоизбытков.

Расчетный воздухообмен помещения L_p , $m^3/ч$, при использовании нормативной кратности определяется как:

$$L_{p} = K_{p} \cdot V_{nom}, \tag{4.1}$$

где K_p — нормативная кратность воздухообмена помещения, ч $^{\text{-}1}$; $V_{\text{пом}}$ — объем помещения, м 3 .

После нахождения расчетных воздухообменов помещения следует определять суммарный приток и суммарную вытяжку. Для соблюдения поэтажного баланса следует подавать или удалять воздух для общего помещения, объединяющего помещения этажа.

Расчет воздухообменов по кратности представлен в таблице 4.1.

Таблица 4.1 – Расчет воздухообменов по кратности

No		Площадь	Объем	Краті	ность	_	кообме м3/ч
помещ ения	Наименование помещения	помещения F, м ²	помещения V, м ³	По притоку	По вытяжке	По прито ку	По вытя жке
1	2	3	4	5	6	7	8
102	холл	101,98	305,94	2	0	611,8 8	236
103	помещение охраны	9,50	28,5	3,5	2,8	99,75	79,8
104	медпункт	12,00	36	2	1,5	72	54
105	подсобное помещение	5,00	15	0	1	0	15
106	клиентская служба	55,56	166,68	Расчо ассими теплоиз	ляцию	1313, 1	1313
107	коридор	40,35	121,05			0	0
108	архив	37,98	113,94	0	2	0	227,9
109	архив	16,72	50,172	0	2	0	100,3
110	комната отдыха	15,54	46,6125	2	3	93,22 5	139,8
111	кабинет	18,36	55,0875	3,5	2,8	192,8 1	154,2
112	лестница	25,12	75,36			0	0
113	тамбур	10,22	30,672			0	0
114	тамбур	4,5795	13,7385			0	0
115	гараж	53,625	160,875	2	3	321,7 5	482,6
116	лестница	22,98	68,94			0	0
117	c/y	3,5	10,5			0	50
118	c/y	3,2	9,6			0	50
119	c/y	3,5	10,5			0	50
120	комната персонала	20,22	60,66	2	3	121,3	182

121	кабинет	31,90	95,7	3,5	2,8	334,9	268
122	кабинет	38,61	115,83	3,5	2,8	405,4	324,3
	Дисбаланс состав	яляет 236 м ³ /ч, д	кктыа миавдор	кку в холл 10)2	3244, 4	3008
201	актовый зал	89,35	268,05	Расчи ассими теплоиз	ляцию	3743	3743
202	архив	94,33	282,99	0	2	0	566
203	кабинет	35,11	114,9	3,5	2,8	402,1	321,7
204	холл	64,79	194,37	0	0	347,8	0
205	лестница	22,98	68,94			0	0
Продол	тжение таблиць	ı 4.1				_	
1	2	3	4	5	6	7	8
206	кабинет	28,5	85,5	3,5	2,8	299,2	239,4
207	кабинет	17,78	53,34	3,5	2,8	186,6 9	149,4
208	лестница	25,12	75,36			0	0
209	c/y	3,5	10,5			0	50
210	комната уборочного инвентаря	3,2	9,6	0	1,5	0	14,4
211	c/y	3,5	10,5			0	50
212	кабинет	18,88	56,64	3,5	2,8	198,2 4	158,6
213	кабинет	34,99	109,62	3,5	2,8	383,6 7	306,9
214	серверная	13,5	40,5	0	0	0	0
215	кабинет	18,33	54,99	3,5	2,8	192,4 7	154
	Дисбаланс состав.	пяет 347,89 м ³ /ч	, добавим при	ток в холл 2	04	5405, 41	5753
301	холл	43,01	129,03			0	0
302	кабинет	30,47	91,41	3,5	2,8	319,9 4	255,9
303	кабинет	25,73	77,19	3,5	2,8	270,1	216,1
304	приемная	13,50	40,5	3	2,4	121,5	97,2
305	кабинет	16,14	48,42	3,5	2,8	169,4 7	135,6
306	кабинет	29,83	89,49	3,5	2,8	313,2	250,6
307	кладовая	3,1	9,3	0	1	0	9,3
308	коридор	109,70	329,1			0	458,3
309	кабинет	28,55	85,65	3,5	2,8	299,7 8	239,8

310	кабинет	19,36	58,08	3,5	2,8	203,2	162,6
311	кабинет	20,89	62,67	3,5	2,8	219,3 5	175,5
312	кабинет	29,05	87,15	3,5	2,8	305,0	244
313	кабинет	18,19	54,57	3,5	2,8	191	152,8
314	лестница	25,12	75,36			0	0
315	комната отдыха	21,57	64,71	2	3	129,4 2	194,1
316	c/y	3,5	10,5			0	50
317	c/y	3,5	10,5			0	50
318	кабинет	35,01	106,95	3,5	2,8	374,3 3	299,5
Продол	іжение таблиць	ı 4.1		,			
1	2	3	4	5	6	7	8
319	кабинет	35,02	106,95	3,5	2,8	374,3	299,5
320	лестница	22,98	68,94			0	0
Пт	исбаланс составля	от 158 3 м ³ /п. по	Sabiam bi itawa	U D KONHTOR	308	3290,	2823,

Расчет воздухообмена на ассимиляцию теплоизбытков

Расчет произведен для помещений №106 и №201.

Дисбаланс составляет **458,3** м³/ч, добавим вытяжку в коридор 308

Для определения расчетной тепловой способности системы Q^{вент}, Вт, следует произвести расчет избытков теплоты в помещении путем суммирования всех теплопоступлений и теплопотерь:

$$\pm Q^{\text{genin}} = Q_{\pi} + Q_{\text{och}} + Q_{\text{c.n.}} + Q_{\text{c.n.}} + Q_{\text{np}} - (Q_{\text{och}} + Q_{\text{und}} + Q_{\text{np}}), \tag{4.2}$$

где Q_{π} – теплопоступления от людей, находящихся в помещении, B_{T} ;

 $Q_{\text{осв}}$ – теплопоступления от искусственного освещения (в холодный период), $B\tau$;

 $Q_{\text{с.р.}}$ – теплопоступления от солнечной радиации через световые проемы (в теплый период), Вт;

 $Q_{\text{с.о.}}$ – теплопоступления от системы отопления (в холодный период), Вт;

Q_{огр} – теплопотери через ограждения (в холодный период), Вт;

 $Q_{\text{ин} \varphi}$ – теплопотери на нагрев инфильтрирующегося воздуха (в холодный период), Вт;

 Q_{np} – прочие теплопоступления и теплопотери (в количестве 5% от суммы тепло поступлений и теплопотерь в конкретный период года), Вт.

Т.к. спроектированная система отопления полностью компенсирует теплопотери через ограждения и на нагрев инфильтрирующегося воздуха, примем значения $Q_{\text{с.o.}}$, $Q_{\text{огр}}$ и $Q_{\text{инф}}$, а также прочие теплопотери и теплопоступления от указанных величин, равными нулю и преобразуем уравнение для холодного и теплого периодов.

$$\pm Q_{yn}^{\text{genin}} = Q_{x} + Q_{ocs} + Q_{nn} \tag{4.3}$$

$$\pm Q_{mn}^{6cnm} = Q_{n} + Q_{c.p.} + Q_{np} \tag{4.4}$$

Согласно [16] расход воздуха должен быть не менее нормативно установленного. Определяется по формуле:

$$L_n = L_{cn} \cdot n \,, \tag{4.5}$$

где $L_{\text{с.н.}}$ – расход воздуха по санитарным нормам на одного человека, $L_{\text{с.н.}}$ = 40 м 3 /ч.

Расчет теплопоступлений от солнечной радиации представлен в приложении Γ в таблице Γ .1, построение процессов обработки воздуха представлен на рисунке Γ .1.

Расчет теплопоступлений сведен в таблицу 4.2, данные для построений представлены в таблице 4.3.

Таблица 4.2 – Расчет теплопоступлений

№ по ме ще ни	Площ адь поме щения	Чис ло люд ей п,	Теплопос тупления от людей Q_n , B_T		Влагопост упления от людей W, кг/ч		Теплопос тупления от освещени я Qосв, Вт	Теплопосту пления от солнечной радиации $Q_{c.p.}$, B_T	Суммарн ые теплоизб ытки Q _я , Вт		Полные теплопос тупления Q_{π} , B_{T}	
Я	F, M ²	чел	ΧП	ТΠ	ΧП	ТΠ	ΧП	ТΠ	ΧП	Т П	ΧП	ТΠ
10 6	55,56	14	151 2	910	0,94	1,61	1611,2	938,8	327 9,4	19 41	141 81	110 86
20 1	89,35	23	248 4	149 5	1,54	2,65	777,35	3854	342 4,4	56 16	162 30	269 49

Таблица 4.3 – Данные для построения процесса обработки воздуха

Луч процесса		Температура t _н , ⁰ C, и энтальпия I _н , кДж/кг, наружного воздуха		Темпера тура внутрен него воздуха $t_{\rm B}$, ${}^{0}{\rm C}$		Температ ура притока t_{Π} , 0 С		Темпера тура вытяжки t _y , ⁰ C		Расчетный воздухооб мен L _{пр} , мз ^{/ч}		Расход воздуха G _{пр} , кг/ч	
ΧП	ТП	ΧП	ТП	X П	ТП	ΧП	ТП	ΧП	ТП	ΧП	ТП	Х П	Т П
15119	6886	-19 / - 18	22 / 53	18	25	13	22	20	26	1313	154 0	15 76	18 48
10532	10189	-19 / - 18	22 / 53	18	25	13	22	20	27	1424	374 3	17 08	44 92

4.2 Конструирование системы вентиляции

В данном здании были запроектированы системы приточной и вытяжной вентиляции с механическим и естественным побуждением.

Система вентиляции разделена на следующие зоны:

- Клиентская зона состоит из помещений №102, 103, 104 и 106.
 Приток осуществляется система П1, которая обслуживает указанные помещения. Вытяжку выполняет система В1, обслуживающая только помещения №102 и 106
- 2. Зона актового зала состоит из помещения №201 и помещения № 204, в которое подается приток для выравнивания дисбаланса по воздухообмену. Обслуживается системами приточной и вытяжной вентиляции П2 и В2
- 3. Зона архивов состоит из помещений №108, 109 и 202 и обслуживается вытяжной системой ВЗ. Кроме того, системой ВЗ осуществляется вытяжка из помещений №103, 104 и 105.
- 4. Зона гаража приток и вытяжку на разбавление вредностей (CO) осуществляют системы П4 и В4
- 5. Зона помещений различного назначения приток и вытяжку обеспечивает приточно-вытяжная система ПВ1.

6. Зона санитарных узлов – из санитарных узлов воздух удаляется средствами естественной вытяжной вентиляции

Венткамера системы ПВ1 расположена в техническом подполье здания, остальные системы расположены непосредственно в помещениях.

Системы вентиляции выполнены из стальных воздуховодов, круглого сечения с последующим закрытием их в гипсокартонные короба.

Приток и вытяжка предусматривает канальными вентиляторами фирмы «Systemair». Забор воздуха осуществляется через приточные решетки, расположенные на отметке выше 2,0 м от уровня земли. Приточный воздух очищается в фильтрах и в холодный период подогревается в калориферах.

Горизонтальные участки воздуховодов проложены на высоте 2,5 м от уровня чистого пола этажа.

По требованиям пожарной безопасности системы вентиляции оборудованы огнезадерживающими клапанами для предотвращения проникновения огня, дыма и продуктов сгорания во время пожара в помещение.

4.3 Выбор и расчет воздухораспределительных устройств

Воздухораспределители подбираются согласно требований [16], которые устанавливаю, что скорость воздуха на основном участке струи v_x , м/с, и максимальная разность температур на основном участке струи и температурой воздуха в рабочей зоне Δt_x , 0 С, не должны превышать нормативных показателей.

$$v_{x} \le k \cdot v_{\theta}, \tag{4.1}$$

$$\Delta t_{x} \leq \Delta t_{n}, \tag{4.2}$$

где k — коэффициент перехода от нормируемой скорости движения воздуха в помещении к максимальной скорости в струе, принимается k=1,4 согласно [16];

 Δt_{H} — нормируемая разность температур, принимаем $\Delta t_{\text{H}} = 1,5~^{0}\text{C},$ согласно [16].

Подбор осуществлен по методике, указанной в [20]. Пример расчета представлен в приложении Д. Подбор распределителей приведен в таблице Д.1.

4.4 Аэродинамический расчет систем вентиляции

Аэродинамический расчет ведется по методике, изложенной в [14].

Исходя из рекомендованной скорости определяют рекомендованные диаметры d, м, для круглых воздуховодов по формуле:

$$d = (\frac{L}{2830 \cdot V_{pex}})^{0.5}, \tag{4.3}$$

где $V_{\text{рек}}$ – рекомендуемая скорость, м/с, начало системы – 4-5 м/с, у вентилятора – 8-12 м/с.

По заданному диаметру подбирается ближайший подходящий размер воздуховода и определяется фактическая скорость $V_{\phi a \kappa \tau}$, м/с, по формуле:

$$V_{\phi a \kappa m} = \frac{L}{2830 \cdot d^2} \,. \tag{4.4}$$

Чтобы избежать пользованием таблицами и интерполяцией значений удельных потерь на трение, применим прямое решение задачи. Определим критерий Рейнольдса по формуле:

$$Re = 64100 \cdot d \cdot V_{daxm.} \tag{4.5}$$

В зависимости от числа критерия Рейнольдса вычисляется коэффициент гидравлического трения λ .

При Re < 60000:

$$\lambda = \frac{0.3164}{\text{Re}^{0.25}} \tag{4.6}$$

При Re > 60000:

$$\lambda = \frac{0.1266}{\text{Re}^{0.25}} \tag{4.7}$$

Потери давления ΔP , Па определяются по формуле:

$$\Delta P = (\lambda \cdot \frac{l}{d} + \sum \xi) \cdot 0.6 \cdot V_{\phi_{\alpha_{KM}}}^{2}. \tag{4.8}$$

Невязка потерь давлений на ответвлениях определяется по формуле:

$$\frac{\Delta P_{och.} - \Delta P_{em}}{\Delta P_{och.}} \cdot 100\% \le 15\% . \tag{4.9}$$

Для уравнивания расчетных потерь давления на ответвление устанавливают диафрагму или дроссель клапан, коэффициент местного сопротивление определяется по формуле:

$$\xi = \frac{\Delta P_{ocn} - \Delta P_{gm}}{0.6 \cdot V_{ocn}^2}.$$
(4.10)

По вычисленному значению подбирают диафрагму или дроссель-клапан с ближайшим значением коэффициента местных сопротивлений к искомому.

Естественная вентиляция рассчитывается аналогичным образом.

Рассчитывают располагаемое давление $P_{\text{расп}}$, Πa :

$$P_{pacn} = h \cdot (\rho_{_H} - \rho_{_e}) \cdot g , \qquad (4.11)$$

где h – высота воздушного столба, м;

 $\rho_{\rm H}$ – плотность наружного воздуха при температуре +5 °C, кг/м³.

Величина запаса при определении невязки должна составлять 5-10%.

Расчетные схемы показаны на рисунках E.1 - E.6. Аэродинамический расчет представлен в приложении E в таблицах E.1 - E.9.

4.5 Подбор оборудования

Подбор оборудования совершим с помощью онлайн-каталога [21].

При использовании онлайн-каталога выбирается тип оборудования, а именно для вентиляции будут использоваться канальные приточные системы с водяными калориферами для систем П1, П2, П4, вытяжные канальные вентиляторы для систем В1, В2, В3, В4 и приточно-вытяжную венткамеру с рекуператором для системы ПВ1.

Подбирается оборудование по расходу и необходимому давлению с 10-ти процентным запасом, по наружной температуре воздуха в холодный период и по параметрам теплоносителя.

Подбор оборудования представлен в таблице 4.4.

Таблица 4.4 – Подбор оборудования

		1		1		,			1 4	OJIII	ια	– Подоор оборудо	Dailin
Наименование системы	Расход системы L , $m^3/4$	Потери давления в системе ΔР, Па	Марка вент камеры	Марка фильтра	Аэродинамические потери в фильтреΔР, Па	Марка калорифра	Аэродинамические потери в калорифереΔР, Па	Мощность калорифера N, кВт	Расход воды калорифера q, л/с	Гидравлические потери в клорифере ΔP_{w} , к Πa	Потери давления в клапане ΔР, Па	Марка вентилятора	Суммарные потери давления в системе $\Sigma \Delta P$, Па
П1	2096	297	Topvex SF08 HWL	G4	150	VBR 60-35-2	36	20,38	0,25	2	20	RSI 60-35	553,5
B1	1549	313		G4	150						20	KVO 400 Circular	531,4
П2	4090	334	Topvex SF12	G4	150	VBR 70-40-2	94	36,3	0,44	3	20	KT 70-40-4	657,7
B2	3743	379		G4	150						20	KD400D-EC	603,4
В3	1043	430		G4	150						20	KD200 L1	659,9
П4	322	30		G4	101						20	KT 40-20-4	166,1
B4	482	64		G4	100						20	Prio 160EC	201,9
ПВ1-П	6100	789	VS-40-PMH	G4	150			56,93			20	MUB 062 630D4-A2	1055
ПВ1-В	5589	792		G4	150		49	24,4	0,59	2	20	MUB 100 630D4-L	1112

5 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА

5.1 Безопасность жизнедеятельности

Перед началом строительства необходимо определить какой вред будет нанесен при работе здания и при экстренных ситуациях человеку и окружающей среде.

Основные сведения приведены ниже в таблицах 5.1 - 5.7.

Таблица 5.1 – Технологический паспорт здания

№ п/ п	Технологич еский процесс	Технологич еская операция, вид выполняем ых работ	Наименовани е должности работника, выполняющег о технологичес кий процесс, операцию	Оборудование, устройство, приспособление	Материал, вещества
1	2	3	4	5	6
1	Отопление	Теплоснабж ение системы отопления для поддержани я заданной температур ы воздуха в помещения х	16067 Оператор теплового пункта (код по ОКЗ 8162) 22760 Инженер по эксплуатации теплотехниче ского оборудования (код по ОКЗ 2143)	Теплообменник, трубопроводы, распределительные гребенки, стальные пластинчатые радиаторы, балансировочные и термостатически е клапаны, блок автоматики	Металл, металлопла стик, вода при температур е 80-60 °C

ПР	одолжение тао		1		
_1	2	3	4	5	6
1	2	Подача с помощью	4 18526 Слесарь по ремонту и обслуживани ю систем вентиляции и кондициониро вания (код по ОКЗ 7233)	5	6
2	Вентиляция	вентиляцио нного оборудован ия свежего воздуха в помещение и удаление отработанн ого воздуха из помещения	22542 Инженер по вентиляции (код по ОКЗ 2145) 22754 Инженер по эксплуатации вентиляционн ых систем и санитарнотехнического оборудования (код по ОКЗ 2145)	Воздухораспреде лители, воздуховоды, дроссель-клапаны, калориферы, вентиляторы, блок автоматики.	Металл, вода при температур е 80-60 °C

Таблица 5.2 – Идентификация профессиональных рисков

№п/п	Технологическая операция, вид выполняемых работ	Опасный и вредный производственный фактор	Источник опасного и вредного производственного фактора
1	2	3	4
1	Отопление	Повышенная или пониженная температура поверхностей оборудования, пониженная или повышенная температура воздуха рабочей зоны	Стальные радиаторы, теплообменник в тепловом пункте
['] Пролоп	жение таблицы 5.2	1	'

1	2	3	4
1	Отоплонио	Повышенный уровень	
1	Отопление	шума на рабочем месте	
		повышенный уровень	
		шума на рабочем месте,	Воздухораспределители,
2	Вентиляция	повышенная или	вентиляционная
		пониженная	
		подвижность воздуха	

Таблица 5.3 — Методы и средства снижения воздействия опасных и вредных производственных факторов

№п/п	Опасный и вредный производственный фактор	Методы и средства защиты, снижения, устранения опасного и вредного производственного фактора	Средства индивидуальной защиты работника
1	2	3	4
1	Повышенный уровень шума на рабочем месте	Оптимизация, регулирование и автоматизация систем отопления и вентиляции, использование шумоглушителей для систем вентиляции, создание условий труда, при которых вредное воздействие шума не усугубляется наличием других неблагоприятных факторов, составление комплексных программ сохранения слуха работников.	Не требуется
2	Повышенная или пониженная температура поверхностей оборудования	Оптимизация, регулирование и автоматизация систем отопления, установка или демонтаж защитных шкафчиков	Температура отопительных приборов регулируется с помощью термостатического клапана непосредственно на самом приборе
Продол	жение таблицы 5.3		

1	2	3	4
3	пониженная или повышенная температура воздуха рабочей зоны	Оптимизация, регулирование и автоматизация систем отопления и вентиляции,	Не требуется
4	повышенная или пониженная подвижность воздуха	Оптимизация, регулирование и автоматизация систем вентиляции, регулирование воздухораспределителей, дросселирование системы вентиляции	Не требуется

5.2 Пожарная безопасность и экология

Пожарная опасность систем отопления и вентиляции заключается в наличии источника зажигания высокой температуры (до 150 °C) теплоносителя (воды, пара, нагретого воздуха в системах кондиционирования, газового или электрического отопления) и взрывопожароопасной газо-, паровоздушной среды, удаляемой системами вентиляции из зданий и помещений, способной воспламеняться при контакте с различными источниками зажигания.

Основная задача пожарной профилактики заключается в том, чтобы исключить потенциальный источник зажигания в виде нагретых поверхностей и исключить накопление взрывопожароопасной воздушной среды в помещении.

Источники пожарной опасности приведены в таблице 5.4. Таблица 5.4 – Идентификация классов и опасных факторов пожара

№ п/п	Участок , подразд еление	Оборудова ние	Класс пожар а	Опасн ые фактор ы пожара	Сопутствующие проявления факторов пожара
1	2	3	4	5	6
1	Индивид уальный тепловой пункт	Насос - Автоматик а	A, D, E	Пламя и искры	вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов,

					изделий и иного имущества						
Продо	Продолжение таблицы 5.4										
1	2	3	4	5	6						
	Вентиля ционны	Вентилятор	A, D, E	Пламя и искры	вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества						
2		Автоматик а	E	Пламя искры	вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества						
2	е камеры	Корпус вентиляцио нной установки	В	Пламя, повыш енная концен трация продук тов горени я	токсичные вещества и материалы, попавшие в окружающую среду из разрушенных технологических установок, оборудования, агрегатов, изделий и иного имущества						

Средства защиты и мероприятия по предотвращению пожара приведены в таблицах 5.5 и 5.6.

Таблица 5.5 – Средства обеспечения пожарной безопасности

Перви	Моби	Устан	Средс	Пожар	Средства	Пожарный	Пожарн
чные	льные	овки	тва	ное	индивид	инструмент	ые
средст	средс	пожар	пожа	оборуд	уальной	(механизир	сигнали
ва	тва	отуше	рной	ование защиты		ованный и	зация,
пожар	пожар	ния	автом	И		немеханизи	связь и
отуше	отуше		атики		спасения	рованный)	оповещ
КИН	ния				людей		ение.
					при		
					пожаре		
Огнету	Огнет	Пожа	He	Огнету	Респират	Огнетушите	Пожарн
шител	ушите	рные	преду	шител	оры,	ли, вода,	ая
И,	ли,	гидра	сматр	и, щит	противог	песок,	сигнали
вода,	щит с	нты,	иваю	c	азы,	ведро,	зация,
песок,	средс	щит с	тся	средст	автоподъ	лопата	телефо
ведро,	твами	средст		вами	емники и		н «112»

лопата	пожар	вами	пожар	автолест	и «01»
	отуше	пожар	отуше	ницы	
	ния	отуше	ния	пожарны	
		ния		e	

Таблица 5.6 – Мероприятия по предотвращению пожара

Наименование	Наименование видов	Требования по
технологического	работ	обеспечению пожарной
процесса, вид объекта		безопасности
Отопление	Теплоснабжение	Соблюдение
административного		противопожарных норм и
здания УПФР		правил при устройстве,
Вентиляция	Воздухообмен	установке и эксплуатации
административного		оборудования в
здания УПФР		соответствии с [25, 26,
		27], проектирование
		противодымной
		вентиляции

Воздействие технического объекта на экологию и мероприятия по снижению загрязнения приведены в таблицах 5.7 и 5.8.

Таблица 5.7 – Идентификация экологических факторов

Наименование	Структурные	Воздействие	Воздействие	Воздейств
технического	составляющие	объекта на	объекта на	ие объекта
объекта,	технического	атмосферу	гидросферу	на
технологического	объекта,			литосферу
процесса	технологическо			
	го процесса			
Отопление	Теплоснабжени	Не	Подпитка	Не
административно	e	происходит	внутреннего	происходи
го здания УПФР			контура	T
			теплоснабжен	
			ия водой из	
			водопроводны	
			х сетей	
Вентиляция	Воздухообмен	Выброс в	Подпитка	Не
административно		атмосферу	внутреннего	происходи
го здания УПФР		отработанно	контура	T
		го воздуха	теплоснабжен	
		(CO_2)	ия водой из	
			водопроводны	
			х сетей	

Таблица 5.8 – Мероприятия по снижению антропогенного воздействия на окружающую среду

Наименование тех	кнического	объекта	Административное здание УПФР
Мероприятия	по с	снижению	Установка воздушных фильтров с
антропогенного	воздейст	твия на	эффективностью выше 90% и
атмосферу			своевременная их замена или чистка
Мероприятия	по с	снижению	Сточные воды отводятся в сети
антропогенного	воздейст	твия на	городской канализации и далее на
гидросферу			сооружения очистки сточных вод
Мероприятия	по с	снижению	
антропогенного	воздейст	твия на	Не требуется
литосферу			

На основании проведенных идентификаций рисков, пожарной опасности и экологических факторов по производимым на техническом объекте операциям необходимо произвести следующие мероприятия по направлениям:

- 1. Снижение профессиональных рисков своевременная оптимизация систем отопления и вентиляции под изменяющиеся параметры внутреннего и наружного микроклимата;
- 2. Снижение пожарной опасности проектирование систем противодымной вентиляции;
- 3. Снижение экологической угрозы использование современных фильтрующих материалов, своевременная их чистка и замена.

6 АВТОМАТИЗАЦИЯ

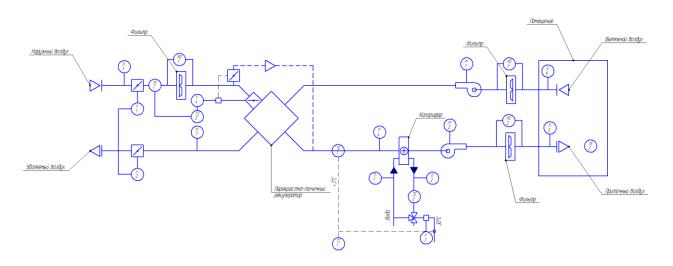
Понятие автоматизация в настоящее время употребляется в широком смысле слова и служит для обозначения комплекса мероприятий технического и организационного характера, направленных на замену или облегчение труда человека с помощью разнообразных устройств и механизмов [28].

Классическое определение автоматизации дал К. Маркс: «Когда рабочая машина выполняет все движения, необходимые для обработки сырого материала, без содействия человека и нуждается лишь в контроле со стороны рабочего, мы имеем перед собой автоматическую систему машин, которая, однако, способна к постоянному усовершенствованию в деталях» [29].

Автоматизация системы ПВ1

В состав сборки включено следующее оборудование системы автоматизации [30]:

Канальный датчик температуры – измерение температуры приточного, вытяжного или наружного воздуха, ограничение максимальной или минимальной температуры приточного воздуха, защита от обмерзания блоков теплоутилизации путем контроля температуры вытяжного воздуха за блоком;


Дифференциальный манометр — контроль степени загрязнения фильтра путем измерения перепада статического давления воздуха до и после фильтра, контроль работы вентиляторной группы с клиноременной передачей — сигнализации об отсутствии напора воздуха на вентиляторе;

Термозамораживающий термостат по стороне воздуха – защита водяного нагревателя от замораживания путем контроля минимальной допускаемой температуры воздуха за нагревателем, при достижении установленной минимальной температуры воздуха сигнал на контроллер вызывает закрытие воздушного клапана на входе в агрегат, остановку вентиляторной группы и максимальное открытие водяного клапана, переключение вентагрегата в

аварийное состояние при трехкратном срабатывании в течении часа защиты от замерзания;

Электрический сервопривод воздушного клапана ON-OFF и 0-10 В – открытие или закрытие подачи воздуха через агрегат, регулирование степени открытия воздушного клапана обводного канала перекрестно-точечного теплообменника – защита от обмерзания;

Трехходовой клапан с электрическим сервоприводом – регулирование температуры теплоносителя на входе в водяные нагреватели – регулирование качественное. Позволяющее путем подмешивания обратной воды к прямой изменять температуру последней при постоянном расходе, обязательно

совместная работа с циркуляционным насосом для защиты от замораживания.

Рисунок 6.1 – Схема автоматики ПВ1

Условные обозначения:

PD 1, PD 2, PD 3 – дифманометр;

TI 1, TI 2 – датчики температуры прямой и обратной воды;

TI 3, TI4, TI 5, TI 6, TI 7 – датчики наружного, после перекрестноточечного рекуператора, приточного, вытяжного и удаляемого соответственно;

TE 1, TE 2, TE 3, TE 4 – датчик температуры, подключенный к регулятору температуры;

TS 1, TS 2 – регуляторы температуры

М1, М2 – электроприводы вентиляторов;

Y1, Y2, Y3, Y4 – приводы клапанов.

На рисунке 6.1 представлена принципиальная схема автоматики приточной-вытяжной камеры. В сборку включены местное и дистанционное управление электрооборудованием. Необходимая температура воздуха в помещении определяется с помощью регулятора температуры TS 1, датчики которого размещены на приточном воздуховоде (ТЕ 4) после теплоутилизатора, на обратном трубопроводе калорифера (ТЕ 2) и в помещении (ТЕ 3). Регулятор управляет механизмами клапанов Ү1 И Y 3, установленными перед перекрестно-точечным рекуператором И на обратном трубопроводе калорифера. В случае, если температура обратной воды снизится до 30 °C и воздуха до 3 0 C, регулятор выключит вентиляторы и перекроет входной и выходной клапаны во избежании замораживания калорифера. Регулятор температуры TS 2, подключенный к датчику TE 1 и механизму клапана Y 4, при повышении температуры наружного воздуха до 8 °C во избежание перегрева перекрывает приточного воздуха клапан на перекрестно-точечном теплообменнике и открывает клапан на внутреннем обводном патрубке, тем самым пропуская наружный воздух в обход теплообменника. Во избежание заиндевения теплообменника аналогичный процесс происходит при понижении температуры ниже -20 °C и при снижении теплового потока вытяжного воздуха.

Дифманометры PD1 ... PD3 предназначены для определения степени загрязнения фильтров по перепаду давления.

Система позволяет регулировать температуру внутри помещения, степень утилизации энергии, регулировать подачу воздуха, а также регулировать систему по календарю.

С помощью интерфейса пользователя возможно получение информации о температурах внутреннего, наружного, удаляемого и приточного воздуха; получать информацию о состоянии загрязнения фильтров, а также система проинформирует об аварийных ситуациях. Внутреннее устройство системы защиты позволяет предотвратить перегрузки двигателя, заморозку водонагревателя и обмерзание теплообменника утилизатора.

7 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ

Монтаж внутренних систем следует выполнять согласно требований СП и инструкций фирм производителей оборудования.

Список работ, которые следует выполнить для каждого пункта ведомости, указан в ЕНиР [31] и [32].

До начала монтажных работ должны быть произведены работы [33]:

- 1. Монтаж перекрытий
- 2. Устройство площадок для вентустановок
- 3. Подготовка отверстий в стенах и перекрытиях
- 4. Нанесение на стенах проектных отметок
- 5. Оштукатуривание поверхностей стен в местах прокладок воздуховодов

Работы по монтажу системы вентиляции [33]:

- 1. Разметка мест установки средств крепления воздуховодов
- 2. Установка средств крепления
- 3. Доставка деталей воздуховодов
- 4. Сборка деталей воздуховодов в укрупненные блоки
- 5. Установка блока

Монтаж вентиляторов должен производиться в следующей последовательности [33]:

- 1. приемка помещений венткамер;
- 2. доставка вентилятора или отдельных его деталей к месту монтажа;
- 3. строповка вентилятора или отдельных деталей;
- 4. установка вентилятора на опорных конструкциях;
- 5. проверка работы вентилятора.

Контроль качества [33]:

Воздуховоды должны монтироваться в соответствии с проектными привязками и отметками. Присоединение воздуховодов к технологическому оборудованию должно производиться после его установки.

Прокладки между шинами или фланцами воздуховодов не должны выступать внутрь воздуховодов.

Болты во фланцевых соединениях должны быть затянуты, все гайки болтов должны располагаться с одной стороны фланца. При вертикальной установке болтов гайки, как правило, должны располагаться с нижней стороны соединения.

Крепления горизонтальных металлических неизолированных воздуховодов (хомуты, подвески, опоры и др.) на бандажном бесфланцевом соединении следует устанавливать:

- на расстоянии не более 4 м одно от другого при диаметрах воздуховода круглого сечения или размерах большей стороны воздуховода прямоугольного сечения менее 400 мм.
- на расстоянии не более 3 м одно от другого при диаметрах воздуховода круглого сечения или размерах большей стороны воздуховода прямоугольного сечения 400 мм и более.

Таблица 7.1 – Ведомость объемов строительно-монтажных работ

$N_{\underline{0}}$	Наименование	Единица	Количеств	Примечан
Π/Π	Паименование	измерения	0	ие
1	2	3	4	5
	Монтаж систем вентиляции			
	Прокладка воздуховодов			
	диаметром:			
	Ø 100 мм		16,8	
	Ø 125 мм		174,4	
	Ø 160 мм		65,2	
1	Ø 200 мм	1 м	75,0	
	Ø 250 мм	1 M	66,2	
	Ø 315 мм		53,2	
	Ø 355 мм		48,4	
	Ø 400 мм		28,3	
	Ø 450 мм		63,7	
2	Монтаж воздухораспределителей	шт.		

	PP 100x200		10	
	ПРМ DN125		96	
	ПРМ DN200		13	
	ПРМ DN250		14	
3	Монтаж жалюзийных решеток	шт.	4	
4	Монтаж рулонных фильтров	шт.	9	
Про	должение таблицы 7.1			
1	2	3	4	5
5	Монтаж шумоглушителей	ШТ	7	
6	Монтаж утепленных клапанов	ШТ	10	
7	Монтаж огнезадерживающих	ШТ	20	
	клапанов	Ш1	20	
	Узлы прохода вентиляционных			
	вытяжных шахт			
8	Ø до 250мм	ШТ	5	
	Ø до 355мм		6	
	Ø до 800мм		6	
	Монтаж вентиляторов			
9	до 0,005т	ШТ	1	
7	до 0,12т	ші	7	
	до 0,2т		1	
10	Монтаж кондиционеров	ШТ	1	
10	82 кг	ші		
11	Монтаж калориферов	ШТ	3	
12	Монтаж приточных камер	ШТ	3	

Трудоемкость определяется по формуле:

$$T_{p} = \frac{H_{Bp} \cdot V}{8,2},\tag{7.1}$$

где $H_{\text{вр}}$ – норма времени на единицу объема работ, чел.-час, по ЕНиР;

V – физический объем работ;

8,2 – продолжительность смены, час.

Ведомость трудоемкости работ представлена в приложении Ж в таблице Ж.1.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. СΠ 131.13330.2012. Строительная климатология. СНиП 23-01-99* (c Актуализированная редакция Изменением 2) 2013.-01.-01.-[Электронный pecypc]. Введ. Режим доступа: http://docs.cntd.ru/document/1200095546
- 2. ГОСТ 30494-2011. Здания жилые и общественные. Параметры микроклимата в помещениях [Электронный ресурс]. Введ. 2013.-01.-01.- Режим доступа: http://docs.cntd.ru/document/gost-30494-2011
- 3. СП 50.13330.2012. Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 [Электронный ресурс]. Введ. 2013-07-01. Режим доступа: http://docs.cntd.ru/document/1200095525
- 4. СП 23-101-2004. Проектирование тепловой защиты зданий [Электронный ресурс]. Введ. 2004.-06.-01.- Режим доступа: http://files.stroyinf.ru/Data1/43/43635/
- 5. Малявина, Е.Г. Теплопотери здания [Электронный ресурс] / Справ. пособие. 2007.- Режим доступа: http://files.stroyinf.ru/data1/50/50453/
- 6. Современные строительные материалы. Лайт Баттс [Электронный ресурс] / Каталог. 2015.- Режим доступа: http://coвременные-строительные-материалы.ph/catalog/LAYT-BATTS.htm
- 7. СП 41-102-98 Проектирование и монтаж трубопроводов систем отопления с использованием металлополимерных труб [Электронный ресурс]. Введ. 1998.-04.-16.- Режим доступа: http://docs.cntd.ru/document/1200001319
- 8. Purmo. Стальные радиаторы. PURMO Ventil Compact [Электронный ресурс] / Каталог. 2016.- Режим доступа: http://www.purmo.com/ru/produktay/stalynaye-radiatoray/purmo-ventil-compact.htm
- 9. Покотилов, В.В. Системы водяного отопления [Текст] / В.В. Покотилов. Вена: самостоят. изд. 2008.- 159 с.: ил.

- 10. Техническая информация [Электронный ресурс] / Каталог // ТЕСЕ.

 2015.- Режим доступа:

 http://www.tece.ru/ru//company/service/technical+documents/technical+informations

 209_337.html
- 11. Богословский, В.Н. Внутренние санитарно-технические устройства. В 3 ч. Ч. 1. Отопление [Текст] / В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави, и др.; Под ред. И.Г. Староверова и Ю.И. Шиллера.- 4-е изд., перераб. и доп. М.: Стройиздат, 1990.-344 с.: ил.-
- 12. Шаровые краны Broen Ballomax (Броен Балломакс) [Электронный ресурс] / Каталог // Broen. 2015.- Режим доступа: http://broen-russia.com/catalog/ballomax
- 13. Найти продукт и решение [Электронный ресурс] / Каталог // Grundfos. 2015.- Режим доступа: http://product-selection.grundfos.com/front-page.html?%3Ftime=1463689264045&qcid=109063995
- 14. Краснов Ю.С., Борисоглебская А.П., Антипов А.В. Системы вентиляции и кондиционирования. Рекомендации по проектированию, испытаниям и наладке [Текст] / Ю.С. Краснов, А.П. Борисоглебская, А.В. Антипов. –М.: Термокул, 2004. 370 с.: ил.
- 15. СНиП 41-01-2003. Отопление, вентиляция и кондиционирование [Электронный ресурс]. Введ. 2004.-01.-01.- Режим доступа: http://docs.cntd.ru/document/1200035579
- 16. СП 60.13330.2012. Отопление, вентиляция и кондиционирование. Актуализированная редакция СНиП 41-01-2003 [Электронный ресурс]. Введ. 2013.-01.-01.- Режим доступа: http://docs.cntd.ru/document/1200095527
- 17. СП 73.13330.2012. Внутренние санитарно-технические системы зданий. Актуализированная редакция СНиП 3.05.01-85 [Электронный ресурс]. Введ. 2013.-01.-01.- Режим доступа: http://docs.cntd.ru/document/1200091051
- 18. СП 44.13330.2011. Административные и бытовые здания. Актуализированная редакция СНиП 2.09.04-87 [Электронный ресурс]. Введ. 2011.-05.-20.- Режим доступа: http://docs.cntd.ru/document/1200084087

- 19. Богословский, В.Н. Внутренние санитарно-технические устройства. В 3 ч. Ч. 3. Вентиляция и кондиционирование воздуха. Кн.1 [Текст] / В.Н. Богословский, А.И. Пирумов, В.Н. Посохин и др.; Под ред. Н.Н. Павлова и Ю.И. Шиллера.- 4-е изд., перераб. и доп., М.: Стройиздат, 1992.-319 с.: ил.
- 20. Баркалов, Б.В. Внутренние санитарно-технические устройства. В 3 ч. Ч. 3. Вентиляция и кондиционирование воздуха. Кн.2 [Текст] / Б.В. Баркалов, Н.Н. Павлов, С.С. Амирджанов и др. Под ред. Н.Н. Павлова и Ю.И.Шиллера.-4-е изд., перераб. и доп., М.: Стройиздат, 1992.-416 с.: ил.
- 21. Вентиляторы [Электронный ресурс] / Каталог // Systemair. 2015.-Режим доступа: https://www.systemair.com/ru/Russia/Products/Product-selector/Fans/
- 22. Отводы [Электронный ресурс] / Vent Smeta. 2015.- Режим доступа: http://ventsmeta.ru/vozduhovodyi-2/otvodyi/
- 23. <u>Каталог прецизионных кондиционеров Emerson [Электронный ресурс] / Каталог // Инженерные системы. 2015.- Режим доступа: http://emersonpower.ru/information/57-catalog-precision-ac-emerson</u>
- 24. <u>Горина Л.Н. Раздел выпускной квалификационной работы</u> «Безопасность и экологичность технического объекта» [Текст] / Справ. пособие. –Тольятти: изд-во ТГУ, 2016. –33с.
- 25. Технический регламент о требованиях пожарной безопасности [Текст] / Федеральный закон от 22 июля 2008 г. N 123-ФЗ // Собрание законодательства Российской Федерации, N 30, 28.07.2008, (ч.І), ст.3579. 2009.- Режим доступа: http://docs.cntd.ru/document/902111644
- 26. ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования [Электронный ресурс]. Введ. 1992.-07.-01.- Режим доступа: http://docs.cntd.ru/document/gost-12-1-004-91-ssbt
- 27. СП 7.13130.2013. Отопление, вентиляция и кондиционирование. Требования пожарной безопасности [Электронный ресурс]. Введ. 2013.-02.-25.- Режим доступа: http://docs.cntd.ru/document/1200098833

- 28. Мухин, О.А. Автоматизация систем теплогазоснабжения и вентиляции [Текст] / Учеб. Пособие для вузов. –Мн.: Выш. шк., 1986. –304 с.: ил.
- 29. Маркс, К. Капитал [Текст] / К. Маркс, Ф. Энгельс. Соч., 2-е изд., т. 23, 1983. –392 с.
- 30. Агрегаты для вентиляции и кондиционирования воздуха широкого применения [Электронный ресурс] / Каталог // VTS. 2013.- Режим доступа: http://vtsgroup.ru/VENTUS.html
- 31. ЕНиР Сборник Е9. Сооружение систем теплоснабжения, водоснабжения, газоснабжения и канализации. Выпуск 1. Санитарнотехническое оборудование здании и сооружений [Электронный ресурс]. Введ. 1986.-12.-05.- Режим доступа: http://docs.cntd.ru/document/1200000670
- 32. ЕНиР Сборник Е10. Сооружение систем вентиляции, кондиционирования воздуха, пневмотранспорта и аспирации [Электронный ресурс]. Введ. 1986.-12.-05.- Режим доступа: http://docs.cntd.ru/document/1200001041
- 33. ТТК. Типовая технологическая карта на установку и монтаж внутренних систем вентиляции и кондиционирования с приточно-вытяжными установками и оборудования систем холодоснабжения [Текст]. СПб, ООО «Строительные Технологии», 2012.- Режим доступа: http://files.stroyinf.ru/Data2/1/4293794/4293794406

Приложение А

Таблица А.1 – Расчет теплопотерь 2-го этажа

№ помещения	Наименование	Ориентация по сторонам света	A	Размер, м	Площадь, м ²	Полезная площадь, м²	Коэффициент теплопередачи k, Вт/(м ² *С ⁰)	Перепад температур Аt. ⁰ С	Теплопотери Q, Вт	На ориентацию	Прочие Прочие	Сумма добавок	Теплопотери с учетом добавок $Q^*(1+\Sigma\beta)$, Вт	Теплопотери от инфильтрации Q _{инф} , Вт	Нагрузка на систему отопления Q _{от} , Вт
									_				1	, ,	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
201	HC1	3	3,06	3,30	6,27		0,29	37	68	0,05	0,05	0,1	75		
	HC2	3	3,06	3,30	6,27		0,29	37	68	0,05	0,05	0,1	75		
	HC3	ЮЗ	3,06	3,30	6,27		0,29	37	68	0	0,05	0,05	72		
	HC4	Ю	3,06	3,30	6,27		0,29	37	68	0	0,05	0,05	72		
	HC5	Ю	3,06	3,30	6,27		0,29	37	68	0	0,05	0,05	72		
	O1	3	1,50	2,55	3,83		2,17	37	308	0,05	0,05	0,1	338	104	3630
	O2	3	1,50	2,55	3,83		2,17	37	308	0,05	0,05	0,1	338	104	
	O3	Ю3	1,50	2,55	3,83		2,17	37	308	0	0,05	0,05	323	104	
	O4	Ю	1,50	2,55	3,83		2,17	37	308	0	0,05	0,05	323	104	
	O5	Ю	1,50	2,55	3,83		2,17	37	308	0	0,05	0,05	323	104	
	Пол				33,18	89,38	0,90	37	1101				1101		
202	HC1	3	3,06	3,30	6,27		0,29	37	68	0,05	0,05	0,1	75		
	HC2	C3	3,06	3,30	6,27		0,29	37	68	0,1	0,05	0,15	78		
	HC3	C3	3,06	3,30	6,27		0,29	37	68	0,1	0,05	0,15	78		
	HC4	C	3,06	3,30	6,27		0,29	37	68	0,1	0,05	0,15	78		4053
	HC5	С	2,85	3,30	5,58		0,29	37	61	0,1	0,05	0,15	70		
	HC6	СЗ	7,55	3,30	19,70		0,29	37	214	0,1	0,05	0,15	246		
	O1	3	1,50	2,55	3,83		2,17	37	308	0,05	0,05	0,1	338	104	

203	2 O2 O3 O4 O5 O6 Пол	3 C3 C3 C C C	4 1,50 1,50 1,50 1,50 1,50 3,00	5 2,55 2,55 2,55 2,55	6 3,83 3,83 3,83	7	8 2,17 2,17	9 37 37	10 308	11 0,1	12 0,05	13 0,15	14 354	15 104	16
203	O3 O4 O5 O6	C3 C	1,50 1,50 1,50	2,55 2,55	3,83					0,1	0,05	0,15	354	104	
203	O4 O5 O6	C C	1,50 1,50	2,55			2,17	27	1						
203	O5 O6	С	1,50		3,83			37	308	0,1	0,05	0,15	354	104	
203	O6			2.55			2,17	37	308	0,1	0,05	0,15	354	104	7
203		C3	3.00	_,	3,83		2,17	37	308	0,1	0,05	0,15	354	104	
203	Пол		5,00	1,74	5,22		2,17	37	420	0,1	0,05	0,15	483	141	
203					15,99	97,77	0,90	37	531				531		
203			T	1	T	1		1	1	1 1					
	HC1	Ю	2,87	3,30	5,65		0,29	37	61	0	0,05	0,05	65		
	HC2	Ю	3,97	3,30	10,49		0,29	37	114	0	0,05	0,05	120		
	O1	Ю	1,50	2,55	3,83		2,17	37	308	0	0,05	0,05	323	104	902
	O2	Ю	1,50	1,74	2,61		2,17	37	210	0	0,05	0,05	220	71	
	ПОЛ					39,86									
				1	r	1		1	1	1 1		· · · · · · · · · · · · · · · · · · ·			
206	Нс	C3	5,20	3,30	11,94		0,29	37	130	0,1	0	0,1	143		
	O	Сз	3,00	1,74	5,22		2,17	37	420	0,1	0	0,1	462	141	746
	ПОЛ		5,20	6,03		31,36									
				1	r	1		1	1	1 1		· · · · · · · · · · · · · · · · · · ·			
207	НС	Сз	3,23	3,30	8,05		0,29	37	88	0,1	0	0,1	96		
	O	Сз	1,50	1,74	2,61		2,17	37	210	0,1	0	0,1	231	71	398
	ПОЛ		3,23	6,03		19,48									
208	HC1	C3	3,20	3,30	9,26		0,29	37	101	0,1	0,05	0,15	116		
	HC2	CB	7,85	3,30	25,91		0,29	37	282	0	0,05	0,05	296		учтено в 112
	HC3	ЮВ	3,20	3,30	10,56		0,29	37	115	0,05	0,05	0,1	126		учтено в 112
	O1	C 3	0,75	1,74	1,31		2,17	37	105	0,1	0,05	0,15	121	35	
ı			1	T	T	1		1	1	 		,			
212	HC1	СВ		3,30	18,21		0,29	37	198	0,1	0,05	0,15	228		
	HC2	В	1,60	3,30	3,98		0,29	37	43	0,1	0,05	0,15	50		1058
	O1	CB	3,00	1,74	5,22		2,17	37	420	0,1	0,05	0,15	483	141	1

													p o,	<u> </u>	аолицы 11.1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	O2	В	0,75	1,74	1,31		2,17	37	105	0,1	0,05	0,15	121	35	
	пол				20,22										
213	HC1	Ю	6,93	3,30	17,65		0,29	37	192	0	0,05	0,05	202		
	Нс	В	6,14	3,30	20,26		0,29	37	220	0,1	0,05	0,15	254		1027
	O1	Ю	3,00	1,74	5,22		2,17	37	420	0	0,05	0,05	441	141	1037
	пол		6,93	6,14		42,55									
214	НС	Ю	2,40	3,30	5,31		0,29	37	58	0	0	0	58		
	О	Ю	1,50	1,74	2,61		2,17	37	210	0	0	0	210	71	338
	П		2,40	6,14		14,74									
			•												
215	Нс	Ю	3,24	3,30	8,08		0,29	37	88	0	0	0	88		
	О	Ю	1,50	1,74	2,61		2,17	37	210	0	0	0	210	71	369
	пол		3,24	6,14		19,89									

Таблица А.2 – Расчет теплопотерь 3-го этажа

			Dony	on M						Д	обавки	β,	β),	BT	Вт
№ помещения	Наименование	Ориентация по сторонам света	А	Б	Площадь, м ²	Полезная площадь, м 2	Коэффициент теплопередачи k, Вт/(м ^{2*} С ⁰)	Перепад температур Δt, ⁰ С	Теплопотери Q, Вт	На ориентацию	Прочие	Сумма добавок	Теплопотери с учетом добавок $Q^*(1+\Sigma\beta)$, B_T	Теплопотери от инфильтрации Q _{инф} , В	Нагрузка на систему отопления Qor, В
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
301	пк				43,01		0,37	33	530	0	0	0	530		530
302	HC1	Ю3	3,73	3,30	7,36		0,29	37	80	0	0,05	0,05	84		
	HC2	Ю3	3,06	3,30	5,15		0,29	37	56	0	0,05	0,05	59		
	HC3	Ю	3,06	3,30	5,15		0,29	37	56	0	0,05	0,05	59		
	O1	Ю3	1,50	3,30	4,95		2,17	37	398	0	0,05	0,05	418	45	1967
	O2	Ю3	1,50	3,30	4,95		2,17	37	398	0	0,05	0,05	418	45	
	О3	Ю	1,50	3,30	4,95		2,17	37	398	0	0,05	0,05	418	45	
	пк				30,47		0,37	33	376			0	376		
		Г								_	ı	T			
303	HC1	C3	2,51	3,30	3,33		0,29	37	36	0,1	0,05	0,15	42		
	HC2	3	3,06	3,30	5,15		0,29	37	56	0,05	0,05	0,1	62		1927
	HC3	3	2,42	3,30	3,04		0,29	37	33	0,05	0,05	0,1	36		·
	O1	C3	1,50	3,30	4,95		2,17	37	398	0,1	0,05	0,15	458	45	

												Tipoz	TOTIME	нис і	аолицы А.2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	O2	3	1,50	3,30	4,95		2,17	37	398	0,05	0,05	0,1	438	45	
	О3	3	1,50	3,30	4,95		2,17	37	398	0,05	0,05	0,1	438	45	
	пк				25,73		0,37	33	317			0	317		
304	НС	Сз	4,16	3,30	8,78		0,29	37	96	0,1	0	0,1	105		
	О	Сз	1,50	3,30	4,95		2,17	37	398	0,1	0	0,1	438	45	755
	Пк				13,50		0,37	33	166			0	166		
									•		•	•	•		
305	HC1	С	2,50	3,30	3,30		0,29	37	36	0,1	0,05	0,15	41		
	HC2	С	2,58	3,30	3,56		0,29	37	39	0,1	0,05	0,15	45		
	O1	С	1,50	3,30	4,95		2,17	37	398	0,1	0,05	0,15	458	45	1291
	O2	С	1,50	3,30	4,95		2,17	37	398	0,1	0,05	0,15	458	45	
	пк				16,14		0,37	33	199			0	199		
		•						•	•	•					
306	НС	Сз	4,08	3,30	10,85		0,29	37	118	0,1	0	0,1	130		
	О	Сз	1,50	1,74	2,61		2,17	37	210	0,1	0	0,1	231	24	752
	пк				29,83		0,37	33	368			0	368		
		•						•	•	•					
308	пк				92,99		0,37	33	1146			0	1146		
320	НС	В	1,55	3,30	4,21		0,29	37	46	0,1		0,1	50		1285
	О	В	0,75	1,21	0,91		2,17	37	73	0,1		0,1	80	8	
		•	•					•	•	•			•		
309	НС	Ю	3,88	3,30	10,19		0,29	37	111	0	0	0	111		
	О	Ю	1,50	1,74	2,61		2,17	37	210	0	0	0	210	24	697
	Пк				28,55		0,37	33	352			0	352		
		1					•								
310	HC1	Ю	3,06	3,30	5,15		0,29	37	56	0	0,05	0,05	59		
	HC2	Ю	2,87	3,30	4,52		0,29	37	49	0	0,05	0,05	52		1276
	01	Ю	1,50		4,95		2,17	37	398	0	0,05	0,05	418	45	
ı		1	1 *		•	ı	. *	ı	1	1		1 *	1		

аолицы 11.2	1110	(001)1101	търод												
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	45	418	0,05	0,05	0	398	37	2,17		4,95	3,30	1,50	Ю	O2	
		239	0			239	33	0,37		19,36				пк	
		118	0,1	0	0,1	107	37	0,29		9,83	3,30	3,77	Сз	НС	311
630	24	231	0,1	0	0,1	210	37	2,17		2,61	1,74	1,50	Сз	O	
		258	0			258	33	0,37		20,89				пк	
		139	0,1	0	0,1	126	37	0,29		11,61	3,30	5,10	C3	HC	312
1007	48	462	0,1	0	0,1	420	37	2,17		5,22	1,74	3,00	Сз	O	
		358	0			358	33	0,37		29,05				пк	
		93	0,1	0	0,1	85	37	0,29		7,79	3,30	3,15	C3	НС	313
572	24	231	0,1	0	0,1	210	37	2,17		2,61	1,74	1,50	C3	0	
		224	0			224	33	0,37		18,19				пк	
		116	0,15	0,05	0,1	101	37	0,29		9,26	3,30	3,20	Сз	Hc1	314
		324	0,15	0,05	0,1	282	37	0,29		25,91	3,30	7,85	СВ	нс2	
учтено в 112		126	0,1	0,05	0,05	115	37	0,29		10,56	3,30	3,20	юВ	нс3	
	12	121	0,15	0,05	0,1	105	37	2,17		1,31	1,74	0,75	сз	o1	
		310	0			310	33	0,37		25,12	7,85	3,20		пк	
		225	0,1	0	0,1	204	37	0,29		18,77	3,30	7,27	СВ	Нс	315
1000	48	462	0,1	0	0,1	420	37	2,17		5,22	1,74	3,00	СВ	O	
		266	0			266	33	0,37		21,57				пк	
109		109	0			109	33	0,37		8,85				ПК	316
109															317
														HC1	318

		The desired in the state of the											1		
	HC2	В	5,75	3,30	18,98		0,29	37	206	0,1	0,05	0,15	237		
	O1	Ю	3,00	1,74	5,22		2,17	37	420	0	0,05	0,05	441	48	
	пк		6,20	5,75	35,65		0,37	33	439			0	439		
319	НС	Ю	6,20	3,30	15,24		0,29	37	166	0	0	0	166		
	О	Ю	3,00	1,74	5,22		2,17	37	420	0	0	0	420	48	1073
	ПК		6,20	5,75	35,65		0,37	33	439			0	439		

Приложение Б

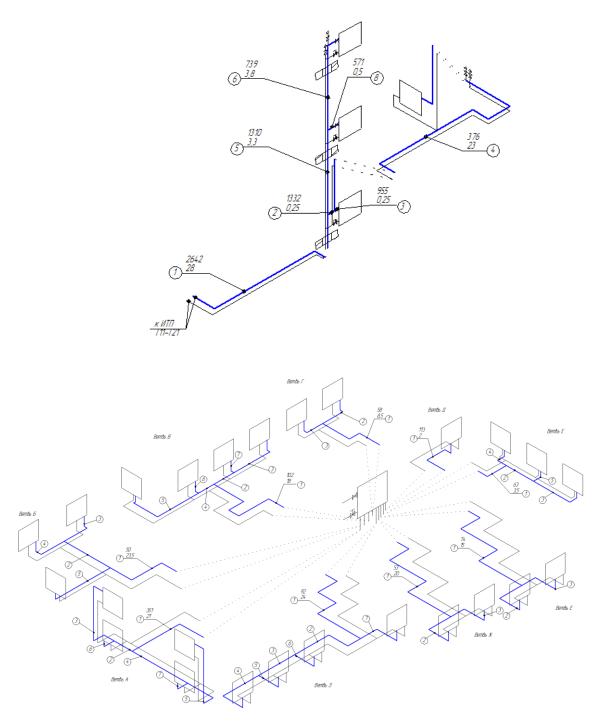


Рисунок Б.1 - Расчетная схема теплоснабжения распределителей Рисунок Б.2 — Расчетная схема отопления 1-го этажа

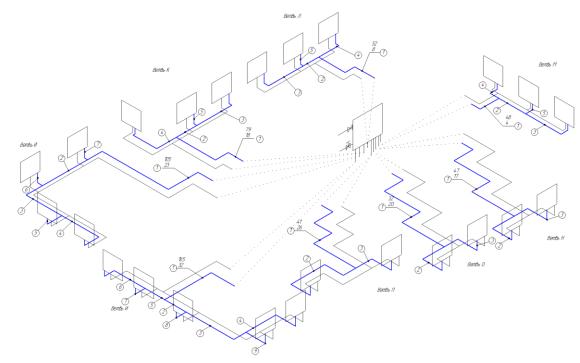


Рисунок Б.3 - Расчетная схема отопления 2-го этажа

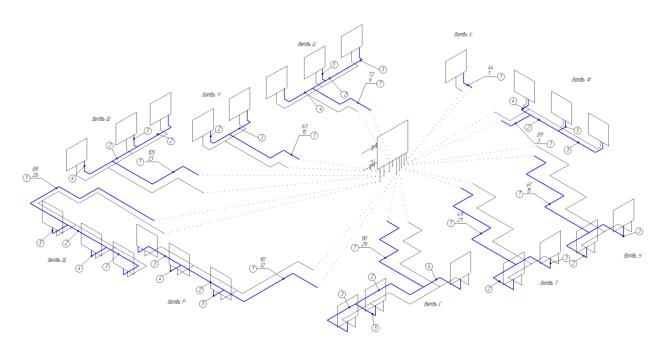


Рисунок Б.4 - Расчетная схема отопления 3-го этажа

Таблица Б.1 – Гидравлический расчет теплоснабжения распределителей

таолица В.1 – гидравлический расчет теплоснаожения ра											ожения распреденителен	
№	Тепловая	Расход	Дли	Диаме	Ско	Удельные	Потери	Сум	Потери	Суммарные		
уч	МОЩНОСТ	теплоно	на	тр	рост		давления	ма	давления на	потери		
ac	·	сителя	учас	участ	1	потери давления	на	КM	местных	давления на	Примечание	
тк	ь участка Q, Вт	Сителя G, кг/ч	тка 1,	ка d,	ь w, м/с	давления R, Па/м	участке	С	сопротивлени	участке ΔP ,		
a	Q, Di	U, KI/4	M	MM	M/C	K, 11a/M	R*l, Πa	$\sum \xi$	ях Z, Па	Па		
1	2	3	4	5	6	7	8	9	10	11	12	
	Основное кольцо											
											расширение, сужение	
1	57065	2642	10	50	0.55	102	2057		022.1	2670	задвижка, отвод 126град,	
1	57965	2642	18	50	0,55	102	2856	5,6	823,1	3679	отвод 110град, задвижка,	
											отвод90, отвод90,	
2	29222	1332	0,25	40	0,46	100	25	1,5	154,2	179	тройник поворот	
3	20963	955,3	0,25	40	0,33	56	14	2	105,8	120	тройник проход, кран ш	
3*	20963	955,3	0,25	40	0,33	56	14	1	53,54	68	тройник проход	
2*	29222	1332	0,25	40	0,46	100	25	3	312,1	337	тройник поворот слияние	
											отвод90, отвод90,	
		2642	18	50	0,55	102	3060	8,3	1234,3	4294	задвижка, отвод 110,	
1*	57965										сужение, расширение,	
											задвижка, отвод90, тройник	
											проход	
											сужение расширение,	
1a	57964,7	2642	4	50	0,55	102	408	3,5	514,4	922	задвижка, задвижка,	
											отвод90, отвод90	
						Вт	оростепенн	ые колі	ьца			
											тройник поворот, отвод,	
4	8259	376,4	23	32	0.23	44	1012	9	231,3	1243	отвод, отвод, тройник	
+	6239	370,4	23	32	0,23	44	1012	9	231,3	1243	поворот, отвод	
											поворот, отвод	

1	2	3	4	5	6	7	8	9	10	11	12
4*	8259	376,4	25	32	0,23	44	1100	14,5	377,1	11477	отвод, отвод, отвод, отвод, тройник проход, отвод, отвод, тройник проход слияние
5	28743	1310	3,3	40	0,46	98	323,4	1	102,8	426	тройник проход
6	16211	738,8	3,8	32	0,46	140	532	3,5	359,9	892	тройник проход, тройник поворот, кран шаровый
6*	16211	738,8	3,8	32	0,46	140	532	2,5	260,1	792	кран регулирующий, тройник поворот, тройник проход
5*	28743	1310	3,3	40	0,46	98	323,4	1	104	427	тройник проход
7	12532	571,1	0,5	32	0,35	90	45	2,5	148,8	194	тройник поворот, кран шаровый
7*	12532	571,1	0,5	32	0,35	90	45	3	180,7	226	кран регулирующий, тройник поворот

Таблица Б.2 – Гидравлический расчет системы отопления 1-го этажа

№ уча стк а	Тепловая мощность участка Q, Вт	Расход теплонос ителя G, кг/ч	Длин а участ ка l, м	Диамет р участка dy, мм	Скор ость w, м/с	Удельные потери давления R, Па/м	Потери давления на участке R*l, Па	Сум ма КМС Σξ	Потери давления на местных сопротивления xZ	Суммарные потери давления на участке ΔP , Па	примечание
1	2	3	4	5	6	7	8	9	10	11	12
Горизонтальная ветвь ГВ 1											
1	7692	350,5	20,5	25	0,39	152	3116	1,5	110,9	3227	Отвод
2	3845,8	175,3	1,8	20	0,3	133	239,4	1,5	65,6	305	Тройник поворот
3	1923	88	2	20	0	31	62	8	87,46	1149	Тройник проход-2, отвод-4
2*	3845,8	175,3	1,8	20	0,3	133	239,4	3	131,2	371	Тройник поворот, слияние
1*	7692	351	21	25	0	152	3116	2	110,9	3227	Отвод
4	3845,8	175,3	1,8	20	0,3	133	239,4	1,5	65,6	305	Тройник поврот
5	1923	88	2	20	0	31	62	8	87,46	149	Тройник проход-2, отвод-4
4*	3845,8	175,3	1,8	20	0,3	133	239,4	3	65,6	305	Тройник поворот слияние

Регулятор давления для увязки с участком 2-3-2*: дРкл = 305+1149+371-305-149-305=1066 Па $Kv=88/((10*1066)^0.5)=0,85 \text{м}^3/\text{ч}$. Регулировочное положение клапана – 6. Расчет остальных клапанов аналогичен.

										1	TO TOURNINGER B.Z
1	2	3	4	5	6	7	8	9	10	11	12
6	1923	88	1	20	0	31	31	7,5	82	113	Отвод-3, тройник слияние
				Регулят	ор давле	ния для увязк	и с участком	3: дРкл =	= 1036,5 Па		
				$K_V =$	= 0,86 м ³	/ч. Регулиров	очное положе	ние клап	ана – 6.		
7	1923	88	1	20	0	31	31	7,5	82	113	Отвод-3, тройник слияние
				Регулят	гор давл	ения для увяз	ки с участком	и 5: дРкл	= 1102 Πa		
				Kv=	0.83 m^3	/ч. Регулиров	очное положе	ние клап	ана – 6.		
						-	ГВ2				
1	1098	50	23,5	14	0,17	74	1739	3	42,13	1781	Отвод – 2
2	760,1	34,64	2,55	14	0,12	51	130,05	1	6,997	137	Тройник проход
3	422	19	4,66	14	0,07	28	130,48	7,5	17,86	148	Отвод-2, тройник проход, тройник слияние
2*	760,1	34,64	2,55	14	0,12	51	130,05	1	6,997	137	Тройник проход
1*	1098	50	24	14	0,17	74	1739	3	42,13	1781	Отвод-2
			Pe	гулятор д	авления	для увязки с	основным кол	іьцом: дІ	Р _{КЛ} = 4294,1 Па		
				, ,		09 м ³ /ч. Регул					
4	338,259	15,41	2,2	14	0,06	23	50,6	10,5	18,37	69	Тройник поворот, отвод-4, тройник слияние
'			•	Регулят	ор давле	ения для увязк	си с участком	3: дРкл =	= 4373,5 Па		
					$\mathbf{K}\mathbf{v} = 0$,07 м ³ /ч Регул	ировочное по	ложение	: Z		

			1	1	1		T	1	1	-	с таолицы Б.2
1	2	3	4	5	6	7	8	9	10	11	12
ι.	220.250	15 41	2.6	1.4	0.06	22	50.0	7.5	12.12	72	Тройник поворот,
5	338,259	15,41	2,6	14	0,06	23	59,8	7,5	13,12	73	отвод-2, тройник слияние
			Ţ	Derviigton	павлени	I Na hua abaskii (L C VHACTKOM 2-3		кл = 4643,6 Па		СЛИЛИНС
				СГУЛИТОР		,07 м ³ /ч Регул					
					11, 0		B 3	,10,110,1111	<u> </u>		
1	2246	102	18	16	0,27	97	1746	6	212,5	1959	Отвод -4
2	1311,37	59,76	2,1	16	0,16	49	102,9	1,5	18,66	122	Тройник проход
3	631	29	6,7	14	0,1	43	288,1	10	48,59	337	Тройник проход, отвод-4, тройник слияние
2*	1311,37	59,76	2,1	16	0,16	49	102,9	3	37,32	140	Тройник проход
1*	2246	102	18	16	0,27	97	1746	6	212,5	1959	Отвод-4
			Pe	гулятор да		для увязки с 15 м ³ /ч. регул			Ркл = 3763,2 Па e 3.		
4	934,199	42,57	0,95	14	0,15	64	60,8	1,5	16,4	77	Тройник проход
5	253	12	10,6	14	0,05	19	201,4	12,5	15,18	217	Тройник проход, отвод6, тройник проход

										тродоличи	
1	2	3	4	5	6	7	8	9	10	11	12
4*	934,199	42,57	0,95	14	0,15	64	60,8	3	32,8	94	Тройник слияние
		•	I	Регулятор	давлени	ия для увязки (с участком 2-	3-2*: дРн	кл = 3974,3 Па	1	- 1
				, ,		,15 м ³ /ч регул					
											Тройник
											поворот,
6	680,855	31,03	1	14	0,1	46	46	7,5	36,44	82	отвод2,
											тройник
											слияние
				Регулят		ения для увязк					
		T	1	1	Kv = 0	,15 м ³ /ч регул	ировочное по	ложение	2 3	T	1
											Тройник
											поворот,
7	680,855	31,03	1	14	0,1	46	46	7,5	36,44	82	отвод-2,
											тройник
									4045.5		слияние
				Регулят		ения для увязі					
					$\mathbf{K}\mathbf{v} = 0$,15 м ³ /ч регул		ложение	2 3		
		T	1 .				TB 4			T	
1	1270	58	8,5	14	0,2	86	731	4,5	87,46	818	Отвод - 3
											Тройник
											поворот,
2	662	30	4,6	14	0,1	44	202,4	10,5	51,02	253	отвод4,
											тройник
_						_					слияние
1*	1270	58	8,5	14	0,2	86	731	4,5	87,46	818	Отвод - 3

Регулятор давления для увязки с основным кольцом: дРкл = 6388,4 Па $Kv = 0,12 \text{ м}^3/\text{ч}$. регулировочное положение 2

1	2	2	4			7	0		10	-	12			
I	2	3	4	5	6	7	8	9	10	11	12			
3	607	28	3,6	14	0,1	41	147,6	9	43,73	191	Тройник поворот, отвод4, тройник слияние			
				Регулято	ор давле Kv = 0	ния для увязк ,11 м ³ /ч регул	и с участком і ировочное пол	2: дРкл пожение	= 6450,5 Πa e 2					
							TB 5							
1	2483	113	2	16	0,3	155	310	18	787,2	1097	Отвод 12			
	Регулятор давления для увязки с основным кольцом дРкл = $7181,6$ Па $Kv = 042$ м $^3/ч$ регулировочное положение 5													
				T		l	TB 6		.	.				
1	1374	63	3,5	14	0,22	93	325,5	3	70,55	396	Отвод2			
2	915,75	41,73	2,7	14	0,15	64	172,8	1,5	16,4	189	Тройник проход			
3	457,875	20,87	6,2	14	0,07	31	192,2	10,5	25	217	Тройник проход, отвод4, тройник проход			
2*	915,75	41,73	2,7	14	0,15	64	172,8	3	32,8	206	Тройник слияние			
1*	1374	63	3,5	14	0,22	93	325,5	3	70,55	396	Отвод2			

Регулятор давления для увязки с основным кольцом дРкл = 6874,7 Па $\mathrm{Kv} = 0.08~\mathrm{m}^3/\mathrm{v}$ регулировочное положение 2

4		2	4						10		12
1	2	3	4	5	6	7	8	9	10	11	12
											Тройник
											поворот,
4	457,875	20,87	0,7	14	0,07	31	21,7	7	16,67	38	отвод3,
											тройник
											проход
			P	егулятор ,					$_{\rm I} = 7448,3 \; \Pi {\rm a}$		
	T		T	Γ	Kv=	= 0,08 регулир	овочное поло	эжение 2			T
											Тройник
											поворот,
5	457,875	20,87	1	14	0,07	31	31	7,5	17,86	49	отвод2,
											тройник
											слияние
				Регулят			вки с участком				
					Kv = 0	,08 м ³ /ч регул	пировочное по	оложение 2	2		
							ГВ 7				
1	1625	74	14,5	14	0,26	110	1595	6	197,1	1792	Отвод4
											Тройник
											поворот,
2	812,414	37,02	5,2	14	0,13	55	286	10,5	86,22	372	отвод4,
											тройник
											слияние
1*	1625	74	14,5	14	0,26	110	1595	6	197,1	1792	Отвод4
			Pe	гулятор д	авления	для увязки с	основным ко	льцом дРк	:л = 4322,4 Па		<u> </u>
							овочное поло				
											Тройник
											поворот,
3	812,414	37,02	2,84	14	0,13	55	156,2	10,5	86,22	242	отвод4,
	,	,							•		тройник
											слияние
				Регулят	ор давле	ения для увяз	ки с участком	1 2 дРкл =	4452,2 Па		<u>.</u>
				,		Kv =	= 0,18 [°] м ³ ч		•		
							*				

1	2	3	4	5	6	7	8	9	10	11	12
]	ГВ 8				
1	1156	53	20	14	0,19	79	1580	6	105,2	1685	Отвод4
2	577,933	26,34	5,6	14	0,1	40	224	10,5	51,02	275	Трйоник поворот, отвод4, тройник слияние
1*	1156	53	20	14	0,19	79	1580	6	105,2	1685	Отвод4
			Pe	гулятор д	авления Kv =	для увязки с 0,12, регулир	основным коловочное поло	льцом дР эжение 2	кл = 4633,3 Па		·
3	577,933	26,34	2,4	14	0,1	40	96	10,5	51,02	147	Трйоник поворот, отвод4, тройник слияние
				Регулят	-	= 0,12 регулир	ки с участком оовочное поло ГВ 9		4761,3 Па		
1	2020	92	23,5	16	0,24	75	1762,5	6	167,9	1930	Отвод4
2	1515,31	69,05	3,6	14	0,24	102	367,2	4,5	125,9	493	Отвод2, поворот
3	1010,2	46,04	2,8	14	0,16	68	190,4	1	12,44	203	Тройник проход
4	505,102	23,02	6,6	14	0,08	34	224,4	8	24,88	249	Тройник проход, отвод4, тройник проход
3*	1010,2	46,04	2,8	14	0,16	68	190,4	1	12,44	203	Тройник проход

										продолже	ение таблицы Б.2
1	2	3	4	5	6	7	8	9	10	11	12
2*	1515,31	69,05	3,6	14	0,24	102	367,2	3	83,96	451	Тройник слияние
1*	2020	92	23,5	16	0,24	75	1762,5	6	167,9	1930	Отвод4
			Pe	егулятор д	авления	для увязки с	основным ко	льцом дР	Р _{КЛ} = 2818,6 Па		
						Kv	=0,14				
5	505,102	23,02	1	14	0,08	34	34	7,5	23,32	57	Тройник поворот, отвод2, тройник слияние
				Регулят		ения для увяз			= 3010,6 Па		
					Kv=	= 0,13 регулир	овочное поло	жение 2			
6	505,102	23,02	1	14	0,08	34	34	7,5	23,32	57	Тройник поворот, отвод2, трйоник слияние
]	Регулятор	давлени	ия для увязки	с участком 3-	4-3* дРк	л = 3416,3 Па		
						= 0,12 регулир					
7	505,102	23,02	2,6	14	0,08	34	88,4	10,5	32,65	121	Тройник поворот, овтод4, трйоник слияние
			Per	улятор да					$_{\rm I}$ Ркл = 4296,9 Па		
					Kv =	= 0,11 регулир	овочное поло	жение 2			

Таблица Б.3 – Гидравлический расчет системы отопления 2-го этажа

№ уча стк а	Тепловая мощность участка Q, Вт	Расход теплонос ителя G, кг/ч	Длин а участ ка l, м	Диамет р участка dy, мм	Скор ость w, м/с	Удельные потери давления R, Па/м	Потери давления на участке R*l, Па	Сум ма КМС Σξ	Потери давления на местных сопротивления xZ	Суммарные потери давления на участке ΔP , Πa	примечание
						Γ	B 10				
1	3630	165	23	20	0,28	120	2760	6	228,6	2989	Отвод 4
2	2178,19	99,26	0,8	20	0,17	34	27,2	1,5	21,06	48	Тройник поворот
3	1452,12	66,18	2,7	16	0,17	54	145,8	1	14,04	160	Трйоник проход
4	726,062	33,09	6,4	16	0,09	28	179,2	8	31,49	711	Тройник проход, отвод4, тройник проход
3*	1452,12	66,18	2,7	16	0,17	54	145,8	1	14,04	160	Тройник проход
2*	2178,19	99,26	0,8	20	0,17	34	27,2	3	42,13	69	Тройник слияние
1*	3630	165	23	20	0	120	2760	6	228,6	2989	Отвод4
	Клаг	тан регулиру	уется на	максималі	ьное отн	крытие. Регулі	ировочное пол	ожение	5. Потери давлен	ия в клапане 500 I	Та
5	1452,12	66,18	1,8	16	0,17	54	97,2	1,5	21,06	118	Тройник поворот

6	726,062	33,09	6,2	16	0,09	28	173,6	8	31,49	205	Тройник проход, отвод4, тройник проход
1 1		l.	ı	I	•	I	I	'	'	Продолжение	таблицы Б.3
1	2	3	4	5	6	7	8	9	10	11	12
5*	1452,12	66,18	1,8	16	0,17	54	97,2	3	42,13	139	Тройник слияние
			Per	улятор да					Ркл = 685,29 Па		
			Т		Kv = 0),4 м ³ /ч. Регулі	ировочное пол	ожение	4		
7	726,062	33,09	1	16	0,09	28	28	7,5	29,52	58	Тройник поворот, отвод2, трйоник слияние
				Регулят			и с участком				
	Γ		I	T	Kv = 0	,36 м ³ /ч регул	ировочное пол	пожение	: 4		
8	726,062	33,09	1	16	0,09	28	28	7,5	29,52	58	Тройник поворот, отвод2, трйоник слияние
			-	Регулятор	давлен	ия для увязки	с участком3-4	-3* дРк.	$\pi = 972,85 \; \Pi a$		
	<u> </u>		T		$\mathbf{K}\mathbf{v} = 0$,34 м³/ч регул	ировочное пол	пожение	: 4	1	T. V
9	726,062	33,09	1	16	0,09	28	28	7,5	29,52	58	Тройник поворот, отвод2, трйоник слияние
				Регулят			и с участком				
					Kv = 0	,41 м ³ /ч регул	ировочное пол	пожение	4		

						Γ	B 11				
1	2316	106	23	20	0,18	37	851	6	94,46	945	Отвод4
2	1737	79	2,7	16	0,28	66	178,2	1	38,09	216	Тройник проход
3	1158	53	2,7	16	0,15	45	121,5	1	10,93	132	Тройник проход
										Продолжени	е таблицы Б.3
1	2	3	4	5	6	7	8	9	10	11	12
4	579	26	6,4	16	0,07	21	134,4	8	19,05	153	Трйоник проход, отвод4, тройник проход
3*	1158	53	3	16	0,15	45	121,5	1	10,93	132	Тройник проход
2*	1737	79	3	16	0,28	66	178,2	1	38,09	216	Тройник проход
1*	2316	106	23	20	0,18	37	851	6	110,2	961	Отвод4
				Регул		вления для ув ,13 м ³ /ч регул					
5	579	26	6	16	0,07	21	134,4	8	17,86	152	Тройник поворот, отвод2, тройник слияние
				Регулят		ения для увязн					
					Kv = 0	,13 м ³ /ч регул	ировочное по.	пожение	3		

6	579	26	6	16	0,07	21	134,4	8	17,86	152	Тройник поворот, отвод2, тройник слияние
---	-----	----	---	----	------	----	-------	---	-------	-----	--

Регулятор давления для увязки с участком 3-4-3* дРкл = 4633,6 Па $Kv = 0,12 \text{ м}^3/\text{ч}$ регулировочное положение 3

										Продолжени	е таблицы Б.3
1	2	3	4	5	6	7	8	9	10	11	12
7	579	26	6	16	0,07	21	134,4	8	17,86	152	Тройник поворот, отвод2, тройник слияние
			Per	 Гупятор ла	 Впения	ппя увязки с у	<u> </u>	<u> </u> _3*_2* յ	цРкл = 5066,2 Па		Слиянис
			1 01				ировочное пол				
							B 12				
1	1737	79	17,5	16	0,28	66	1155	4,5	171,4	1326	Отвод 3
2	1158	53	0,6	16	0,15	45	27	1,5	16,4	43	Тройник поворот
3	579	26	7	16	0,07	21	147	8	19,05	166	Тройник проход, отвод4, тройник проход
2*	1158	53	1	16	0	45	27	3	32,8	60	Тройник слияние
1*	1737	79	18	16	0	66	1155	5	171,4	1326	Отвод 3

				Регу.		вления для ун 0,1 м ³ /ч регули					
4	579	26	9	16	0	21	180,6	17	39,29	220	Тройник проход, отвод 8, тройник слияние
]	Регулятор		ия для увязки),1 м ³ /ч регули			л = 7174,5 Па 2		
										Продолжени	ие таблицы Б.3
1	2	3	4	5	6	7	8	9	10	11	12
5	579	26	1	16	0	21	21	7,5	17,86	39	Трйоник поворот, отвод2, тройник слияние
				Регулят		ения для увязі),1 м ³ /ч регуль	ировочное пол				
							B 13	Τ .			
2	1144 746	52 34	2,2	16 16	0,14	28	336 61,6	1,5	28,57 5,904	365 68	Отвод2 Тройник поворот
3	373,046	17	7	14	0,06	25	175	8	13,99	189	Тройник проход, отвод 4, тройник проход
2*	746	34	2	16	0	28	61,6	3	11,81	73	Тройник слияние
1*	1144	52	8	16	0	42	336	3	28,57	365	Отвод2
				Регул	ятор да	вления для ув	язки с ГВ 10		066,1 Па		

	$K_V = 0.07 \text{ м}^3 / \text{ч}$ регулировочное положение 2												
4	398	18	2,8	14	0,07	26	72,8	10,5	25	98	Тройник поворот, отвод4, тройник слияние		
	Регулятор давления для увязки с участком 2-3-2* дРкл = $6298,2$ Па $Kv = 0,7$ м $^3/ч$ регулировочное положение 2												

	Продолжение таблицы Б.3 2 3 4 5 6 7 8 9 10 11 12													
1	2	3	4	5	6	7	8	9	10	11	12			
5	373,046	17	1	14	0,06	25	25	7,5	13,12	38	Тройник поворот, отвод2, тройник слияние			
				Регулят			ки с участком							
					Kv=		овочное поло:	жение 2						
	ΓB 14													
1	1058	48	3,5	16	0,13	41	143,5	1,5	12,32	156	Отвод			
2	705,21	32,14	2,7	16	0,08	26	70,2	1,5	4,665	75	Тройник поворот			
3	352,605	16,07	6,4	16	0,05	14	89,6	8	9,718	99	Тройник проход, отвод4, тройник проход			
2*	705,21	32,14	2,7	16	0,08	26	70,2	3	9,329	80	Тройник слияние			
1*	1058	48	4	16	0	41	143,5	1,5	12,32	156	отвод			
		Регулятор далвения для увязки с ГВ 10 дРкл = 6559,8 Па												

					Kv=	= 0,19 регулир	овочное поло	жение3				
4	352,605	16,07	1,8	16	0,05	14	25,2	7	8,503	34	Тройник поврот, отвод2, тройник проход	
			I	Регулятор	давлені Kv = 0	ия для увязки ,06 м ³ /ч регул	с участком 2- ировочное по	3-2* дРк ложение	л = 6779,8 Па e 2			
I										Продолжени	е таблицы Б.3	
1	2	3	4	5	6	7	8	9	10	11	12	
5	352,605	16,07	1	16	0,05	14	14	7,5	9,111	23	Тройник поворот, отвод2, тройник слияние	
				Регуля		тения для увяз ,06 м ³ /ч регул						
						Γ	B 15					
1	1037	47	17	16	0,13	41	697	7,5	61,59	759	Отвод5	
2	518,673	23,64	6	16	0,04	20	120	10,5	8,163	128	Тройник поворот, отвод4, трйоник слияние	
1*	1037	47	17	16	0	41	697	7,5	61,59	759	Отвод5	
	Регулятор давления для увязки с ГВ 10 дРкл = $5479,8$ Па $Kv = 0,1$ м $^3/ч$ регулировочное положение 2											
3	518,673	23,64	2	16	0,04	20	40	10,5	8,163	48	Тройник поворот, отвод4, тройник	

											слияние
				Регулят	гор давле	ения для увяз	ки с участком	2 дРкл =	5559,8 Па		
					Kv = 0		ировочное по	пожение 2	2		
							TB 16	 		T	Τ
1	707	32	20	16	0,08	26	520	7,5	23,32	543	Отвод5
											Тройник
2	260	1.7	5 6	1.0	0.05	1.4	70.4	10.5	10.75	0.1	поворот,
2	369	17	5,6	16	0,05	14	78,4	10,5	12,75	91	отвод4,
											трйоник
										Пеонония	слияние
1	2	2	4	-		7	0		10		ие таблицы Б.3
1	2	3	4	5	6	7	8	9	10	11	12
1*	707	32	20	16	0	26	520	8	23,32	543	Отвод5
				Регу.			вязки с ГВ 10				
					$\mathbf{K}\mathbf{v} = 0$,07 м3/ч регул	пировочное по	ложение	2	1	T ~
											Тройник
3	338	15	2,6	16	0.04	12	31,2	10,5	8,163	39	поворот, отвод4,
3	336	13	2,0	10	0,04	12	31,2	10,5	0,103	39	тройник
											слияние
				Регупят	гор давле	ения лпя VRяз	и с участком	. 1 — <u>— — — — — — — — — — — — — — — — — </u>	5999 1 Па		Слиние
				1 01 931711			провочное по				
							TB 17				
1	902	41	25,5	16	0,09	28	714	7,5	29,52	744	Отвод5
											Тройник
											поворот,
2	451,031	20,55	8,8	16	0,06	17	149,6	16,5	28,86	178	отвод8,
											тройник
											слияние
1*	902	41	26	16	0	28	714	8	29,52	744	Отвод5
				Регу			вязки с ГВ 10				
			1				ировочное по			T	
3	451,031	20,55	2,6	16	0,06	17	44,2	10,5	18,37	63	Тройник

										поворот, отвод4, тройник слияние		
			Регупато	าก กลอก	ן בממע חחם עסמטג	CM C VHACTROM) пРип =	= 5575 5 Па		СЛИЛИНС		
Регулятор давления для увязки с участком 2 дРкл = 5575,5 Па												
$K_V = 0.09 \text{ м}^3/\text{ч}$ регулировочное положение 2												

Таблица Б.4 – Гидравлический расчет системы отопления 3-го этажа

№ уча стк а	Тепловая мощность участка Q,	Расход теплонос ителя G, кг/ч	Длин а участ ка l, м	Диамет р участка dy, мм	Скор ость w, м/с	Удельные потери давления R, Па/м	Потери давления на участке R*I, Па	Сум ма КМС Σξ	Потери давления на местных сопротивления xZ	Суммарные потери давления на участке ΔP , Πa	примечание
1	2	3	4	5	6	7	8	9	10	11	12
						Γ	B 18				
1	1967	90	32	20	0,16	32	1024	7,5	93,29	1117	Отвод5
2	1311,58	59,77	2,7	16	0,16	49	132,3	1	12,44	145	Тройник проход
3	655,791	29,89	6,4	16	0,08	25	160	8	24,88	685	Тройник проход, отвод4, трйоник проход
2*	1311,58	59,77	2,7	16	0,16	49	132,3	1	12,44	145	Тройник проход

1*	1967	90	32	20	0,16	32	1024	7,5	93,29	1117	Отвод5
		Регу	лятор да	вления на	страива	ется на макси	мально открь	тие. Рег	улировочное поло	жение 4	•
4	655,791	29,89	1	16	0,08	25	25	7,5	23,32	48	Тройник поворот, отвод2, тройник слияние
				Регулят	ор давло Kv = 0	ения для увязі ,37 м ³ /ч регул	ки с участком ировочное по	3 дРкл = эложение	= 636,55 Па e 4		
										Продолжени	е таблицы Б.4
1	2	3	4	5	6	7	8	9	10	11	12
5	655,791	29,89	1	16	0,08	25	25	7,5	23,32	48	Тройник поворот, отвод2, тройник слияние
]	Регулятор	давлені	ия для увязки	с участком 2-	3-2* дРк	:л = 926,03 Па		1
					Kv = 0	,31 м ³ /ч регул		ложение	e 4		
							B 19	_			
1	1973	90	29	20	0,16	32	928	7,5	93,29	1021	Отвод5
2	1276	58	1,8	16	0,16	48	86,4	1,5	18,66	105	Тройник поворот
3	637,914	29,07	6,4	16	0,08	26	166,4	8	24,88	191	Тройник проход, отвод4, тройник проход
2*	1276	58	1,8	16	0,16	48	86,4	3	37,32	124	Тройник слияние
1*	1973	90	29	20	0,16	32	928	7,5	93,29	1021	Отвод5

				Регу.		авления для уг ,34 м ³ /ч регул					
4	697	32	6,4	16	0,08	27	172,8	9,5	29,54	202	Тройник поворот, отвод4, трйоник слияние
			-	Регулятор		ия для увязки ,32 м ³ /ч регул			кл = 964,01 Па e 4		
•										Продолжени	ие таблицы Б.4
1	2	3	4	5	6	7	8	9	10	11	12
5	637,914	29,07	1	16	0,08	26	26	7,5	23,32	49	Тройник поворот, отвод2, трйоник слияние
				Регулят		ения для увязы, 32 м ³ /ч регул				•	
							B 20	_		_	_
1	1073	49	20,5	16	0,14	40	820	6	57,14	877	Отвод4
2	536,461	24,45	5,8	16	0,07	21	121,8	10,5	25	147	Тройник поворот, отвод4, тройник слияние
1*	1073	49	20,5	16	0,14	40	820	6	57,14	877	Отвод4
		•		Регул		вления для ув 1,21 м ³ /ч регул				•	
3	536,461	24,45	2,4	16	0,07	21	50,4	10,5	25	75	Тройник поворот, отвод4, тройник

											слияние
				Регулят		ения для увяз					
					$\mathbf{K}\mathbf{v} = 0$,21 м ³ /ч регул	•	ложение	e 3		
	T	T	T	I		•	B 21	1	Г	T	Г
1	1340	61	14,5	16	0,16	50	725	6	74,63	800	Отвод4
											Трйоник
						_					поворот,
2	669,813	30,52	5	16	0,08	26	130	10,5	32,65	163	отвод4,
											тройник
			ļ								слияние
	_	_	_	T		T	T	1		Продолжени	е таблицы Б.4
1	2	3	4	5	6	7	8	9	10	11	12
1*	1340	61	15	16	0	50	725	6	74,63	800	Отвод4
				Регу		авления для у					
					Kv = 0	,25 м ³ /ч регул	ировочное по	ложение	e 3		
											Трйоник
											поворот,
3	669,813	30,52	3	16	0,08	26	78	10,5	32,65	111	отвод4,
											тройник
											слияние
				Регуля		пения для увяз					
					Kv = 0	,25 м ³ /ч регул		ложение	e 3		
	T	1	T	1	T	•	B 22		1	ı	1
1	1962,47	89,43	3	20	0,16	32	96	1,5	18,66	115	Отвод
2	1462,39	66,64	2,7	16	0,18	55	148,5	1,5	23,61	172	Тройник
	1402,37	00,04	2,7	10	0,10	33	140,5	1,5	23,01	172	поворот
											Тройник
						_					проход,
3	962,295	43,85	7,2	16	0,11	36	259,2	8	47,04	306	отвод4,
											тройник
								1			проход
2*	1462,39	66,64	2,7	16	0,18	55	148,5	3	47,23	196	Тройник
	1.02,00	00,0.	_,.		5,15		1.0,0		,==	170	слияние

1*	1962,47	89,43	3	20	0,16	32	96	1,5	18,66	115	отвод
				Регул		вления для ув					
		T			Kv =	0,29 м ³ /ч регу.	лировочное да	вление	3		
											Тройник поворот,
4	500,09	22,79	1	16	0,06	20	20	7,5	12,24	32	отвод2,
											тройник
								2 2	2550 5 77		слияние
				Регулят		ения для увязі					
					$\mathbf{K}\mathbf{v} = 0$,14 м ³ /ч регул	ировочное пол	пожение	e 3		
		T	Т	T	T			1			е таблицы Б.4
1	2	3	4	5	6	7	8	9	10	11	12
											Тройник
											поворот,
5	500,09	22,79	1	16	0,06	20	20	7,5	13,12	33	отвод2,
											тройник
			_					<u> </u>			слияние
]	Регулятор					сл = 2946,5 Па		
					Kv = 0	,13 м ³ /ч регул		пожение	e 3		
		T	T	T	T	l .	B 23	T			
1	962,295	43,85	1	16	0,11	36	36	3	17,64	54	Отвод2
				Регул		вления для ув					
					Kv = 0),25 м ³ /ч регул		ожение	3		
		T	T	T		Γ	B 24	_			
1	1579	72	9	16	0,19	58	522	3	52,62	575	Отвод2
2	1075,56	49,01	0,5	16	0,14	42	21	1,5	14,29	35	Трйоник поворот

3	572	26	7,2	16	0,07	21	151,2	8	19,05	170	Тройник проход, отвод4, тройник проход
2*	1075,56	49,01	0,5	16	0,14	42	21	3	28,57	50	Тройник слияние
1*	1579	72	9	16	0	58	522	3	52,62	575	Отвод2

Регулятор давления для увязки с ГВ 18 дРкл = 1804,6 Па $\mathrm{Kv} = 0.16~\mathrm{m}^3/\mathrm{u}$ регулировочное положение 3

Продолжение таблицы Б.4 1 2 3 4 5 6 7 8 9 10 11 12 Тройник поворот, отвод 4, тройник слияние Регулятор давления для увязки с участком 2-3-2* дРкл = 1932,5 Па Кv = 0,17 м³/ч регулировочное положение 3 Тройник поворот, отвод 2, тройник поворот, отвод 3 Тройник слияние Регулятор давления для увязки с участком 3 дРкл = 1944,7 Па													
1	2	3	4	5	6	7	8	9	10	11	12		
4	503,343	22,94	6,4	16	0,06	17	108,8	10,5	18,37	127	поворот, отвод 4, тройник		
]	Регулятор									
5	503,343	22,94	1	16	0,06	17	17	7,5	13,12	30	поворот, отвод2, тройник		
		1	·	Регулят									
					Kv = 0	,16 м³/ч регул	ировочное пол	пожение	e 3				

ГВ 25

1	1382	63	15	16	0,17	52	780	3	42,13	822	Отвод2
2	752	34	6,2	16	0,09	28	173,6	10,5	41,33	215	Тройник поворот, отвож4, тройник слияние
1*	1382	63	15	16	0	52	780	3	42,13	822	Отвод2

Регулятор давления для увязки с ГВ 18 дРкл = 1349,8 Па $\mathrm{Kv}=0.3~\mathrm{m}^3/\mathrm{q}$ регулировочное положение 3

										продолжени	е таолицы в.4			
1	2	3	4	5	6	7	8	9	10	11	12			
3	630	29	2	16	0,08	25	50	10,5	32,65	83	Тройник поворот, отвож4, тройник слияние			
				Регуля	тор давл	пения для увяз	вки с участком	г 2 дРкл	$= 1482 \Pi a$					
				- J	$K_V = 0$,24 м ³ /ч регул	ировочное пол	пожени	e 3					
	$K_V = 0,24 \text{ м}^3/\text{ч}$ регулировочное положение 3 $\Gamma \mathbf{B} \ 26$													
1	2046	93	24	20	0,16	32	768	4,5	55,98	824	Отвод3			
2	1291	59	1,5	16	0,16	49	73,5	1,5	18,66	92	Тройник поворот			
3	645,594	29,42	6,4	16	0,08	24	153,6	8	24,88	178	Тройник проход, отво4, тройник проход			

2*	1291	59	2	16	0	49	73,5	3	37,32	111	Тройник слияние
1*	2046	93	24	20	0	32	768	4,5	55,98	824	Отвод3
· ·				Регул		авления для ув					•
					Kv = 0	,27 м ³ /ч регул	ировочное по	ложение	2 3		
4	755	34	3,2	16	0,09	16	51,2	10,5	41,33	93	Тройник поворот, отвод4, тройник
											слияние
]	 Регулатор	 павлені	 		 3_2* пРк	:л = 1468,5 Па		СЛИИПИС
				г ст улитор	Kv = 0	ли дли увизки),28 м ³ /ч регул	ировочное по	ложение	e3		
ļ					11,	,,20 m / 1 per y	inpozo ino c no	,10,110		Прололжени	е таблицы Б.4
1	2	3	4	5	6	7	8	9	10	<u> 11</u>	12
1		3			- U	,	<u> </u>		10	11	Тройник поворот,
5	645,594	29,42	1	16	0,08	24	24	7,5	23,32	47	отвод2, тройник слияние
				Регулят		ения для увязі					
					Kv = 0	,26 м ³ /ч регул	ировочное по.	пожение	e 3		
						Γ	B 27				
1	1927	88	26	20	0,15	31	806	6	65,6	872	Отвод 4
2	1284,35	58,53	2,7	16	0,16	48	129,6	1,5	18,66	148	Тройник пворот
3	642,176	29,26	6,4	16	0,08	25	160	8	24,88	185	Тройник проход, отвод4, тройник проход

2*	1284,35	58,53	2,7	16	0,16	48	129,6	3	37,32	167	Тройник слияние
1*	1927	88	26	20	0	31	806	6	65,6	872	Отвод4
				Регул	ятор да Kv = (вления для ув 0,3 м ³ /ч регулі	язки с ГВ 18 д ировочное пол	Ркл = 9 южение	65,69 Па e3		
4	642,176	29,26	1	16	0,08	25	25	7,5	23,32	48	Тройник поворот, отвод2, тройник слияние
				Регулят			ки с участком і				

										1 ' '	
1	2	3	4	5	6	7	8	9	10	11	12
5	642,176	29,26	1	16	0,08	25	25	7,5	23,32	48	Тройник поворот, отвод2, тройник слияние
							_				

Регулятор давления для увязки с участком 2-3-2* дРкл = 1417,4 Па $Kv = 0.25 \text{ м}^3/\text{ч}$ регулировочное положение 3

Приложение В

Таблица В.1 – Тепловой расчет отопительных приборов Теплопотери помещения Q4, Средняя расчетная разность Теплоотдача трубопроводов Расход теплоносителя G, Начальная температура теплоносителя t_{вх}, ⁰С Номинальный тепловой Номинальный тепловой **Теплотдача** приборов в Конечная температура теплоносителя tвых, 0С Подобранный прибор поток отопительного температур Δt_{cp} , ${}^{0}C$ помещении Q1, Вт Число приборов в помещении и, шт Коэффициент ф прибора Q_н, Вт № помещения поток Q_{нт}, Вт $Q_{\text{Tp}},\,B_{T}$ 1й этаж 7691,59 0.89 CV33-600-900 338,26 0,66 CV11-300-400 421.84 0.64 CV22-600-400 253,34 0,64 CV22-300-400 680,85 0,70 CV22-300-500 630,52 0,69 CV22-900-400 607,38 CV22-600-500 0,69 662,47 0,70 CV22-900-400 2482,62 0.85 CV33-900-900 505,10 0,68 CV11-300-400 457,87 0,68 CV11-300-400 577,93 0,69 CV22-300-500 CV22-500-400 812,41 0,71 Гараж 8259,31 CV33-900-3000 0,89 2й Этаж 726,06 0,70 CV11-300-400

		ı	ı	1	1	1		1	1			жение таолицы Б.1
1	2	3	4	5	6	7	8	9	10	11	12	13
202	7	4053	185	80	60	52	0	579,03	120	0,69	218	CV11-300-400
203	2	902	41	80	60	52	0	451,03	334	0,67	384	CV22-300-400
206	2	746	34	80	60	52	0	373,05	281	0,66	384	CV22-300-400
207	1	398	18	80	60	52	0	397,93	596	0,67	588	CV22-500-400
212	3	1058	48	80	60	52	0	352,61	178	0,66	218	CV11-300-400
213	2	1037	47	80	60	52	0	518,67	380	0,68	384	CV22-300-400
214	1	338	15	80	60	52	0	338,38	513	0,66	588	CV22-500-400
215	1	369	17	80	60	52	0	368,54	555	0,66	588	CV22-500-400
	•	•	•	•	•	•	3й э	таж	1	•		
302	3	1967	90	80	60	52	0	655,79	314	0,70	384	CV22-300-400
303	3	1927	88	80	60	52	0	642,18	308	0,69	384	CV22-300-400
304	1	755	34	80	60	52	0	754,74	1074	0,70	1025	CV22-600-600
305	2	1291	59	80	60	52	0	645,59	465	0,69	481	CV22-300-500
306	1	752	34	80	60	52	0	752,44	1071	0,70	1178	CV33-600-500
308	2	1925	88	80	60	52	0	962,30	671	0,72	684	CV22-600-400
309	1	697	32	80	60	52	0	696,68	997	0,70	955	CV22-900-400
310	2	1276	58	80	60	52	0	637,91	460	0,69	481	CV22-300-500
311	1	630	29	80	60	52	0	629,99	909	0,69	955	CV22-900-400
312	2	1007	46	80	60	52	0	503,34	370	0,68	384	CV22-300-400
313	1	572	26	80	60	52	0	572,22	832	0,69	855	CV22-600-500
315	2	1000	46	80	60	52	0	500,09	368	0,68	384	CV22-300-400
318	2	1340	61	80	60	52	0	669,81	481	0,70	481	CV22-300-500
319	2	1073	49	80	60	52	0	536,46	392	0,68	384	CV22-300-400

Приложение Г

Таблица Г.1 – Расчет теплопоступлений от солнечной радиации Часы суток 10-11-12-13-14-15-16-17-18-7-8 8-9 5-6 6-7 15 18 10 11 12 13 14 16 17 19 3 9 10 11 12 13 14 15 Помещение 106 – клиентская зона Окно 1 – ориентация ЮЗ Удельное теплопоступление от прямой радиации 0 0 0 0 0 14 150 272 363 429 448 389 272 116 $q_{B\Pi}$, BT/M^2 Удельное теплопоступление от рассеянной 23 43 55 63 72 78 86 98 110 114 110 91 52 67 радиации q_{Bp} , BT/M^2 Площадь светового проема F, м² 0.78 0,54 1,26 1,26 1,26 0.54 0,54 0,54 0,54 0.54 0.54 0.54 0.54 k1 k2 0,9 βс.з. 20,3 38,0 48,6 55, 59, 86,4 135, 174, 213, 189, 137, 63,6 204 Теплопоступление от солнечной радиации Qс.р., Вт 32,6 04 5 Окно 2 - ориентация Ю Удельное теплопоступление от прямой радиации 0 299 344 344 299 206 13 206 13 0 94 94 0 0 $q_{B\Pi}$, B_T/M^2 Удельное теплопоступление от рассеянной 85 91 31 59 76 87 90 91 90 87 85 76 59 31 радиации q_{BP} , BT/M^2 Площадь светового проема F, м² 0.78 0,5 0,5 0,54 1.26 0.54 0.54 0.54 0.54 k1 1.26 0.54 0.54 0.54 1.26 1.26 k2 0,9 Теплопоступление от солнечной радиации $Q_{c.p.}$, Bt | 27,4 | 52,1 | 33,7 | 67, 164, 164, 147, 111 67.8

		1 0	1 .	-		1				1		1 4		
	2	9	4	9			9	9	5		55	4	9	2
										Прод	долже	ние та	блиці	ы Г.1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	(Экно 3	– ори	ентац	ия Ю	В								
Удельное теплопоступление от прямой радиации $q_{\mbox{\tiny BH}}, \mbox{BT/M}^2$	116	272	398	448	429	363	272	150	14	0	0	0	0	0
Удельное теплопоступление от рассеянной радиации $q_{вp}$, $B\tau/m^2$	52	91	110	114	110	98	86	78	72	67	63	55	43	23
Площадь светового проема F, м ²							0	,78						
k1	0,54	0,54	0,54	0,5 4	0,5 4	0,54	0,54	0,54	0,54	1,26	1,26	1,26	1,26	1,26
k2							(),9						
β _{c.3.}								1						
Теплопоступление от солнечной радиации Q _{с.р.} , Вт	63,6 9	137, 6	192, 6	213	204	175	135, 71	86,4	32,6	59,3	55,7 25	48,6	38,0	20,3
	•	Окно	4 – орг	іентаі	ция Ю)	•					•		•
Удельное теплопоступление от прямой радиации $q_{\mbox{\tiny BH}}, \mbox{BT/M}^2$	0	0	13	94	206	299	344	344	299	206	94	13	0	0
Удельное теплопоступление от рассеянной радиации q_{Bp} , $B\tau/m^2$	31	59	76	85	87	90	91	91	90	87	85	76	59	31
Площадь светового проема F, м ²			•			1	2	,61				1		
k1	1,26	1,26	0,54	0,5 4	0,5 4	0,54	0,54	0,54	0,54	0,54	0,54	0,54	1,26	1,26
k2							(),9						
β _{c.3.}								1						
Теплопоступление от солнечной радиации Q _{с.р.} , Вт	91,7 5	174, 6	112, 9	227	372	493	551, 78	551, 8	493, 4	372	227, 05	112, 9	174, 6	91,7 5

Суммарные теплопоступления в помещения $\sum Q_{c.p.}$, B_T	203,	402, 5	387, 9	564	746	848	938, 82	938, 8	848,	746	563, 68	384, 4	402, 5	203,
•	•		,		,	,	'	•	,	Прод	долже	ние та	блиці	ы Г.1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Пом	иещен	ие 201	– Ак				T		T				
	5-6	6-7	7-8	8-9	9- 10	10- 11	11- 12	12- 13	13- 14	14- 15	15- 16	16- 17	17- 18	18- 19
		Окно	1 – op	иента	ция 3							•		
Удельное теплопоступление от прямой радиации $q_{\mbox{\tiny BH}}, \mbox{BT/M}^2$	0	0	0	0	0	0	0	37	193	374	428	545	497	371
Удельное теплопоступление от рассеянной радиации $q_{вр}$, $B\tau/m^2$	28	44	53	57	59	60	65	72	84	100	123	129	119	73
Площадь светового проема F, м ²							3	3,83						
k1	1,26	1,26	1,26	1,2 6	1,2 6	1,26	1,26	0,54	0,54	0,54	0,54	0,54	0,54	0,54
k2							(0,9						
β _{c.3.}								1				_		
Теплопоступление от солнечной радиации Q _{с.р.} , Вт	121, 5	190, 9	229, 9	247	256	260	281, 94	202,	514, 9	881	1024 ,3	125 3	114 5	825, 4
		Окно	2 – op	иента	ция 3									
Удельное теплопоступление от прямой радиации $q_{\text{вп}}$, $B_{\text{т}}/\text{м}^2$	0	0	0	0	0	0	0	37	193	374	428	545	497	371
Удельное теплопоступление от рассеянной радиации q_{Bp} , $B\tau/m^2$	28	44	53	57	59	60	65	72	84	100	123	129	119	73
Площадь светового проема F, м ²							3	3,83						
k1	1,26	1,26	1,26	1,2 6	1,2 6	1,26	1,26	0,54	0,54	0,54	0,54	0,54	0,54	0,54
k2 0,9														
βс.з.								1						

Теплопоступление от солнечной радиации Q _{с.р.} , Вт	121, 5	190, 9	229, 9	247	256	260	281, 94	202,	514, 9	881	1024 ,3	125 3	114 5	825, 4
										Прод	долже	ние та	блиці	ы Г.1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	(Экно 3	– ори	ентац	ия Ю	3		_						
Удельное теплопоступление от прямой радиации $q_{\mbox{\tiny BH}}, \mbox{BT/m}^2$	0	0	0	0	0	14	150	272	363	429	448	398	272	116
Удельное теплопоступление от рассеянной радиации $q_{\text{вр}}$, $B \text{т/m}^2$	23	43	55	63	67	72	78	86	98	110	114	110	91	52
Площадь светового проема F, м ²							3	,83						
k1	1,26	1,26	1,26	1,2 6	1,2 6	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
k2		u	l.		1	ı		0,9	l.	ı		Į.	I.	
β _{c.3.}								1						
Теплопоступление от солнечной радиации Q _{с.р.} , Вт	99,7 6	186, 5	238, 6	273	291	160	423, 84	665, 5	857	100 2	1044 ,7	944,	674, 8	312,
		Окно 4	4 – ори	иентан	ция Ю)								
Удельное теплопоступление от прямой радиации $q_{\mbox{\tiny BT}}/\mbox{\tiny M}^2$	0	0	13	94	206	299	344	344	299	206	94	13	0	0
Удельное теплопоступление от рассеянной радиации $q_{вр}$, $B\tau/m^2$	31	59	76	85	87	90	91	91	90	87	85	76	59	31
Площадь светового проема F, м ²							3	,83						
k1	1,26	1,26	0,54	0,5 4	0,5 4	0,54	0,54	0,54	0,54	0,54	0,54	0,54	1,26	1,26
k2								0,9						
βс.з.								1						

Теплопоступление от солнечной радиации Q _{с.р.} , Вт	134, 5	255, 9	165, 4	333	545	723	808, 64	808, 6	723, 1	545	332, 75	165, 4	255, 9	134, 5
			•		•				•	Прод	цолжеі	ние та	блиць	ы Г.1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	(Окно	5 – opi	иентаі	ция Ю)								
Удельное теплопоступление от прямой радиации $q_{\mbox{\tiny BH}}, B_{\mbox{\tiny T}}/\mbox{\tiny M}^2$	0	0	13	94	206	299	344	344	299	206	94	13	0	0
Удельное теплопоступление от рассеянной радиации q _{вр} , Вт/м ²	31	59	76	85	87	90	91	91	90	87	85	76	59	31
Площадь светового проема F, м ²							3	,83						
k1	1,26	1,26	0,54	0,5 4	0,5 4	0,54	0,54	0,54	0,54	0,54	0,54	0,54	1,26	1,26
k2							(),9						
βc.3.								1						
Теплопоступление от солнечной радиации Q _{с.р.} , Вт	134, 5	255, 9	165, 4	333	545	723	808, 64	808, 6	723, 1	545	332, 75	165, 4	255, 9	134,
Суммарные теплопоступления в помещения $\sum Q_{c.p.}$,Вт	611, 6	108 0	102 9	143 3	189 2	212 7	2605	268 8	333 3	385 4	3758 ,8	378 1	347 7	223 2

Приложение Д

Пример расчета воздухораспределителей

Произведем расчет и подбор воздухораспределителей для помещения №201.

Зададимся для помещения воздухораспределителями ПРМ1 диаметром 0.25 м, площадью сечения $F_0 = 0.05 \text{ м}^2$, коэффициентами m = 0.7 и n = 0.6 и определим расход воздуха на один воздухораспределитель:

$$L_0 = \frac{3743}{7} = 534.7 \text{ m}^3/\text{y}$$

Вычислим скорость воздуха в сечении распределителя:

$$v_0 = \frac{534.7}{3600 \cdot 0.05} = 2.97 \text{ m/c}$$

Вычислим коэффициенты k_c, k_в.

$$\bar{x} = \frac{1.1}{0.7 \cdot \sqrt{12.76}} = 0.44$$

$$\overline{F} = \frac{0.05 \cdot 7}{12.76} = 0.004$$

Принимаем $k_c^T = 0.75$

$$k_c = 0.75 + \frac{0.9}{0.7} \cdot \frac{534.7}{534.7} \cdot \frac{1.1}{12.76^{0.5}} \cdot (\frac{0.05}{12.76})^{0.5} = 0.77$$

Отношение $\frac{x}{l} = \frac{1.1}{0.6} = 1.83$, коэффициент k_B примем равным 1.

Вычислим максимально возможную скорость и сравним ее с нормативной:

$$v_{x} = \frac{0.7 \cdot 2.97 \cdot \sqrt{0.05}}{1.1} \cdot 0.77 \cdot 1 \cdot 1 = 0.33 \,\text{m/c}$$

$$0.33 \le 1.4 \cdot 0.3$$

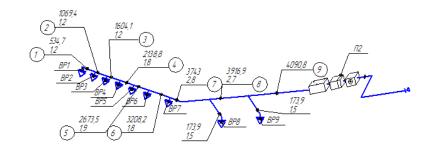
Условие (4.19) выполняется.

Вычислим максимальную разность температур:

$$\Delta t_x = \frac{0.6 \cdot 4 \cdot \sqrt{0.05}}{1.1} \cdot \frac{1}{0.77 \cdot 1} = 0.63 \,^{\circ}\text{C}$$

 $0.63 \leq 1.5$

Условие (4.20) выполняется.


Данный воздухораспределитель подходит для помещения №201.

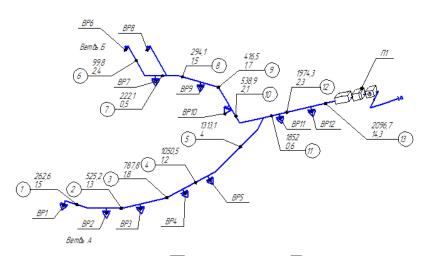
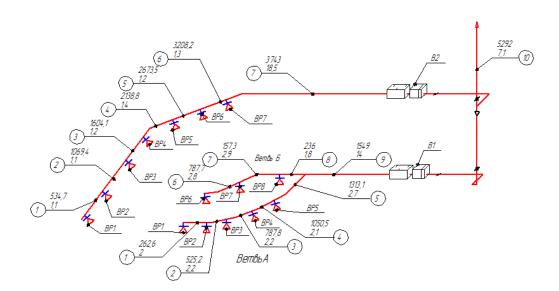

Расчет остальных воздухораспределителей аналогичен.

Таблица Д.1 – Подбор воздухораспределителей

	ица <u>д.1 – 110до</u>		Воздух	ообмен	TC	
Mo	Наименование	Площадь	По	и3/ч По	Количество	Воздухораспре
$N_{\underline{0}}$	помещения	помещения F, м ²	прито	110 ВЫТЯЖ	распределителе й N, шт	делитель
		W	ку	ке	и т, шт	
1	2	3	4	5	6	7
102	холл	101,98	611,88	236	8	ПРМ DN125
103	помещение охраны	9,50	99,75	79,8	2	ПРМ DN125
104	медпункт	12,00	72	54	2	ПРМ DN125
105	подсобное помещение	5,00	0	15	1	ПРМ DN125
106	клиентская служба	55,56	1313,1	1313	10	ПРМ DN200
107	коридор	40,35	0	0	0	
108	архив	37,98	0	227,9	2	ПРМ DN125
109	архив	16,72	0	100,3	1	ПРМ DN125
110	комната отдыха	15,54	93,225	139,8	2	ПРМ DN125
111	кабинет	18,36	192,81	154,2	4	ПРМ DN125
112	лестница	25,12	0	0	0	
113	тамбур	10,22	0	0	0	
114	тамбур	4,5795	0	0	0	
115	гараж	53,625	321,75	482,6	2	PP 100x200
116	лестница	22,98	0	0	0	
117	c/y	3,5	0	50	1	PP 100x200
118	c/y	3,2	0	50	1	PP 100x200
119	c/y	3,5	0	50	1	PP 100x200
120	комната персонала	20,22	121,32	182	2	ПРМ DN125
121	кабинет	31,90	334,95	268	4	ΠPM DN125
122	кабинет	38,61	405,41	324,3	4	ΠPM DN125
201	актовый зал	89,35	3743	3743	14	ПРМ DN250
202	архив	94,33	0	566	4	ΠPM DN125
203	кабинет	35,11	402,15	321,7	4	ПРМ DN125
204	холл	64,79	347,89	0	2	ПРМ DN200
205	лестница	22,98	0	0	0	
206	кабинет	28,5	299,25	239,4	4	ПРМ DN125

207	кабинет	17,78	186,69	149,4	2	ПРМ DN125
208	лестница	25,12	0	0	0	
209	c/y	3,5	0	50	1	PP 100x200
Продолжение таблицы Д.1						
1	2	3	4	5	6	7
210	комната уборочного инвентаря	3,2	0	14,4	1	PP 100x200
211	c/y	3,5	0	50	1	PP 100x200
212	кабинет	18,88	198,24	158,6	2	ПРМ DN125
213	кабинет	34,99	383,67	306,9	4	ПРМ DN125
214	серверная	13,5	0	0	0	
215	кабинет	18,33	192,47	154	2	ПРМ DN125
301	холл	43,01	0	0	0	
302	кабинет	30,47	319,94	255,9	4	ПРМ DN125
303	кабинет	25,73	270,17	216,1	4	ПРМ DN125
304	приемная	13,50	121,5	97,2	2	ПРМ DN125
305	кабинет	16,14	169,47	135,6	2	ПРМ DN125
306	кабинет	29,83	313,22	250,6	4	ПРМ DN125
307	кладовая	3,1	0	9,3	1	ПРМ DN125
308	коридор	109,70	0	458,3	1	ПРМ DN200
309	кабинет	28,55	299,78	239,8	4	ПРМ DN125
310	кабинет	19,36	203,28	162,6	4	ПРМ DN125
311	кабинет	20,89	219,35	175,5	2	ПРМ DN125
312	кабинет	29,05	305,03	244	4	ПРМ DN125
313	кабинет	18,19	191	152,8	2	ПРМ DN125
314	лестница	25,12	0	0	0	
315	комната отдыха	21,57	129,42	194,1	2	ПРМ DN125
316	c/y	3,5	0	50	1	PP 100x200
317	c/y	3,5	0	50	1	PP 100x200
318	кабинет	35,01	374,33	299,5	4	ПРМ DN125
319	кабинет	35,02	374,33	299,5	4	ПРМ DN125
320	лестница	22,98	0	0	0	



Приложение Е

Рисунок Е.1 – Расчетная схема П1 и П2

Рисунок Е.2 – Расчетная схема В1 и В2

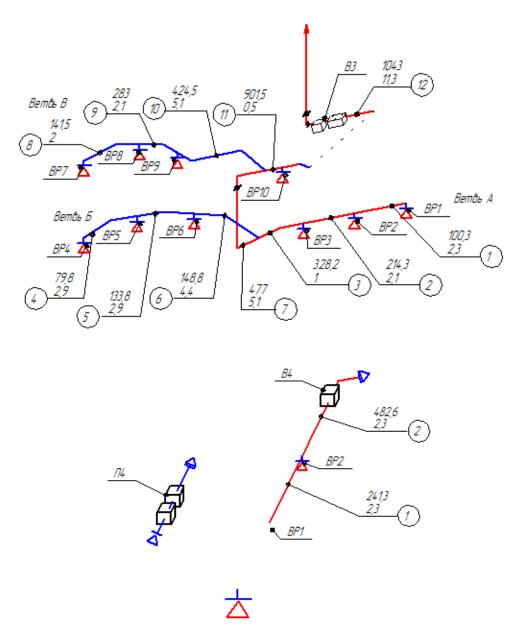
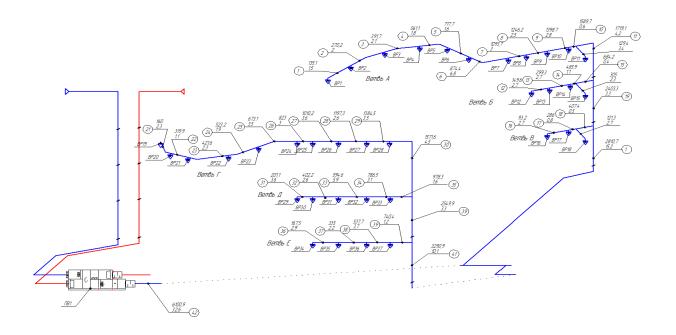



Рисунок Е.3 – Расчетная схема В3 Рисунок Е.4 – Расчетная схема П4 и В4

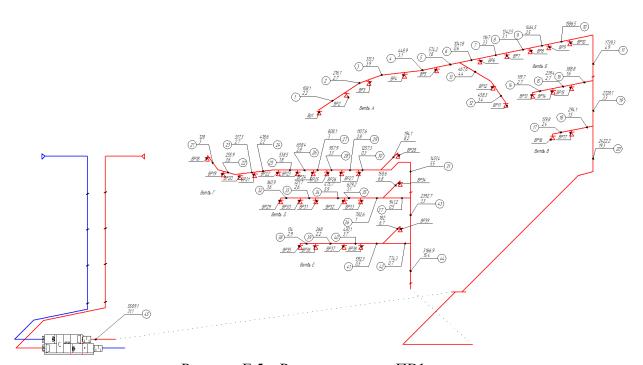


Рисунок Е.5 – Расчетная схема ПВ1 - вытяжка Рисунок Е.6 – Расчетная схема ПВ1 - приток

Таблица Е.1 – Аэродинамический расчет системы П1

										1 ' '	1	счет системы 111
Расход L, м ³ /ч	Дли на l, м	Реком ендов анная скоро сть V _{pe} к, м/с	Реком ендов анны й диаме тр d _{рек} , м	Факти чески й диаме тр d, м	Фактиче ская площадь $F_{\phi a \kappa \tau}$, M^2	Фактиче ская скорость V _ф , м/с	Критери й Рейнольд са Re	Коэффи циент гидравл ическог о трения λ	KM C	Потер и давлен ия ΔР, Па	Суммарны е потери давления $\sum \Delta P$, Па	Примечание
2	3	4	5	6	7	8	9	10	11	12	13	14
						Ответн	вление А					
262,6	0,2	2	0,215	0,2	0,03	2,32	29741	0,02	2,5	8	8	РВ, отвод90
262,6	1,5	2	0,215	0,2	0,03	2,32	29741	0,02	9,35	31	39	отвод30, тройник проход, диафрагма для увязки с BP2 124мм ξ = 8,5
525,2	1,3	3	0,249	0,25	0,05	2,97	47586	0,02	0,31	2	41	отвод30, тройник проход
787,8	1,8	4	0,264	0,25	0,05	4,45	71379	0,02	1,21	16	57	отвод 30 , диафрагма для увязки с BP4 201 мм $\xi = 0$,9, тройник проход
1050,5	1,2	5	0,272	0,25	0,05	5,94	95173	0,02	0,15	5	62	тройник проход
1313,1	4	6	0,278	0,25	0,05	7,42	118966	0,02	1,22	50	112	отвод30, отвод30, тройник поворот
262,6	0,2	2	0,215	0,125	0,01	5,94	47586	0,02	1,85	40		BP, тройник поворот
	2 262,6 262,6 525,2 787,8 1050,5 1313,1	Расход L, м³/ч на l, м 2 3 262,6 0,2 262,6 1,5 525,2 1,3 787,8 1,8 1050,5 1,2 1313,1 4	Расход L, м³/ч Дли на l, м скоро сть V ре к, м/с 2 3 4 262,6 525,2 1,5 2 3 3 4 262,6 0,2 2 2 525,2 1,3 3 3 787,8 1,8 4 4 1050,5 1,2 5 1313,1 4 6	Расход L, м³/ч Дли на 1, м Реком ендов анны й диаме тъ гр дорек, м/с ендов анны й диаме тъ гр дорек, м 2 3 4 5 262,6 0,2 2 0,215 262,6 1,5 2 0,215 525,2 1,3 3 0,249 787,8 1,8 4 0,264 1050,5 1,2 5 0,272 1313,1 4 6 0,278	Расход L, м³/ч Дли на l, м скоро сть V ре к, м/с дрек, м дрек	Расход L, м³/ч на l, м ендов анная скоро сть V ре к, м/с 2 3 4 5 6 7 262,6 0,2 2 0,215 0,2 0,03 262,6 1,5 2 0,215 0,2 0,03 262,6 1,5 2 0,215 0,2 0,03 525,2 1,3 3 0,249 0,25 0,05 787,8 1,8 4 0,264 0,25 0,05 1050,5 1,2 5 0,272 0,25 0,05 1313,1 4 6 0,278 0,25 0,05	Расход L, м³/ч Дли на 1, м (скоро сть Vре к, м/с ендов анный диаме тр d, м (м) фактиче ская площадь тр d, м (скорость Vф, м/с Фактиче ская площадь тр d, м (скорость Vф, м/с 2 3 4 5 6 7 8 262,6 0,2 2 0,215 0,2 0,03 2,32 262,6 1,5 2 0,215 0,2 0,03 2,32 525,2 1,3 3 0,249 0,25 0,05 2,97 787,8 1,8 4 0,264 0,25 0,05 4,45 1050,5 1,2 5 0,272 0,25 0,05 5,94 1313,1 4 6 0,278 0,25 0,05 7,42	Расход L, м³/ч Дли на l, м l на l,	Расход L, м³/ч M Реком ванная скоро сть Vре к, м/с м/с тр d, м Фактиче ская площадь горость Vф, м/с м/с кая площадь горость Vф, м/с м Критери гидент гидравл ическог отрения λ ическог отрения λ 2 3 4 5 6 7 8 9 10 Ответвление А 262,6 0,2 2 0,215 0,2 0,03 2,32 29741 0,02 262,6 1,5 2 0,215 0,2 0,03 2,32 29741 0,02 525,2 1,3 3 0,249 0,25 0,05 2,97 47586 0,02 787,8 1,8 4 0,264 0,25 0,05 4,45 71379 0,02 1050,5 1,2 5 0,272 0,25 0,05 5,94 95173 0,02 1313,1 4 6 0,278 0,25 0,05 7,42 118966 0,02	Расход L, м³/ч Дли на 1, м ендов ендов анная скоро сть V _{ре} к, м/с ендов анная тр ф _{рек, м} фактиче тр ф _{рек, м} Фактиче ская тр d, м Фактиче ская гкорость V _ф , м/с Критери й Рейнольд са Re КМ ическог о трения λ КМ ическог о трения λ 2 3 4 5 6 7 8 9 10 11 262,6 0,2 2 0,215 0,2 0,03 2,32 29741 0,02 2,5 262,6 1,5 2 0,215 0,2 0,03 2,32 29741 0,02 9,35 525,2 1,3 3 0,249 0,25 0,05 2,97 47586 0,02 0,31 787,8 1,8 4 0,264 0,25 0,05 4,45 71379 0,02 1,21 1050,5 1,2 5 0,272 0,25 0,05 5,94 95173 0,02 0,15 1313,1 4 6 0,278 0,25 0,05 7,42 118966 0,02 1	Расход L, м³/ч Дли на I, м³/ч Реком ендов днаны днана и данны и давлен и диаме тр ф, миме тр фрек, м/с Фактиче ская площадь горость V _ф , м/с Критери й ицент гидравл и ческог о трения λ КМ давлен инект и давлен инект и давлен инект и давлен инект и давлен инект от трения λ 2 3 4 5 6 7 8 9 10 11 12 262,6 0,2 2 0,215 0,2 0,03 2,32 29741 0,02 2,5 8 262,6 1,5 2 0,215 0,2 0,03 2,32 29741 0,02 2,5 8 262,6 1,5 2 0,215 0,2 0,03 2,32 29741 0,02 2,5 8 262,6 1,5 2 0,215 0,2 0,03 2,32 29741 0,02 2,5 8 262,6 1,5 2 0,249 0,25 0,05 2,97 47586 0,02 0,31 2 787,8 1,8 4 0,264 0,25 0,05 <td>Расход L, м³/ч M, м²/г м²/г м²/г м²/г м²/г м²/г м²/г м²/г</td>	Расход L, м³/ч M, м²/г м²/г м²/г м²/г м²/г м²/г м²/г м²/г

Невязка между участками ВР2 и 2: $\frac{\Delta P_{\text{Вр2}} - \Delta P_2}{\Delta P_{\text{Вр2}}} * 100\% = \frac{40 - 11}{40} * 100\% = 71,21\%$ $\xi = \frac{\Delta P_{\text{Вр2}} - \Delta P_2}{0.6 * V_2^2} = \frac{40 - 11}{0.6 * 2.32^2} = 8.79$

												продолж	ение таолицы Е.1
1	2	3	4	5	6	7	8	9	10	11	12	13	14
BP3	262,6	0,2	2	0,215	0,125	0,01	5,94	47586	0,02	2,1	45		BP, тройник поворот
				Не	евязка ме	ежду участі	ками ВРЗ и	2: = 8,8% Д	иафрагма і	не требу	ется/		F
BP4	262,6	0,2	2	0,215	0,125	0,01	5,94	47586	0,02	2,7	58		BP, тройник поворот
				I		Невязка м	ежду участ	ками 3 и ВГ	P4 = 1,08 %	,)		l	1
BP5	262,6	0,2	2	0,215	0,125	0,01	5,94	47586	0,02	2,7	58		BP, тройник поворот
				Н	евязка ме	ежду участи	ками 4 и ВР	25 = 7,68% д	иафрагма	не требу	/ется	•	•
							Ответі	зление Б					
BP6	99,8	0,2	2	0,133	0,125	0,01	2,26	18075	0,03	2,5	8	8	ВР, отвод90,
6	99,8	2,4	2	0,133	0,125	0,01	2,26	18075	0,03	5,51	18	26	отвод75,конфузор тройник проход, диафрагма 87мм кси4 для увязки с ВР7
7	222,1	0,5	3	0,162	0,16	0,02	3,07	31445	0,02	2,55	15	41	тройник проход, диафрагма 120мм кси2,4 для увязки с уч вр8
8	294,1	1,5	4	0,161	0,16	0,02	4,06	41638	0,02	0,61	8	49	отвод30,конфузор тройник проход
9	416,5	1,7	5	0,172	0,2	0,03	3,68	47169	0,02	0,47	5	54	отвод45, тройник проход
10	538,9	2,1	6	0,178	0,2	0,03	4,76	61028	0,02	1,86	28	83	отвод60, конфузортройник проход
				Не	вязка ме	жду участк	ами 5 и 10:	$26,41\% \xi =$	2,18 диафр	рагма 15	52 мм	<u>, </u>	
BP7	122,4	0,2	2	0,147	0,1	0,01	4,32	27718	0,02	2,3	26	Пиото	ВР, тройник поворот
												продолж	ение таблицы Е.1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	
						Невязка м	иежду участ	гками ВР7 и	6 = 0,62%					
вр8	72,0	1,7	2	0,113	0,1	0,01	2,54	16308	0,03	10,3	42		BP, отвод90, тройник поворот	
						Невязка м	ежду участ	ками ВР8 и	7 = 2,05 %	١				
вр9	122,4	0,2	2	0,147	0,1	0,01	4,32	27718	0,02	2,9	33		BP, тройник поворот	
				Нев	вязка меж	кду участка	ами 8 и BP9	$= 32,58\% \xi$	= 1,43 диа	фрагма	80 мм			
вр10	вр10 122,4 0,2 2 0,147 0,1 0,01 4,32 27718 0,02 4,7 53 ВР, тройник поворот Невязка между участками 9 и ВР10 = 2,01% диафрагма не требуется													
	Невязка между участками 9 и ВРТО – 2,01% диафрагма не треоуется Общий участок													
11	1852,0	0,6	8	0,286	0,315	0,08	6,60	133165	0,02	2,6	69	170	тройник проход, диафрагма 237мм кси2,4 для увязки участком вр11	
12	1974,3	2,3	8	0,295	0,315	0,08	7,03	141965	0,02	0,2	10	180	тройник проход	
13	2096,7	14,3	10	0,272	0,315	0,08	7,47	150764	0,02	2,4	107	286	отвод90, отвод90	
BP1 1	122,4	0,2	2	0,147	0,1	0,01	4,32	27718	0,02	15,5	174		BP, тройник поворот	
						Невязка ме	ежду участь	ами ВР11 и	11 = 3,56%	⁄o				
BP1 2	122,4	0,2	2	0,147	0,1	0,01	4,32	27718	0,02	15,5	174		BP, тройник поворот	
				Нег	вязка мех	кду участка	ами 12 и ВР	12 = 8,48%	диафрагма	не треб	буется			

№ учас тка	Расход L, м ³ /ч	Дли на l, м	Реко менд ован ная скор ость V _{рек} , м/с	Рекомен дованны й диаметр d _{рек} , м	Фактич еский диамет р d, м	Фактиче ская площадь $F_{\phi a \kappa \tau}$, M^2	Фактиче ская скорость V _ф , м/с	Критерий Рейнольдс а Re	Коэффиц иент гидравлич еского трения λ	КМС	Потери давлен ия ΔР, Па	Суммарные потери давления ∑∆Р, Па	Примеча ние
1	2	3	4	5	6	7	8	9	10	11	12	13	14
вр1	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,5	34	34	вр, отвод
1	534,7	1,2	4	0,217	0,2	0,03	4,72	60556	0,02	0,3	6	39	тройник проход
2	1069,4	1,2	5	0,275	0,2	0,03	9,45	121112	0,02	0,7	43	83	конфузо р, тройник проход
3	1604,1	1,2	6	0,307	0,315	0,08	5,71	115345	0,02	0,71	15	98	отвод60, тройник проход
4	2138,8	1,8	7	0,329	0,315	0,08	7,62	153793	0,02	0,6	24	122	конфузо р,тройни к проход
5	2673,5	1,9	7	0,367	0,355	0,10	7,50	170580	0,02	0,7	27	149	конфузо р, тройник проход
6	3208,2	1,8	8	0,376	0,4	0,13	7,09	181668	0,02	0,15	7	156	тройник проход
7	3743,0	2,8	9	0,383	0,4	0,13	8,27	211946	0,02	0,36	19	175	отвод30, тройник проход
8	3916,9	2,7	9	0,392	0,4	0,13	8,65	221796	0,02	0,2	14	189	тройник проход

1	2	3	4	5	6	7	8	9	10	11	12	13	14
9	4090,8	13,9	9	0,401	0,4	0,13	9,03	231646	0,02	2,4	145	334	отвод90, отвод90
		I I			1			<u> </u>			<u> </u>		
вр2	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	1,3	18		вр, тройник
				11			1 DD2	55 11 8 1 6	2 1	1.50			поворот
				Невя	изка межд	у участками Г	и ги ВР2 = Г	$55,11 \xi = 1,6$	2 диафрагма ^Т	1 1 5 8 MM	1	Ī	
вр3	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,9	39		вр, тройник
				**			0 DD0 5	2 (0 0 / % 2	2.5 1	1.45			поворот
		I I		Невяз	ка между	участками	2 и BP3 = 5	$2,68 \% \xi = 3,$	25 диафрагм	<u>1а 145 мм</u>	1	Т	
вр4	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	4,7	63		вр, тройник
													поворот
		1 1		Невяз	вка между	участками	3 и Вр4 = 3	$5,43\% \xi = 2,$	59 диафрагм -	<u>іа 150 мм</u>	1	1	
вр5	534,7	0,2	4	0,217	0,2	0,03	7,38	75695	0,02	3,3	109		вр, тройник
				Неразка	межлу уп	actramu 4 n	RP5 = 11 ($107\% \ \xi = 0.41$	 пиафрагма п	 re требует	\		поворот
				ПСБЯЗКа	мсжду уч	ac i Kamiri + r	D1 J = 11,0)	диафрагма н 	Theore	СЛ		вр,
вр6	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,7	36		тройник поворот
				Невя	зка межлу	і / участками	5 и BP6 =	$75,53\% \xi = 8$	ц 4 лиафрагма	124 мм			Поворот
				11001	эка темду			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Пафран	12:11111			вр,
вр7	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	5,35	72		тройник
				**			(DD5 5	2.00.07.%	2.7 1	120			поворот
		ı ı		Невяз	ка между	участками	6 и ВР/ = 5	$3,80 \% \xi = 6,$	25 диафрагм	<u>1а 130 мм</u>	T	Т	
вр8	173,9	1,5	4	0,124	0,125	0,01	3,93	31519	0,02	5,9	57		вр,отвод 90,
240	,>	1,0	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,120	,,,,,							тройник поворот
											Прод	олжение та	блицы Е.2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
				Невяз	ка между	участками	7 и ВР8 = 6	$7,20 \% \xi = 12$	2,67 диафрагі	ма 72 мм			
вр9	173,9	1,5	4	0,124	0,125	0,01	3,93	31519	0,02	5,9	57		вр,отвод 90, тройник поворот
				Невяз	ка между	участками	8 и BP9 = 6	$9,61 \% \xi = 14$	1 ,16 диафрагі	ма 71 мм			

Таблица Е.3 – Аэродинамический расчет системы В1

№ учас тка	Расход L, м ³ /ч	Длина l, м	Реком ендов анная скоро сть V _{pe} к, м/с	Рекоме ндован ный диамет р d _{рек} , м	Фактич еский диаметр d, м	Фактиче ская площадь $F_{\phi a \kappa \tau}$, M^2	Фактиче ская скорость V _ф , м/с	Критер ий Рейнол ьдса Re	Коэффи циент гидравл ическог о трения λ	КМС	Потери давлен ия ΔР, Па	Суммарные потери давления $\sum \Delta P$, Па	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Bp1	262,6	0,2	4	0,152	0,16	0,02	3,62	37177	0,02	2,5	20	20	ВР, отвод90
1	262,6	2	4	0,152	0,16	0,02	3,62	37177	0,02	0,76	8	28	отвод30, диффузор, тройник проход
2	525,2	2,2	5	0,193	0,2	0,03	4,64	59483	0,02	0,46	9	37	отвод30, диффузор, тройник проход
3	787,8	2,2	6	0,215	0,25	0,05	4,45	71379	0,02	0,61	9	46	отвод30, тройник проход
4	1050,5	2,1	7	0,230	0,25	0,05	5,94	95173	0,02	0,41	12	58	отвод30, тройник проход
5	1313,1	2,7	8	0,241	0,25	0,05	7,42	118966	0,02	0,46	22	102	отвод30, тройник проход
BP2	262,6	0,2	4	0,152	0,16	0,02	3,62	37177	0,02	2,58	21		вр, тройник поворот
				Невязі	ка между у	частками 1	и BP2 = 27,	$00\% \xi = 0$	96 диафра	гма 134	MM		

BP3	262,6	0,2	4	0,152	0,16	0,02	3,62	37177	0,02	2,46	20		вр, тройник поворот
,	!			ı	!	I	I	ı			Π_1	родолжение	е таблицы Е.3
1	2	3	4	5	6	7	8	9	10	11	12	13	14
				Невя	зка между	участками	2 и ВР3 = 4	$6,96\% \xi =$	2,20 диаф	рагма 12	2		
BP4	262,6	0,2	4	0,152	0,16	0,02	3,62	37177	0,02	2,69	21		вр, тройник поворот
				Не	вязка меж	ду участкам	и 3 и ВР4 =	= 53,72% ξ	= 3,15 диа	фрагма			
BP5	262,6	0,2	4	0,152	0,16	0,02	3,62	37177	0,02	2,69	21		вр, тройник поворот
				Невязк	а между уч	частками 4 и	A BP5 = 63,	$24 \% \xi = 4$,68 диафр	агма 110	MM		
						(Этветвлени	ие Б					_
BP6	78,7	0,2	4	0,083	0,125	0,01	1,78	14253	0,03	2,5	5	5	ВР, отвод90
6	78,7	2,8	4	0,083	0,125	0,01	1,78	14253	0,03	1,07	3	8	отвод45, тройник проход
7	157,3	2,9	5	0,105	0,125	0,01	3,56	28505	0,02	0,67	9	17	отвод45, тройник проход
8	236,0	1,8	6	0,118	0,125	0,01	5,34	42758	0,02	1,39	29	47	тройник проход
				Невя	зка между	участками	5 и 8 = 54,4	$43\% \xi = 3.2$	26 диафра	гма 90 мі	М		
BP7	78,7	0,2	4	0,083	0,125	0,01	1,78	14253	0,03	2,65	5		вр, тройник поворот
				Невяз	ка между у	частками 6	и ВР7 = 36	$5,78\% \xi = 1$,57 диафр	агма 99 г	ИM		
BP8	78,7	0,2	4	0,083	0,125	0,01	1,78	14253	0,03	1,77	3		вр, тройник поворот
				Невяз	ка между у	частками 7	и ВР8 = 80,	$\frac{1}{27}\% \xi = 7$	7,39 диафр	агма 79 г	MМ		
						(Эбщий учас	сток					
9	1549,0	14	9	0,247	0,25	0,05	8,76	140345	0,02	3,6	211	313	отвод90, отвод90,отво д90, тройник поворот

Таблица Е.4 – Аэродинамический расчет В2

	1		1	1	I		I			ща Д. Г	11000		part it i
<u>№</u> учас тка	Расход L, м ³ /ч	Дли на l, м	Рекоме ндован ная скорос ть V _{рек} , м/с	Рекоме ндован ный диамет р d _{рек} , м	Фактич еский диаметр d, м	Фактичес кая площадь $F_{\phi a \kappa \tau}$, M^2	Фактиче ская скорость V _ф , м/с	Критер ий Рейнол ьдса Re	Коэффи циент гидравл ическог о трения λ	КМС	Потери давлен ия ΔР, Па	Суммарные потери давления ∑∆Р, Па	Примечани е
1	2	3	4	5	6	7	8	9	10	11	12	13	14
вр1	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,5	34	34	ВР, отвод90
1	534,7	1,1	4	0,217	0,2	0,03	4,72	60556	0,02	0,6	10	43	диффузор, тройник проход
2	1069,4	1,1	5	0,275	0,25	0,05	6,05	96890	0,02	0,4	11	54	диффузор, тройник проход
3	1604,1	1,2	6	0,307	0,315	0,08	5,71	115345	0,02	0,45	10	64	тройник проход
4	2138,8	1,4	7	0,329	0,315	0,08	7,62	153793	0,02	0,86	33	97	диффузор, отвод60, тройник проход
5	2673,5	1,2	8	0,344	0,355	0,10	7,50	170580	0,02	0,3	12	109	тройник проход
6	3208,2	1,3	9	0,355	0,355	0,10	9,00	204697	0,02	0,2	13	121	тройник проход,
7	3743,0	18,5	10	0,364	0,355	0,10	10,49	238813	0,02	2,72	235	379	отвод45, отвод90, отвод90
вр2	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,6	35		вр,

												Продо.	тройник поворот пжение Е.4
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	•	l.		Невязка	і между уч	астками 1 и	Bp2 = 18,90	$0\% \xi = 0.6$	1 диафраг	тма 174 м	ΙM		
вр3	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,54	34		вр, тройник поворот
				Невязка	а между уч	астками 2 и	BP3 = 36,3	$2\% \xi = 1,4$	6 диафраг	тма 160 м	M		
вр4	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,69	36		вр, тройник поворот
				Невязк	а между у	частками 3 и	$_{1} BP4 = 43,2$	$29\% \xi = 2.0$	7 диафрагі	ма 154 мі	М		
вр5	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,56	35		вр, тройник поворот
	•			Невязка	между уч	астками 4 и	BP5 = 64,2	$4\% \xi = 4.6$	53 диафраі	гма 137 м	ΙΜ		•
вр6	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,65	36		вр, тройник поворот
				Невязк	а между уч	настками 5 и	BP6 = 67,0	$9\% \xi = 5,4$	4 диафраг	ма 133 м	M		
вр7	534,7	0,2	4	0,217	0,2	0,03	4,72	60556	0,02	2,65	36		вр, тройник поворот
				Невязк	а между уч	настками 6 и	BP7 = 70,5	$2\% \xi = 6.3$	9 диафраг	ма 132 м	M		
	T	1	T	T			общий возд	<u> </u>	T	1		т.	
13	5292,0	7,1	10	0,432	0,4	0,13	11,69	299662	0,02		22		

Таблица Е.5 – Аэродинамический расчет системы В3

								1 au.	ища Б. <i>Э</i> –	тэрод	цинамич	сский расче	системы В3
№ учас тка	Расход L, м ³ /ч	Дл ин а l, м	Рекоме ндован ная скорос $_{\text{ть V}_{\text{рек}}, \text{м/c}}$	Рекомен дованн ый диаметр d _{рек} , м	Фактич еский диаметр d, м	Фактиче ская площадь $F_{\phi a \kappa \tau}$, M^2	Фактиче ская скорость V _ф , м/с	Критер ий Рейнол ьдса Re	Коэффиц иент гидравли ческого трения λ	KM C	Потери давлен ия Δ Р, Па	Суммарные потери давления ∑∆Р, Па	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13	14
		•		•			ВетвьА		•				
BP1	100,3	0,2	4	0,094	0,1	0,01	3,55	22728	0,03	2,5	19	19	Вр, отвод90
1	100,3	2,3	4	0,094	0,1	0,01	3,55	22728	0,03	0,75	10	29	тройник проход
2	214,3	2,1	5	0,123	0,125	0,01	4,85	38829	0,02	0,35	10	40	тройник проход
3	328,2	1	6	0,139	0,125	0,01	7,42	59475	0,02	0,46	21	60	отвод30, тройник проход
BP2	113,9	0,2	4	0,100	0,1	0,01	4,03	25808	0,02	2,65	26		вр, тройник поворот
				Невязка м	иежду учас	тками 1 и Е	3P2 = 10,61	$\% \xi = 0.32$	2 диафрагма	не тре	буется		
BP3	113,9	0,2	4	0,100	0,1	0,01	4,03	25808	0,02	1,77	18		вр, тройник поворот
				Невяз	вка между у	участками 2	2 и BP3 = 55	$,35\% \xi = 2$	2,27 диафраг	ма 74 і	MM		
							ВетвьБ					<u>, </u>	
BP4	79,8	0,2	4	0,084	0,125	0,01	1,80	14460	0,03	2,5	5	5	Вр, отвод90
4	79,8	2,9	4	0,084	0,125	0,01	1,80	14460	0,03	0,71	3	8	отовд30, тройник проход
5	133,8	2,9	5	0,097	0,125	0,01	3,03	24245	0,03	0,16	4	12	отвод30,

													тройник проход-0
						•	•		·		Π	родолжение	е таблицы Е.5
1	2	3	4	5	6	7	8	9	10	11	12	13	14
6	148,8	4,4	6	0,094	0,125	0,01	3,37	26963	0,02	0,44	9	21	отвод45, тройник поворот
		1		Невя	зка между	участками	3 и $6 = 65,6$	$66\% \xi = 5$	82 диафраг	ма 82 м	M		_
BP5	54,0	0,2	4	0,069	0,1	0,01	1,91	12231	0,03	2,62	6		вр, тройник поворот
				Невяз	ка между	участками 4	и BP5 = 23	$5,67\% \xi = 0$),83 диафра	гма 85 м	MM		_
BP6	15,0	0,2	4	0,036	0,1	0,01	0,53	3398	0,04	1,3	0		вр, тройник поворот-0
		Невяз	вка между	участками	5 и ВР 6 =	$= 98,02 \xi = 6$	8,51 дроссе	ель клапан	- число ст	ворок 1,	, угол нак	лона 60 град.	
						обі	ций участо	ок А-Б					
7	477,0	5,1	6	0,168	0,16	0,02	6,58	67529	0,02	3	94	155	отвод90, отвод90, тройник проход
							ВетвьВ	1					
BP6	141,5	0,2	4	0,112	0,125	0,01	3,20	25639	0,03	2,5	16	16	вр, отвод90
8	141,5	2	4	0,112	0,125	0,01	3,20	25639	0,03	0,91	8	24	отвод30, тройник проход
9	283,0	2,1	5	0,141	0,125	0,01	6,40	51278	0,02	0,67	25	49	отвод45, тройник проход
10	424,5	5,1	6	0,158	0,16	0,02	5,86	60092	0,02	3,04	76	125	отвод60, отвод90, тройник поворот
		1 1				участками 7						Γ	
BP7	141,5	0,2	4	0,112	0,125	0,01	3,20	25639	0,03	2,65	17		вр, тройник

													поворот		
				Невяз	вка между	участками 8	8 и BP7 = 36	$0,13 \xi = 1,1$	6 диафрагм	иа 103 м	ΙM				
											Π	родолжени	е таблицы Е.5		
1	2	3	4	5	6	7	8	9	10	11	12	13	14		
BP8	141,5	0,2	4	0,112	0,125	0,01	3,20	25639	0,03	1,82	11		вр, тройник поворот		
				Невяз	ка между у	частками 9	и $BP8 = 76$	$5,58 \% \xi = 6$	5,08 диафра	гма 82 і	MM				
	Невязка между участками 9 и BP8 = $76,58 \% \xi = 6,08$ диафрагма 82 мм Общий участок А-Б-В														
11	901,5	0,5	7	0,213	0,2	0,03	7,96	102097	0,02	0,15	7	162	тройник проход		
12	1043,0	11,	7	0,229	0,2	0,03	9,21	118121	0,02	4,24	268	430	отвод90, отвод90, отвод45, отвод45, отвод90		
BP9	141,5	0,2	4	0,112	0,125	0,01	3,20	25639	0,03	-3,5	-21		вр, тройник поворот		
	He	вязка	между уч	астками 11	$_{\rm H}$ BP $\overline{9} = 1$	$13,11 \ \xi = 29$,84 дроссел	ь-клапан –	количеств	о створо	ок2, угол	наклона 60 гр	рад.		

Таблица Е.6 – Аэродинамический расчет системы ПВ1 – приточная система

						тиолиц	u 11.0 11.	родина	VIII ICCKIII	n pue ie	1 CHC1CN	1111 11p	иточная система
№ участ ка	Расход L, м ³ /ч	Дли на l, м	Реко мен дова нная скор ость V _{рек} , м/с	Реком ендова нный диамет р d _{pek} , м	Фактич еский диамет р d, м	Фактиче ская площадь $F_{\phi a \kappa \tau}$, M^2	Фактиче ская скорость V_{φ} , м/с	Критер ий Рейнол ьдса Re	Коэфф ициент гидрав лическ ого трения λ	КМС	Потер и давлен ия ΔР, Па	Суммарны е потери давления ∑∆Р, Па	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13	14
							Ветві	5 A					
BP1	135,1	0,2	4	0,109	0,125	0,01	3,05	24477	0,03	2,5	14	14	рв, отвод90
1	135,1	1,5	4	0,109	0,125	0,01	3,05	24477	0,03	0,4	4	18	тройник проход
2	270,2	2	5	0,138	0,16	0,02	3,73	38246	0,02	0,47	6	24	отвод45, тройник проход
3	391,7	2,1	5	0,166	0,16	0,02	5,41	55446	0,02	0,41	12	36	отвод30, тройник проход
4	561,1	1,8	6	0,182	0,2	0,03	4,96	63549	0,02	0,47	10	46	отвод45, тройник проход
5	717,7	1,6	6	0,206	0,2	0,03	6,34	81285	0,02	0,15	7	53	тройник проход
6	874,4	6,8	7	0,210	0,2	0,03	7,72	99021	0,02	0,57	43	96	отвод45, тройник проход
7	1093,7	3	8	0,220	0,25	0,05	6,18	99090	0,02	0,15	9	105	тройник проход
8	1246,2	2,5	8	0,235	0,25	0,05	7,05	112907	0,02	0,15	10	115	тройник проход
9	1398,7	2,8	8	0,249	0,25	0,05	7,91	126725	0,02	0,15	13	128	тройник проход
10	1589,7	0,6	9	0,250	0,25	0,05	8,99	144029	0,02	0,2	12	139	тройник проход
11	1719,1	4,2	9	0,260	0,25	0,05	9,72	155755	0,02	1,45	99	238	отвод90, тройник проход
BP2	135,1	0,2	4	0,109	0,125	0,01	3,05	24477	0,03	2,6	15		вр, тройник проход

				Невя	зка между	у участками	и 1 и BP2 =	18,60% ξ =	= 0,60 диа	фрагма	110 мм		
												Продолж	ение таблицы Е.6
1	2	3	4	5	6	7	8	9	10	11	12	13	14
вр3	121,5	0,2	4	0,104	0,125	0,01	2,75	22016	0,03	4,7	21		вр, тройник проход
				Нев	язка межд	у участкам	и 2 и ВР3 =	= 12,14%	циафрагма	а не треб	буется		
вр4	169,5	0,2	4	0,122	0,125	0,01	3,83	30708	0,02	1,7	15		вр, тройник проход
				Невя	язка межд	у участкамі	и 3 и ВР4 =	57,89% ξ	= 2,39 ди	афрагма	. 94 мм		
вр5	156,6	0,2	4	0,118	0,125	0,01	3,54	28378	0,02	4,7	36		вр, тройник проход
				Невя	зка между	участками	4 и ВР5 =	22,40 % ξ	= 1,37 ди	афрагма	100мм		· -
вр6	156,6	0,2	4	0,118	0,125	0,01	3,54	28378	0,02	4,7	36		вр, тройник проход
				Невя	язка межд	у участкамі	и 5 и ВР6 =	33,05% ξ	= 2,34 ди	афрагма	. 95 мм		
вр7	191,0	0,2	4	0,130	0,125	0,01	4,32	34609	0,02	2,7	31		вр, тройник проход
				Невя	зка между	участками	и 6 и BP7 =	68,17 % ξ	= 5,86 ди	афрагма	а 83 мм		•
вр8	152,5	0,2	4	0,116	0,125	0,01	3,45	27635	0,02	6,65	48		вр, тройник проход
				Невя	зка между	участками	7 и BP 8 =	54,44 % 8	$\xi = 7,99$ ди	афрагма	а 78 мм		•
вр9	152,5	0,2	4	0,116	0,125	0,01	3,45	27635	0,02	6,65	48		вр, тройник проход
				Нев	язка межд	у участкам	и 8 и ВР9 =	58,36% ξ	=9,38 ди	афрагма	76 мм		
вр10	191,0	0,2	4	0,130	0,125	0,01	4,32	34609	0,02	6,65	75		вр, тройник проход
				Невя	зка между	участками	и 9 и BP10 -	= 41,41% &	<u>5</u> = 4,73 ди	афрагма	а 84 мм		
вр11	129,4	3,4	4	0,107	0,125	0,01	2,93	23451	0,03	25,1	133		вр, отвод90, тройник поворот
				Нев	язка межд	у участкам			диафрагм	а не тре	буется		
							Ветв	ьБ					

BP12	149,6	0,2	4	0,115	0,125	0,01	3,38	27112	0,02	2,5	17	17	вр, отвод90
		l		1								 Пролодже	। ение таблицы Е.6
1	2	3	4	5	6	7	8	9	10	11	12	13	14
12	149,6	2,7	4	0,115	0,125	0,01	3,38	27112	0,02	3,9	30	48	тройник проход, диафрагма 89мм кси3,6 для увязки с уч ВР13
13	299,3	2,7	5	0,145	0,125	0,01	6,77	54225	0,02	0,3	21	68	тройник проход
14	485,9	1,1	6	0,169	0,16	0,02	6,71	68791	0,02	0,2	9	78	тройник проход
15	684,2	0,4	7	0,186	0,16	0,02	9,44	96855	0,02	0,8	45	123	тройник поворот
				Невя	язка между	у участкамі	и 11 и 15 =	48,41% ξ	= 2,15 диа	фрагма	122мм		
вр13	149,6	0,2	4	0,115	0,1	0,01	5,29	33890	0,02	2,8	48		вр, тройник проход
					Не	евязка межд	цу участкам	ии ВР13 и	12 = -0.32	2%			
вр14	186,7	0,2	4	0,128	0,125	0,01	4,22	33828	0,02	3,2	35		вр, тройник проход
				Невя	зка между	участками	13 и ВР14	= 49,42%	$\xi = 3,16$ ді	лафрагма	а 90 мм		
вр15	305,0	2,3	4	0,164	0,2	0,03	2,69	34544	0,02	3,9	18		вр, отовд90, тройник поворот
				Невязк	а между у	частками 1	4 и BP15 =	76,58 % 8	=13,62 д	иафрагм	а 114 мм		
				_			Ветв	ьВ					
BP16	93,2	0,2	4	0,091	0,1	0,01	3,29	21116	0,03	2,5	17	17	вр, отвод90
16	93,2	2,7	4	0,091	0,1	0,01	3,29	21116	0,03	1,1	12	28	тройник проход
17	286,0	0,8	5	0,142	0,125	0,01	6,47	51829	0,02	0,15	7	36	тройник проход
18	407,4	0,5	6	0,155	0,125	0,01	9,21	73813	0,02	1	55	90	тройник поворот
	T	_		Нев	язка межд	у участкам	и 19 и 18 =	64,19% ξ	= 3,18 ди	афрагма	90мм	T	
BP17	192,8	0,2	4	0,131	0,125	0,01	4,36	34937	0,02	2,2	26		вр, тройник поворот
				Невя	зка между	участками	16 и ВР17	= 10,13%	диафрагм	иа не тре	буется		
Bp18	121,3	2,7	4	0,104	0,125	0,01	2,74	21983	0,03	6,5	32		BP, отвод90, тройник поворот

Невязка между участками 17 и BP19 = 10,24% диафрагма не требуется Общие участки A-Б-В

												продолж	ение таолицы Е.б
1	2	3	4	5	6	7	8	9	10	11	12	13	14
19	2403,3	3,3	9	0,307	0,315	0,08	8,56	172811	0,02	0,15	14	252	тройник проход
20	2810,7	15,2	10	0,315	0,315	0,08	10,01	202102	0,02	3,01	229	481	отвод90, отвод75, тройник поворот
							Ветв	ьГ					
BP19	160,0	0,2	4	0,119	0,125	0,01	3,62	28986	0,02	2,5	20	20	рв, отвод90
21	160,0	2,3	4	0,119	0,125	0,01	3,62	28986	0,02	0,56	8	28	отвод30, тройник проход
22	319,9	1,1	5	0,150	0,16	0,02	4,42	45291	0,02	0,65	9	37	тройник проход, диафрагма141мм кси0,5 для увязки с вр21
23	421,6	2,3	5	0,173	0,16	0,02	5,82	59680	0,02	0,41	14	51	отвод30, тройник проход
24	523,2	1,9	6	0,176	0,2	0,03	4,62	59255	0,02	0,31	6	58	отвод30, тройник проход
25	673,1	3,5	6	0,199	0,2	0,03	5,95	76229	0,02	0,47	17	75	отвод45, тройник проход
26	823,0	3	7	0,204	0,2	0,03	7,27	93204	0,02	0,25	17	92	тройник проход
27	1010,2	3,6	7	0,226	0,25	0,05	5,71	91521	0,02	0,15	8	100	тройник проход
28	1197,3	2,6	8	0,230	0,25	0,05	6,77	108478	0,02	0,15	9	109	тройник проход
29	1384,5	3,5	8	0,247	0,25	0,05	7,83	125435	0,02	0,15	15	124	тройник проход
30	1571,6	4,5	9	0,248	0,25	0,05	8,89	142392	0,02	1,5	86	210	отвод90, тройник проход
													_
вр20	160,0	0,2	4	0,119	0,125	0,01	3,62	28986	0,02	2,6	21		рв, тройник поворот
	1			Невяз	ка между	участками	21 и ВР20	= 25,56% 8	; =0,91 ди	афрагма	105 мм		<u></u>
вр21	101,6	0,2	4	0,095	0,1	0,01	3,59	23022	0,03	4,7	37		рв, тройник

													поворот
		1		I	Н	евязка меж,	цу участкам	ии 22 и ВЕ	21 = -1.13	3%		I.	1
1						,	10 0		,			Продолж	ение таблицы Е.6
1	2	3	4	5	6	7	8	9	10	11	12	13	14
вр22	101,6	0,2	4	0,095	0,1	0,01	3,59	23022	0,03	2,7	21		рв, тройник поворот
				Нев	язка межд	у участкамі	и 23 и Вр22	2 =58,6% ξ	=3,89 ди	афрагма	70 мм		
вр23	149,9	0,2	4	0,115	0,125	0,01	3,39	27160	0,02	4,7	33		рв, тройник поворот
				Невяз	вка между	участками	24 и ВР23	= 43,54%	$\xi = 3,66$ д	иафрагм	а 89 мм		
вр24	149,9	0,2	4	0,115	0,125	0,01	3,39	27160	0,02	4,7	33		рв, тройник поворот
				Невя	зка между	участками	25 и ВР24	= 56,45%	$\xi = 6,14$ д	иафрагм	а 66мм		
вр25	187,2	0,2	4	0,129	0,125	0,01	4,23	33914	0,02	2,7	29		рв, тройник поворот
				Невяз	вка между	участками	26 и ВР25	= 67,97% 8	ξ = 5,81 д	иафрагм	а 82 мм		
вр26	187,2	0,2	4	0,129	0,125	0,01	4,23	33914	0,02	2,7	29		рв, тройник поворот
				Невяз	вка между	участками	27 и ВР26	= 70,61 %	ξ=6,58 д	иафрагм	а 81 мм		
вр27	187,2	0,2	4	0,129	0,125	0,01	4,23	33914	0,02	6,65	72		рв, тройник поворот
				Невя	зка между	участками	28 и ВР27	= 34,32%	$\xi = 3,49$ д	иафрагма	а 89 мм		
вр28	187,2	0,2	4	0,129	0,125	0,01	4,23	33914	0,02	6,65	72		рв, тройник поворот
				Невя	зка между	участками	29 и ВР28	= 42,09%	ξ=4,86 д	иафрагма	а 68 мм		
							Ветв	ьД					
Bp29	201,1	0,2	4	0,133	0,125	0,01	4,55	36435	0,02	2,5	31	31	вр, отвод90
31	201,1	3,6	4	0,133	0,125	0,01	4,55	36435	0,02	0,4	13	45	тройник проход
32	402,2	2,6	5	0,169	0,16	0,02	5,55	56930	0,02	0,25	11	55	тройник проход
33	594,6	5,9	6	0,187	0,2	0,03	5,25	67341	0,02	0,15	12	68	тройник проход
34	786,5	3,1	7	0,199	0,2	0,03	6,95	89066	0,02	0,15	13	80	тройник проход
35	978,3	1,6	8	0,208	0,2	0,03	8,64	110792	0,02	1	51	132	тройник поворот

Невязка между участком 30 и 35 = 37,32 % ξ =1,75 диафрагма 125 мм

1	2	2	4	_	6	7	0	0	10	11	12	13	14	
1	2	3	4	5	6	/	8	9	10	11	12	13		
Bp30	201,1	0,2	4	0,133	0,125	0,01	4,55	36435	0,02	2,6	33		вр, тройник	
				Hanga			21 DD20 -	- 26 690/ 8	-0.06		104		поворот	
		<u> </u>		невяз	ка между	участками	31 И ВР30 =	= 26,68% (; =0,96 ди	афрагма	104 MM	<u> </u>	l u	
вр31	192,5	0,2	4	0,130	0,125	0,01	4,35	34875	0,02	2,9	33		вр, тройник поворот	
				Невяз	вка между	участками	32 и ВР31 =	= 39,73 %	$\xi = 1,94$ д	иафрагм	а 96 мм			
вр32	191,8	0,2	4	0,130	0,125	0,01	4,34	34761	0,02	4,7	53		вр, тройник поворот	
		I.		Невяз	ка между ч	участками 3	33 и ВР32 =	= 20,79 % 8	5=1,24 ди	афрагма	102 мм	I	<u> </u>	
22	101.0	0.2	4					,	<u> </u>				вр, тройник	
вр33	191,8	0,2	4	0,130	0,125	0,01	4,34	34761	0,02	4,7	53		поворот	
				Невяз	ка между	участками	34 и ВР33 =	= 33,42% &	$\xi = 6,92$ д	иафрагм	а 80 мм			
	Невязка между участками 34 и BP33 = 33,42% ξ = 6,92 диафрагма 80 мм ВетвьЕ													
BP34	167,5	0,2	4	0,122	0,125	0,01	3,79	30347	0,02	2,5	22	22	вр, отвод90	
36	167,5	2,9	4	0,122	0,125	0,01	3,79	30347	0,02	0,4	8	30	тройник проход	
37	335,0	2,2	5	0,154	0,16	0,02	7,42	76112	0,02	0,2	15	45	тройник проход	
38	537,7	3,7	6	0,178	0,16	0,02	10,22	104807	0,02	0,25	42	88	тройник проход	
39	740,4	1,2	7	0,193	0,2	0,03	6,54	83846	0,02	2	54	142	тройник поворот	
				Невя	зка между	участками	39 и 40 = 3	37,88 % ξ	=3,37 диа	фрагма	142 мм	1	1	
BP35	167,5	0,2	4	0,122	0,125	0,01	3,79	30347	0,02	2,6	23		вр, тройник	
БРЭЭ	107,3	0,2	4	0,122	0,123	0,01	3,79	30347	0,02	2,0	23		поворот	
				Невяз	ка между	участками	36 и ВР35 =	= 24,50% ⁸	5=0,86 ди	афрагма	. 105 мм			
вр36	202,7	0,2	4	0,134	0,125	0,01	4,58	36730	0,02	3,2	41		вр, тройник	
врэо	202,7	0,2	-	Í	ŕ					ĺ			поворот	
		1		Невя	зка между	участками	37 и ВР36	= 10,29%	диафраги	иа не тре	буется	Ī	1	
вр37	202,7	0,2	4	0,134	0,125	0,01	4,58	36730	0,02	2,9	37		вр, тройник	
~P~ '	,,	~ ,_	•	,	,	,	,						поворот	
				Невя	зка между	участками	38 и ВР37	= 57,81%	ξ=4,02 ді	иафрагма	а 87 мм			

						O	бщие учас	тки Г-Д-Е	2				
40	2549,9	3,3	9	0,316	0,315	0,08	9,08	183353	0,02	0,2	19	229	тройник проход
												Продолже	ение таблицы Е.6
1	2	3	4	5	6	7	8	9	10	11	12	13	14
41	3290,3	10,1	10	0,341	0,355	0,10	9,23	209931	0,02	4	228	457	отвод90, отвод90, отвод90 тройник
				T.T.			20 41	<i>5</i> ,000/	1	<u> </u>			проход
				не	вязка меж	ду участкам	ии 20 и 41	= 5,08% ді	иафрагма	не треоу	ется		
42	6100,9	32,6	10	0,464	0,45	0,16	10,65	307083	0,02	2,72	261	717	отвод90, отвод45, отвод90

Таблица Е.7 – Аэродинамический расчет системы ПВ1 – вытяжная система

№ учас тка	Расхо д L, м ³ /ч	Дли на l, м	Реком ендов анная скоро сть V _{pe} к, м/с	Рекоме ндован ный диамет р d _{рек} , м	Фактич еский диамет р d, м	Фактиче ская площадь $F_{\phi a \kappa \tau}, m^2$	Фактиче ская скорост ь V_{φ} , м/с	Критер ий Рейнол ьдса Re	Коэффи циент гидравл ическог о трения	КМ С	Потер и давлен ия ΔP , Па	Суммарны е потери давления ∑∆Р, Па	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13	14
		•	1	1	T		Ветв		T	Ī	T		
вр1	108,1	0,2	4	0,098	0,1	0,01	3,82	24477	0,03	2,5	22	22	вр, отвод90
1	108,1	2,2	4	0,098	0,1	0,01	3,82	24477	0,03	0,6	10	32	тройник проход
2	216,1	2,7	5	0,124	0,125	0,01	4,89	39163	0,02	0,46	14	46	отвод30, тройник проход
3	313,3	3,9	5	0,149	0,16	0,02	4,32	44356	0,02	0,51	12	58	отввод30, тройник проход
4	448,9	3,1	6	0,163	0,16	0,02	6,20	63549	0,02	0,41	18	76	отовд 30, тройник проход
5	574,2	1,8	6	0,184	0,2	0,03	5,07	65028	0,02	0,6	12	88	тройник проход
6	1041, 8	0,6	7	0,229	0,25	0,05	5,89	94384	0,02	0,35	8	96	тройник проход
7	1167, 0	3,3	7	0,243	0,25	0,05	6,60	105735	0,02	0,2	12	108	тройник проход
8	1342, 5	3,1	8	0,244	0,25	0,05	7,59	121633	0,02	0,2	15	122	тройник проход
9	1464, 5	2,5	8	0,254	0,25	0,05	8,28	132687	0,02	0,2	15	138	тройник проход
10	1586, 5	2,8	9	0,250	0,25	0,05	8,97	143741	0,02	0,2	19	157	тройник проход

11	1739, 3	4,9	9	0,261	0,25	0,05	9,83	157585	0,02	1,5	107	264	отвод90, тройник проход
1 1			I	I	I	I	I	I	ı	1 !		['] Продолж	кение таблицы Е.7
1	2	3	4	5	6	7	8	9	10	11	12	13	14
BP2	108,1	0,2	4	0,098	0,1	0,01	3,82	24477	0,03	2,58	23		рв, тройник поворот
				Нев	вязка межд	цу участкам	и 1 и ВР2	=29,04% 	5 = 1,08 ди	афрагма	182 мм		
вр3	97,2	0,2	4	0,093	0,1	0,01	3,43	22016	0,03	2,46	18		рв, тройник поворот
				Нев	вязка межд	цу участкам	и 2 и ВР3	= 61,34%	ξ=3,99 ди	афрагма	170 мм		
вр4	135,6	0,2	4	0,109	0,125	0,01	3,07	24567	0,03	2,03	12		рв, тройник поворот
				Нев	язка межд	у участкам	и 3 и ВР4 =	= 79,75% &	5 = 8,16 ди	афрагма	а 78 мм		
вр5	125,3	0,2	4	0,105	0,125	0,01	2,83	22702	0,03	1,62	8		рв, тройник поворот
				Невя	язка межд	у участкамі	и 4 и ВР5 =	89,48 % 8	5=14,12 ди	афрагм	а 71 мм	.	
вр6	125,3	0,2	4	0,105	0,125	0,01	2,83	22702	0,03	2,54	12		рв, тройник поворот
		Н	евязка ме	ежду участ	гками 5 и 1	BP6 = 87,09	$9\% \xi = 17,4$	1 дроссел	ь клапан –	створог	к 1, угол і	наклона50 гра	ад
вр7	175,5	0,2	4	0,125	0,125	0,01	3,97	31796	0,02	1,13	11		рв, тройник поворот
				Нев	язка межд	у участкам	6 и ВР7 =	89,77% ξ	= 10,24 ди	афрагма	а 75 мм	.	
вр8	122,0	0,2	4	0,104	0,125	0,01	2,76	22108	0,03	1,13	5		рв, тройник поворот
			Невязі	ка между у	участками	7 и ВР8 = 9	$95,63\% \xi =$	25,63 дро	ссель клап	ан – 1 с	творка, 5	0 градусов	
вр9	122,0	0,2	4	0,104	0,125	0,01	2,76	22108	0,03	1,13	5		рв, тройник поворот
			Невязі	ка между у	<u>частками</u>	8 и ВР9 = 9	$96,12\% \xi =$	29,02 дро	ссель клап	ан – 2 с	творки, 6	0 градусов	
вр10	152,8	0,2	4	0,116	0,125	0,01	3,46	27687	0,02	1,13	8		рв, тройник поворот
			Невязі	ка между у	/частками	9 и BP10 =	$94,66\% \xi =$	=20,74 дро	оссель клаі	пан – 1 с	створка 5	0 градусов	

вр11	458,3	0,2	4	0,201	0,2	0,03	4,05	51898	0,02	2,5	25	25	рв, отвод90
12	458,3	3,4	4	0,201	0,2	0,03	4,05	51898	0,02	0	4	28	тройник проход
					•			•		•		Продоля	кение таблицы Е.7
1	2	3	4	5	6	7	8	9	10	11	12	13	14
13	467,6	4,4	4	0,203	0,2	0,03	4,13	52952	0,02	1,46	20	48	отвод30, тройник поворот
				Невя	зка между	участками	5 и ВР13	=45,57%	5=3,92 ди	афрагма	і 140 мм	,	
вр12	9,3	0,2	4	0,029	0,1	0,01	0,33	2106	0,05	1,3	0		рв, тройник поворот
			Невязка	между уч	астками 12	2 и BP12 =	99,68% ξ =	435,2507	дроссель в	:лапан –	- 1 створк	а 72 градуса	
							Вет	вьБ				,	
вр13	119,7	0,2	4	0,103	0,1	0,01	4,23	27112	0,02	2,5	27	27	вр, отвод90
14	119,7	2,7	4	0,103	0,1	0,01	4,23	27112	0,02	0,6	14	41	тройник проход
15	239,4	2,7	5	0,130	0,125	0,01	5,41	43380	0,02	0,4	15	56	тройник проход
16	388,8	1,6	6	0,151	0,16	0,02	5,37	55033	0,02	1,12	23	79	тройник поворот
				Нев	язка межд	у участкам	и 11 и 16 =	=69,93% ξ	=10,67 ди		1 95 мм		
вр14	119,7	0,2	4	0,103	0,1	0,01	4,23	27112	0,02	2,58	28		вр, тройник проход
					зка между	участками		1 = 31,08%			1а 82 мм		
вр15	149,4	0,2	4	0,115	0,125	0,01	3,38	27063	0,02	2,24	16		вр, тройник проход
				Невя	зка между	участками	ı 15 и BP15	5 = 72,29%	$\xi = 5,95$ д	иафрагм	а 82 мм		
				T	T		Вет	вьВ		T		<u> </u>	1
вр16	139,8	0,2	4	0,111	0,125	0,01	3,16	25339	0,03	2,5	15	15	вр, отвод90
17	139,8	2,4	4	0,111	0,125	0,01	3,16	25339	0,03	4,75	31	47	тройник проход, диафрагма 87мм кси4 для увязки с вр17
18	294,1	1,5	5	0,144	0,125	0,01	6,65	53288	0,02	0,73	26	73	тройник проход
				He	вязка меж,	ду участкам	ии 19 и 18	= 74,04%	5 =7,81 ди	афрагма	і 79мм		

1	2	3	4	5	6	7	8	9	10	11	12	13	14
вр17	154,2	0,2	4	0,117	0,1	0,01	5,45	34937	0,02	2,65	48		вр, тройник проход
			<u> </u>	Невязка	а между уч	настками 17	7 и BP17 =	$2,96\% \xi = 0$	0,24 диаф	рагма не	требует	ся	
						(общий учас	сток А-Б-В	3				_
19	2128, 1	3,3	10	0,274	0,3	0,07	8,36	160672	0,02	0,2	16	280	тройник проход
20	2422, 2	19,3	10	0,293	0,3	0,07	9,51	182875	0,02	3,21	233	512	отвод90, отвод75, отвод90
							Вет	вьГ					•
BP1 8	128,0	0,2	4	0,106	0,125	0,01	2,89	23189	0,03	2,5	13	13	рв, отвод90
21	128,0	3	4	0,106	0,125	0,01	2,89	23189	0,03	3,31	20	32	отвод30,диафрагма 94мм кси2,4 для увязки с вр19, тройник проход
22	255,9	3,6	5	0,134	0,125	0,01	5,79	46378	0,02	0,41	21	53	отвод30, тройник проход
23	337,3	2,7	5	0,154	0,16	0,02	4,66	47744	0,02	0,25	8	61	тройник проход
24	418,6	2,2	6	0,157	0,16	0,02	5,78	59255	0,02	0,41	14	75	отвод30, тройник проход
25	538,5	1,8	6	0,178	0,16	0,02	7,43	76229	0,02	0,35	19	94	тройник проход
26	658,4	2,8	7	0,182	0,2	0,03	5,82	74563	0,02	0,25	11	104	тройник проход
27	808,1	3	7	0,202	0,2	0,03	7,14	91521	0,02	0,25	16	121	тройник проход
28	957,9	3,3	8	0,206	0,2	0,03	8,46	108478	0,02	0,35	28	149	тройник проход
29	1107, 6	2,8	8	0,221	0,25	0,05	6,26	100348	0,02	0,2	10	158	тройник проход
30	1257, 3	0,3	9	0,222	0,25	0,05	7,11	113913	0,02	0,2	7	165	тройник проход

												продоля	сение таблицы Е./
1	2	3	4	5	6	7	8	9	10	11	12	13	14
31	1451, 4	2,2	9	0,239	0,25	0,05	8,21	131502	0,02	1,75	77	242	отвод90, тройник проход
		1	I.	I	l	l	L	l l		1	<u>l</u>		1 ''
вр19	128,0	0,2	4	0,106	0,1	0,01	4,52	28986	0,02	2,65	33		вр, тройник поворот
		ı	l .		H	Іевязка меж	ду участка	ми BP19 и	$\sqrt{21} = 1.85$	5%	l		1
вр20	81,3	0,2	4	0,085	0,1	0,01	2,87	18417	0,03	1,42	7		вр, тройник поворот
			I.	Невя	вка между	участками	21 и ВР20	= 86,28 %	$\xi = 9.27 \mu$	циафраг	ма 61 мм		1
вр21	81,3	0,2	4	0,085	0,1	0,01	2,87	18417	0,03	2,03	10		вр, тройник поворот
				Невя	вка между	участками	22 и ВР21	= 83,12%	$\xi = 10,26 \mu$	циафраг	ма 60 мм		
вр22	119,9	0,2	4	0,103	0,1	0,01	4,24	27160	0,02	2,03	22		вр, тройник поворот
				Невя	зка между	участками	23 и ВР22	= 70,12%	$\xi = 4,88$ д	иафраги	ма 68 мм		
вр23	119,9	0,2	4	0,103	0,1	0,01	4,24	27160	0,02	2,62	29		вр, тройник поворот
				Невя	зка между	у участками	и 24 и BP23	3 = 69,34%	ξ =6,04 д	иафрагм	иа 66 мм		
вр24	149,7	0,2	4	0,115	0,125	0,01	3,39	27131	0,02	2,03	14		вр, тройник поворот
				Невяз	вка между	участками	25 и ВР24	= 86,36%	$\xi = 13,10$	диафраг	ма 72 мм		
вр25	149,7	0,2	4	0,115	0,125	0,01	3,39	27131	0,02	2,03	14		вр, тройник поворот
				Невя	зка между	у участками	и 26 и BP25	5 = 88,2% &	ξ=15,47 д	иафрагм	иа 70 мм		
вр26	149,7	0,2	4	0,115	0,125	0,01	3,39	27131	0,02	2,54	18		вр, тройник поворот
			Невязк	а между у	частками	27 и ВР26 =	$= 88,06\% \xi$	=19,02 дро	оссель кла	апан — 1	створка 5	0 градусов	
вр27	149,7	0,2	4	0,115	0,125	0,01	3,39	27131	0,02	1,13	8		вр, тройник поворот
			Невязк	а между у	частками2	28 и BP27 =	94,91% ξ =	= 21,83 дро	оссель кла	апан – 1	створка 5	0 градусов	

	продолжение таолицы Е.7												
1	2	3	4	5	6	7	8	9	10	11	12	13	14
вр28	194,1	8,2	4	0,131	0,125	0,01	4,39	35177	0,02	1,13	31		вр, отвод90, тройник поворот
				Невяз	вка между	участками	29 и ВР28	= 81,45 %	$\xi = 11,62$ μ	циафраг	ма 73 мм		
							Ветн	вьД					
вр29	160,9	0,2	4	0,119	0,125	0,01	3,64	29148	0,02	2,5	20	20	вр, отвод90
32	160,9	3,6	4	0,119	0,125	0,01	3,64	29148	0,02	0,3	8	28	тройник проход
33	321,7	2,6	5	0,151	0,16	0,02	4,44	45544	0,02	0,35	8	36	тройник проход
34	475,7	5,9	6	0,167	0,16	0,02	6,57	67341	0,02	0,25	25	62	тройник проход
35	629,2	3,1	7	0,178	0,2	0,03	5,56	71253	0,02	0,25	10	72	тройник проход
36	782,6	1	8	0,186	0,2	0,03	6,91	88633	0,02	0,25	10	82	тройник проход
37	941,2	0,5	9	0,192	0,2	0,03	8,31	106594	0,02	1,39	60	141	тройник поворот
				Нев	язка межд	у участкамі	и 31 и 37 =	41,55 % &	=2,42 диа	фрагма	150 мм		
вр30	160,9	0,2	4	0,119	0,125	0,01	3,64	29148	0,02	1,42	12		вр, тройник поворот
				Невяз	вка между	участками	32 и ВР30	= 58,75 %	$\xi = 2,08$ д	иафрагі	ма 96 мм		
вр31	154,0	0,2	4	0,117	0,125	0,01	3,48	27900	0,02	2,03	15		вр, тройник поворот
				Невя	зка между	участками	i 33 и BP31	= 58,63%	ь ξ =2,93 ді	иафрагм	а 91 мм		
вр32	153,5	0,2	4	0,116	0,125	0,01	3,47	27809	0,02	1,62	12		вр, тройник поворот
				Невя	зка между	участками	34 и ВР32	= 80,57 %	6 ξ=6,88 д	иафраги	иа 81 мм		
вр33	153,5	0,2	4	0,116	0,125	0,01	3,47	27809	0,02	2,03	15		вр, тройник поворот
				Невя	зка между	участками	35 и ВР33	= 79,22%	$\xi = 7,89$ д	иафрагм	иа 78 мм		
вр34	158,6	6,8	4	0,118	0,125	0,01	3,59	28737	0,02	2,03	26		вр, отвод90, тройник поворот
				Невя	зка между	участками	36 и ВР34	= 68,39%	5 ξ =7,25 ді	иафрагм	а 79 мм		
							Вети						
Bp3 5	134,0	0,2	4	0,109	0,125	0,01	3,03	24277	0,03	2,5	14	14	вр, отвод90,

	продолжение таолицы Е./												
1	2	3	4	5	6	7	8	9	10	11	12	13	14
38	134,0	2,9	4	0,109	0,125	0,01	3,03	24277	0,03	3,55	23	37	тройник проход, диафрагма 92мм кси2,8 для в=увязки с уч ВР36
39	268,0	2,2	5	0,138	0,125	0,01	6,06	48555	0,02	0,4	17	54	тройник проход
40	430,1	3,7	6	0,159	0,16	0,02	5,94	60890	0,02	0,4	18	72	тройник проход
41	592,3	0,5	7	0,173	0,2	0,03	5,23	67077	0,02	0,25	5	77	тройник проход
42	774,3	0,7	8	0,185	0,2	0,03	6,84	87686	0,02	1,12	33	110	тройник поворот
		•		Нев	язка межд	у участкам	и 43 и 42 =	58,75% ξ	=5,60 диа	фрагма	133 мм		
вр36	134,0	0,2	4	0,109	0,1	0,01	4,73	30347	0,02	2,65	36		вр, тройник поворот
					Н	евязка меж	ду участка	ми ВР36 и	138 = -1,39	9%			
вр37	162,2	0,2	4	0,120	0,125	0,01	3,67	29384	0,02	2,24	18		вр, тройник поворот
				Нев	язка межд	у участкамі	и 39 и ВРЗ	7 = 65,87%	⁄ ₆ ξ =4,4 ди	афрагм	а 86 мм		
вр38	162,2	0,2	4	0,120	0,125	0,01	3,67	29384	0,02	2,54	21		вр, тройник поворот
		•		Невя	зка между	участками	40 и ВР38	= 71,16%	$\xi = 6,36$ д	иафрагм	иа 81 мм		•
вр39	182,0	6,7	4	0,127	0,125	0,01	4,12	32975	0,02	3,23	46		вр, отвод90, тройник поворот
				Нев	язка межд	у участкамі	и 41 и ВРЗ	9 = 40,82%	6 ξ =3,1 ди	афрагм	а 90 мм		
						(Общие учас	стки Г-Д-Е	Ξ				
43	2392, 7	3,3	10	0,291	0,3	0,07	9,39	180647	0,02	0,3	26	268	тройник проход
44	3166, 9	15,4	10	0,335	0,355	0,10	8,88	202060	0,02	3,57	203	470	отвод90, отвод90, тройник поворот
				I.	Іевязка ме	жду участк	ами 20 и44	= 8,2% ди	иафрагма і	не требу	/ется		
45	5589, 1	31,1	10	0,444	0,45	0,16	9,75	281320	0,02	2,56	208	720	отвод90, отвод30, отвод90
								т ~	тто Е 0	A		U	от отготот ПА и ВА

Таблица Е.8 – Аэродинамический расчет систем П4 и В4

1 241	№ учас тка	Рас ход L, м ³ / ч	Дли на l, м	Реком ендова нная скорос ть V _{рек} , м/с	Рекомендованн ый диаметр d _{рек} , м	Фактиче ский диаметр d, м	Фактичес кая площадь $F_{\phi a \kappa \tau}$, M^2	Фактичес кая скорость V _ф , м/с	Критер ий Рейнол ьдса Re	Коэффи циент гидравл ическог о трения λ	КМС	Потери давлен ия ДР, Па	Суммарные потери давления ∑∆Р, Па	Прим ечани е
вр1 321 / .8 0.4 4 0,169 0.2 0,03 2,84 36438 0,02 2.5 12 12 B4 вр1 241 / .3 0.2 4 0,146 0,16 0,02 3,33 34161 0,02 2,5 17 17 вр. отвод 90 1 241 / .3 2,3 4 0,146 0,16 0,02 3,33 34161 0,02 0,75 7 24 прохо д 2 482 / .6 2,3 5 0,185 0,16 0,02 6,66 68322 0,02 1,2 40 64 отвод 90 BP2 241 / .3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,65 18 вр. тройн ик прохо д 4 3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,65 18 вр. тройн ик прохо д 4 0 0 0 </td <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12</td> <td>13</td> <td>14</td>	1	2	3	4	5	6	7	8	9	10	11	12	13	14
вр1 ,8 0,4 4 0,169 0,2 0,03 2,84 36438 0,02 2,3 12 12 вр1 241 ,3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,5 17 17 вр, отвод 90 тройн ик прохо д 1 241 ,3 2,3 4 0,146 0,16 0,02 3,33 34161 0,02 0,75 7 24 прохо д 2 482 2,3 5 0,185 0,16 0,02 6,66 68322 0,02 1,2 40 64 отвод 90 BP2 241 ,3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,65 18 вр, тройн ик прохо д 4 0,146 0,16 0,02 3,33 34161 0,02 2,65 18 вр, тройн цк прохо д								Π4						
вр1 241	вр1		0,4	4	0,169	0,2	0,03	2,84	36438	0,02	2,5	12	12	
вр1 241 ,3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,5 17 17 отвод 90 1 241 ,3 2,3 4 0,146 0,16 0,02 3,33 34161 0,02 0,75 7 24 прохо д 2 482 ,6 2,3 5 0,185 0,16 0,02 6,66 68322 0,02 1,2 40 64 отвод 90 BP2 241 ,3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,65 18 вр, тройн ик прохо д вр, тройн ик прохо д 1 0,02 3,33 34161 0,02 2,65 18 ик прохо д								B4						
1 241 / 3 2,3 4 0,146 0,16 0,02 3,33 34161 0,02 0,75 7 24 ик проход и про	вр1		0,2	4	0,146	0,16	0,02	3,33	34161	0,02	2,5	17	17	отвод
2 482 д,6 2,3 5 0,185 0,16 0,02 6,66 68322 0,02 1,2 40 64 отвод 90 BP2 241 д,3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,65 18 Вр, тройн ик проход д	1		2,3	4	0,146	0,16	0,02	3,33	34161	0,02	0,75	7	24	прохо
BP2 241 / 3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,65 18 тройн ик прохо д	2		2,3	5	0,185	0,16	0,02	6,66	68322	0,02	1,2	40	64	отвод
BP2 241 / 3 0,2 4 0,146 0,16 0,02 3,33 34161 0,02 2,65 18 тройн ик прохо д									Г		Г	T		
	BP2		0,2	4	0,146	0,16	0,02	3,33	34161	0,02	2,65	18		тройн ик прохо
					Невязка м	ежду участ	гками 1 и ВР	2 = 25,86%	$\xi = 0,93$ ди	нафрагма 1	34 мм			

Таблица Е.9 – Аэродинамический расчет естественной вентляции

№	Расход L, м³/ч	Высота, ћ	Плотность внутреннего воздуха $\rho_{\rm b,\ M}^{3/{\rm q}}$	Плотность наружного воздуха р _н , м ³ /ч	Располагаемое давление Р _{расп} , Па	Диаметр d, м	Фактическая скорость V, м/c	Число Рейнольдса Re	Коэффициент гидравлического трения	Потери давления ΔР, Па	невязка	КМС	Диаметр диафрагмы d _д , мм
1	50	4			2,23	0,125	1,13	9060	0,03	1,95	12,54	0,36	114
2	50	7,3			4,06	0,125	1,13	9060	0,03	2,60	35,91	1,90	97
3	50	7,3			4,06	0,125	1,13	9060	0,03	2,60	35,91	1,90	97
4	50	10,6			5,90	0,125	1,13	9060	0,03	3,26	44,73	3,44	89
5	50	10,6	1,21	1,27	5,90	0,125	1,13	9060	0,03	3,26	44,73	3,44	89
6	50	4			2,23	0,125	1,13	9060	0,03	1,95	12,54	0,36	114
7	50	7,3			4,06	0,125	1,13	9060	0,03	2,60	35,91	1,90	97
8	50	10,6			5,90	0,125	1,13	9060	0,03	3,26	44,73	3,44	89

Таблица Ж.1 – Ведомость трудоемкости строительно-монтажных работ

		13	Тиолиц					мкость				paoor
		ерени		мени,	I 3	вахватка			ахватк	a	п-дн	ена
№ п/п	Наименование работ	Единица измерения	§ ЕНиР	Норма времени, чел-час	Объем работ	чел-дн	Маш-см	Объем работ	чел-дн	Маш-см	Всего, чел-дн	Состав звена
1	2	3	4	5	6	7	8	9	10	11	12	13
1.	Прокладка воздуховодов диаметром: До Ø 250 мм До Ø 355 мм До Ø 560 мм	M ²	E10 -5	0,69 0,61 0,42	205,56	15,29		52,62 125,56	3,91 6,43			Монтаж- ник систем вентиля- ции: 5 разр1 4p1 3p1 2p1
	Монтаж воздухораспределителей До 10 кг	ШТ	E10-11	0,72	66,5	5,84		66,5	5,84			5p1 3p1 2p1
	Монтаж жалюзийных решеток	ШТ	E 10-16	0,66	4	0,32						4p1 3p2
	Монтаж ячейковых фильтров	ШТ	E10-18	0,65	10	0,79						5p1 4p1 3p1
	Монтаж вентиляционных блоков, периметр до: 5000 мм 8000 мм	M ²	E10-7	0,29 0,22	5,1 28,46	0,18 0,77			-			5p1 4p1 3p1 2p2
1						1 7	0	1	_			лицы Ж.1
l	2	3	4	5	6	7	8	9	10	11	12	13

Монтаж шумоглушителей	1 m ²	E10-20	1,1	5.91	0,79	5p1 3p1 2p1
Монтаж клапанов Огнезадерживающих лепестковых	ШТ	E 10-10	3,5 0,92	20 10	8,5 1,12	4p1 3p1
Узлы прохода вентиляционных вытяжных шахт Ø до 250мм Ø до 355мм Ø до 560мм	ШТ	E10-6	1,1 1,3 1,6	5 6 6	0,67 0,95 1,17	4p1 3p1 2p1
Монтаж вентиляторов до 0,005т до 0,12т до 0,2т	ШТ	E 34-27	6,7 6,7 7,3	1 7 1	0,82 5,72 0,88	5p2 3p3
Монтаж кондиционеров до: 500 кг	ШТ	E10-1	5	1	0,61	5p1 4p1 3p1
Монтаж калориферов	ШТ	E9-1-14	3,5	3	1,28	5p1 4p1 3p1
Монтаж приточных камер производительностью по воздуху: До 50 тыс. м ³ /ч	ШТ	E 10-2	22,5	3	8,23	6p. – 1 4p. – 1 3p. – 2