МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт химии и энергетики
(наименование института полностью)
Кафедра «Химическая технология и ресурсосбережение»
(наименование)
18.03.01 Химическая технология
(код и наименование направления подготовки, специальности)
Химическая технология органических и неорганических веществ
(направленность (профиль) / специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

На тему: «Абсорбция окислов азота в производстве неконцентрированной азотной кислоты на базе агрегата УКЛ - 7 - 76 на ПАО «КуйбышевАзот»»

Студент	А.Э.Колесников	
	(И.О. Фамилия)	(личная подпись)
Руководитель	к.х.н., И.С.С	Один
	(ученая степень, звание. І	 Фамилия)

Тольятти 2020

Аннотация

Выпускная квалификационная работа 52 стр., 2 рисунок, 26 таблицы, использовано 20 источников.

АБСОРБЦИЯ ОКСИДОВ АЗОТА, НЕКОНЦЕНТРИРОВАННАЯ АЗОТНАЯ КИСЛОТА, ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ, ТЕХНОЛОГИЧЕСКАЯ СХЕМА.

Объектом исследования является агрегат УКЛ-7-76 ПАО «Куйбышев Азот».

Цель работы - модернизация агрегата УКЛ-7-76 ПАО «КуйбышевАзот»

В приложении представлена схема абсорбционной колонны, схема хранения и выдачи продукционной азотной кислоты.

Пояснительная записка содержит три раздела:

В первом разделе разобраны физико-химические основы процесса абсорбции оксидов азота

В технологической части проведен анализ существующего агрегата УКЛ-7-76 на ПАО «КуйбышевАзот». Предложен способ модернизации существующей схемы.

В расчетной части материального и теплового баланса агрегата УКЛ-7-76 стадии абсорбции оксидов азота при оптимальных параметрах работы. Выпускная квалификационная работа выполнена в текстовом редакторе Microsoft Word 10. и представлена на электронном носителе.

Содержание

Введение	4
1Теоретическая часть	6
1.1Физико-химические основы процесса абсорбции оксидов аз	ота6
1.2 Выводы по разделу	8
2 Технологическая часть	9
2.1 Описание технологической схемы абсорбции	9
2.2 Хранение и выдача продукционной кислоты	13
2.3 Аналитический контроль	13
2.4 Выбор способа модернизации	16
2.5 Выводы по разделу	19
3 Расчетная часть	20
3.1 Материальный баланс существующей установки	20
3.2 Тепловой баланс существующей установки	28
3.3 Материальный баланс проектируемой установки	35
3.4 Тепловой баланс проектируемой установки	43
3.5 Выводы по разделу	49
Заключение	50
Список используемых источников.	51

Введение

В настоящее время азотная кислота является исходным сырьем для производства большинства азотокислотных солей, используемых в качестве удобрений. Главными потребителями является сельское хозяйство, а также промышленные предприятия по производству взрывчатых веществ и красителей.

Связанный азот получают в виде аммиака паровой конверсией метана на никелевых катализаторах:

$$CH_4 + H_2O = CO + 3H_2$$

С последующей паровой конверсией СО на железохромовых катализаторах:

$$CO + H_2O = CO_2 + H_2$$

Получение NH_3 путем взаимодействия H_2 и N_2 :

$$3H_2 + N_2 = 2NH_3$$

Неконцентрированная азотная кислота получается путем окисления аммиака кислородом воздуха на платинойдном катализаторе с последующей абсорбцией нитрозного газа:

$$4NH_3 + 5O_2 = 4NO + 6H_2O$$

$$3NO_2 + H_2O = 2HNO_3 + NO$$

Азотную кислоту используют для производства простых и комплексных минеральных удобрений.

Целью выпускной квалификационной работы является модернизация процесса абсорбции оксидов азота в производстве неконцентрированной азотной кислоты.

В связи с поставленной целью в работе следует решить следующие задачи:

- изучить теоретические основы абсорбции оксидов азота;
- изучить процесс абсорбции оксида азота в производстве неконцентрированной HNO₃ на ПАО «КуйбышевАзот»;

- ознакомится с технологической схемой и аналитическим контролем осуществляемом на стадии абсорбции оксидов азота;
- предоставить вариант модернизации процесса абсорбции оксидов азота в производстве неконцентрированной HNO_3 ;
- рассчитать материальный и тепловой баланс существующего агрегата, выполнить расчеты материального и теплового баланса после модернизации процесса абсорбции оксидов азота;
- предоставить выводы основываясь на теоретических и практических данных;

1 Теоретическая часть

1.1 Физико-химические основы процесса абсорбции оксидов азота

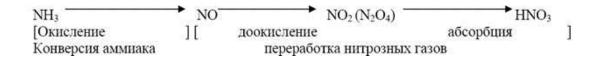


Рисунок 1 – Общая схема получения неконцентрированной HNO₃

Неконцентрированную азотную кислоту получают переработкой оксидов азота путем поглощения их из газовой фазы водой или водяным раствором азотной кислоты [1]:

$$N_2O_3+H_2O=2HNO_2$$
 (1.1)
 $2NO_2+H_2O=HNO_2+HNO_3$ (1.2)
 $N_2O_4+H_2O=HNO_2+HNO_3$ (1.3)

Растворение двуокиси, четырехокиси и трехокиси азота связано с процессом поглощения оксидов азота водой или конденсатом водянного пара и образованием азотной и азотистой кислоты. Так, как азотистая кислота является малоустойчивым соединением, то в растворах азотной кислоты разлагается [2]:

$$4HNO_2 = N_2O + 2NO + 2H_2O (1.4)$$

При протекании следующих процессов становится возможным получить азотную кислоту [2,3]:

- 1. Переход оксидов азота из газовой фазы в жидкую через границу фаз (газ жидкость);
- 2. Контактирование оксидов азота с конденсатом водяного пара и образование: HNO₃ и HNO₂;
- 3. Из-за мало устойчивости HNO_2 происходит ее разложение и возращение оксидов азота в газовую фазу;

Определяющим по скорости поглощения оксидов азота процессом - является диффузия их через газовую пленку. Данному процессу препятствует туман из кислоты при контакте паров воды и двуокиси азота, который создает дополнительное сопротивление при поглощении оксидов азота [4].

Факторы, влияющие на процесс абсорбции [5]:

- 1. Температура;
- 2. Давление;
- 3. Степень окисленности оксидов азота;
- 4. Концентрация оксидов азота и кислоты, образующаяся в результате абсорбции;
 - 5. Скорость нитрозного газа, поступающего на абсорбцию;
 - 6. Конструктивное оформление оборудования;
 - 7. Соотношение поверхности контакта фаз и реакционного объема;

С повышением температуры скорость абсорбции уменьшается, это можно объяснить тем, что движущая сила процесса уменьшается при увеличении давления оксидов азота над HNO_3 . Что бы абсорбция была полнее ее ведут при пониженных температурах, в этом случае на тарелки абсорбционной колонны устанавливают охлаждающие змеевики [6].

Давление влияет на процесс абсорбции на много значительнее, особенно при высоких значениях окисления NO_x [7]. Данные влияния давления на процесс абсорбции NO показан в таблице N1:

Таблица №1 Влияние давления на степень поглощения оксидов азота

Давление,	Степен	ь поглоще	ения, %	Давление,	Степен	ь поглоще	ния, %
МПа	47%	55%	70%	МПа	47%	55%	70%
0,1013	37,5	0	0	1,57	83,4	58,8	4,9
0,343	64,2	31,5	0	1,96	85,4	64,0	8,3
0,785	76,2	49,2	0	3,92	89,7	72,5	20,5

Чем выше концентрация кислоты, используемая для поглощения, тем ниже степень поглощения [8]:

- 1. До концентрации 45 % масс. это влияние незначительно;
- 2. От 46 до 49 % масс. повышение концентрации на 1% снижает степень поглощения на 0,3%;
 - 3. От 50 % процесс резко замедляется;
- 4. Более 56 % поглощение NO будет приводить к их частичному растворению;

Поэтому в производстве, HNO_3 после абсорбционной колонны направляется в отдувочную колонну. В отдувочной колонне продукционная кислота отдувается горячим воздухом от растворенных в кислоте NO_x [9].

Эффективность абсорбции NO в HNO₃ так же зависит от времени контакта газовой и жидкой фазы, аппаратурного оформления, гидродинамических условий в абсорбционной колонне. Значительное влияние на процесс оказывает: высота перелива между ситчатыми тарелками в колонне, диаметр отверстий (на существующей установке диаметр отверстий равен 2,2 мм, шаг между отверстиями 10 мм), и площадь сечения тарелки [10].

1.2 Выводы по разделу

Таки образом в теоретической части выпускной квалификационной работы рассмотрены физико-химические основы процесса абсорбции оксидов азота и условия влияющие на процесс абсорбции. Показано, что основными факторами влияющими на рассматриваемый процесс являются: температура, давление, концентрация и степень окисления окислов азота, скорость подачи исходного нитрозного газа и конструктивные особенности применяемого оборудования.

2 Технологическая часть

2.1 Описание технологической схемы процесса абсорбции

Технологическая схема производства неконцентрированной азотной кислоты на базе агрегата УКЛ-7-76 на ПАО «КуйбышевАзот» представлена на рис. 2.1.

Охлаждение нитрозного газа до температуры не более 170 °C осуществляется в титановых теплообменниках поз. Т-202, Т-202А. Так же предусмотрена подача добавочного воздуха в титановые теплообменники. Далее нитрозный газ поступает в 2 последовательных холодильника-конденсатора поз. Т-203 А, Б. где происходит предварительное охлаждение нитрозного газа перед поступлением в абсорбционную колонну оборотной водой до 50-60 °C. На охлаждение холодильников-конденсаторов подается оборотная вода после змеевиков абсорбционной колонны с температурой 31-32°C.

Охлажденные нитрозные газы после выделения влаги в холодильниках-конденсаторах направляются под нижнюю тарелку абсорбционной колонны поз. К-201, где в противоточном взаимодействии с поступающим на верхнюю тарелку конденсатом происходит образование неконцентрированной азотной кислоты (57 %). В абсорбционную колонну, взависимотси от концентрации на тарелках колонны (5, 6, 8 или 10 %) подается кислота с массовой долей 43-52 % после холодильников-конденсаторов поз. Т-203 А, Б.

После холодильников-конденсаторов поз. Т-203 A, Б оборотная вода направляется в оборотный цикл с температурой не более 35 °C

Абсорбционная колонна — это аппарат с 47 ситчатыми тарелка на которые уложены охлаждающие змеевики.

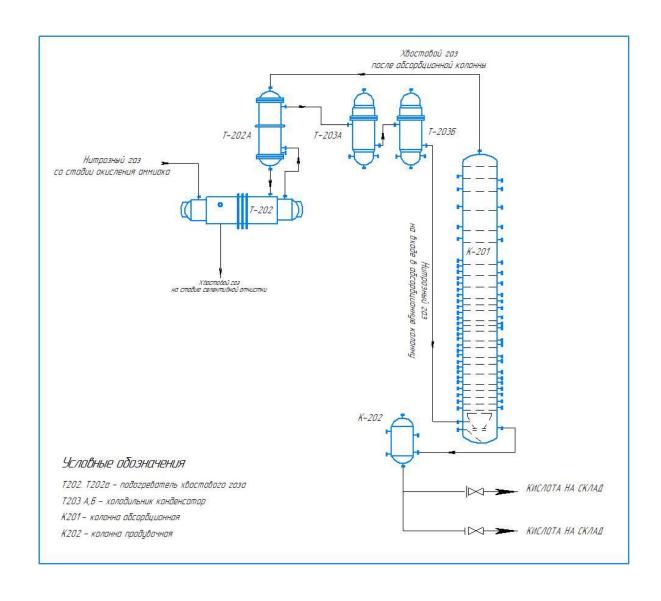


Рисунок 2 — Технологическая схема стадии абсорбции оксидов азота в производстве неконцентрированной HNO_3 на базе агрегата УКЛ-7-76 ПАО «КуйбышевАзот»

Степень абсорбции оксидов азота в абсорбционной колонне должна быть не менее 99%.

В змеевики, уложенные на тарелках колонны, подаётся оборотная вода для отвода реакционного тепла двумя потоками:

- 1. Давление не менее $0,45 \text{ M}\Pi \text{a} (4,5 \text{ кгс/см}^2);$
- 2. Давлением не менее $0.50 \text{ МПа} (5.0 \text{ кгс/см}^2) (для верхних тарелок);$

Охлаждающая вода после абсорбционной колонны направляется в кожухотрубные холодильники-конденсаторы. Благодаря пенному режиму на тарелках абсорбционной колонны обеспечивается хороший теплообмен.

Нитрозные газы направляются в куб колонны и проходят снизу вверх все тарелки. Конденсат водяного пара поступает на тарелку № 46 с температурой не более 35 °C. При этом 47-я тарелка является резервной и служит дополнительным отбойником для снижения каплеуноса при повышенной нагрузке.

В кубе колонны процессы окисления и кислотообразования максимальны и уменьшаются с прохождение нитрозного газа по колонне снизу - вверх. Поэтому нижние тарелки колонны снабжены многорядными змеевиками, с 15 по 28 тарелки – 2-х рядными.

 ${
m HNO_3}$ перетекает с верхней тарелки на нижнюю через переливные перегородки, двигаясь на встречу потоку нитрозного газа. Концентрация кислоты возрастает до 56 - 57 %, а содержание оксидов азота в нитрозном газе уменьшается до 0.11%

Процесс абсорбции протекает в пенном режиме. Ионы хлора, присутствующие в конденсате водяного пара, подаваемого на орошение, взаимодействуют с HNO₃ и образуют хлористый водород, хлор, хлористый нитрозил. Эти агрессивные вещества достигают максимального содержания в 25-30 % кислоте. Такая смесь вызывает интенсивную коррозию абсорбционной колонны. Поэтому требования к конденсату, используемому на орошение колонны, предусматривают минимизацию содержания хлорионов

С целью удаления хлоридов предусмотрен частичный отвод кислоты с 13-й по 18-ю тарелки на склад в E-502/1,2.

С нижней части колонны HNO₃ направляется в продувочную колонну поз. К-202. В продувочной колонне, горячим воздухом, происходит отдувка продукционной кислоты от растворенных в ней оксидов азота.

Продувочная колонна представляет собой вертикальный аппарат с ситчатыми тарелками. Горячий воздух после нагнетателя вводится в продувочную колонну под нижнюю тарелку, кислота подается противотоком – на верхнюю.

Отдутая азотная кислота (с массовой долей н/м 57 %) из продувочной колонны поз. К -202 направляется на склад азотной кислоты.

Из продувочной колонны - добавочный воздух и отдувочные газы направляются в трубопровод нитрозного газа и подаются под 6-ю тарелку абсорбционной колонным поз. К - 201.

Таблица 2 Содержание NO_x и O₂ в хвостовом газе

NO_x	O_2
Не более 0,11 %	1,7 - 3,5 %

Хвостовой газ из абсорбционной колонны поз. К-201 с температурой не более 35 $^{\rm O}$ С проходит отделение от влаги в сепараторе поз. Х-203 и направляется в титановые теплообменники поз. Т-202, где охлаждается нитрозными газами до температуры 115 $^{\rm O}$ С

2.2 Хранение и выдача продукционной кислоты

Продукционная азотная кислота с массовой долей HNO_3 не менее 57 % из продувочной колонны агрегата производства кислоты поступает на склад азотной кислоты с насосной, в составе двух резервуаров поз. E-502/2A, E-502/2A, вместимостью 700 м³ каждый. Азотная кислота в хранилище находится под атмосферным давлением и при температуре окружающей среды. В состав склада входят:

- Резервуары вместимостью $V=700 \text{ м}^3$ (номинальный объем $V=700 \text{ м}^3$, геометрический $V=766 \text{ м}^3$) в количестве 2 ед.
- Насосная для выдачи кислоты потребителям, в которой предусматривается установка центробежных насосов в количестве 4 ед., из них два рабочих, два резервных.

Основное назначение склада – хранение продукционной неконцентрированной азотной кислоты, вырабатываемой в действующем производстве кислоты, и выдача ее заводским потребителям.

2.3 Аналитический контроль

План аналитического контроля процесса абсорбции оксидов азота представлен в табл. 3

В технологической части выпускной квалификационной работы рассмотрена технологическая схема процесса абсорбции на действующем производстве, хранении и выдачи продукционной кислоты, аналитический контроль процесса абсорбции.

Таблица 3 – Аналитический контроль процесса абсорбции оксидов азота

Название аналитической точки	Параметр, требующий	Норма
и место отбора	контроля	(единица измерения)
1	2	3
Анализ продукционной азотной	1 Массовая доля азотной	не менее 57,0 %
кислоты из продувочной колонны поз. К 202 на	кислоты 2 Массовая доля оксидов	не более 0,07 %
трубопроводе	азота в пересчете на	не облее 0,07 %
Ап 1	тетраоксида диазота N ₂ O ₄	не более 0,02 %
	3 Массовая доля остатка	ne donce 0,02 70
	после прокаливания	
Анализ нитрозных газов	1 Объемная доля O ₂	4 – 5% об.
поступающих в абсорбционную	_	
колонну поз. К 201, на	2 Массовая доля NO _x	5,5 – 7,5 %
трубопроводе Ап 8		
Анализ азотной кислоты на	Массовая доля	40 – 50 %
выходе из холодильников-	азотной кислоты	
конденсаторов поз. Т 203А,Б на		
трубопроводе		
An 9	1 Manager Juno	25 50.0/
Анализ азотной кислоты на	1 Массовая доля HNO ₃	35 – 59 % не более
тарелках абсорбционной колонны поз. К 201 (5,6,8,10	2 Массовая концентрация хлоридов	не облее 500 мг/дм ³
тарелки), на аппарате через	Алоридов	300 MI/ДМ
переходник. Ап10,11,12,13		
Анализ азотной кислоты на	1 Массовая доля HNO ₃	24 – 30%
тарелках абсорбционной	2 Массовая концентрация	
колонны поз. К 201	хлоридов	не более 500 мг/дм^3
Отбор осуществляется с		
14,17,18,19 тарелки		
An14,15,16,17		
Анализ охлаждающей воды	1 Кислотность	не более 0,02 мг-
после холодильников-	2 Показатель активности	экв/дм ³
конденсаторов поз. Т203А, Б, на	водородных ионов	65 05 mH
трубопроводе An 20 Анализ охлаждающей воды	1 Кислотность	6,5 – 8,5 pH не более 0,02 мг-
после змеевиков абсорбционной		экв/дм ³
колонны поз. К 201, на	водородных ионов	6,5 – 8,5 pH
трубопроводе	водородным попов	0,0 0,0 pm
An 21		
Анализ хвостовых газов на	1 Объемная доля оксидов	не более 0,11% об.
выходе из абсорбционной	азота	
колонны поз. К 201, на	2 Объемная доля О2	1,7 – 3,5% об.
трубопроводе		
An23		
Анализ хвостовых газов после	Объемная доля NO _x	0,11 - 0,15% об.
подогревателя І ступени поз. Т		
202А, на трубопроводе, Ап24		

Продолжение таблицы 3

1	2	3
Анализ хвостовых газов после подогревателя II ступени поз. T202 и на входе в реактор поз. P202, на трубопроводе An25	Объемная доля NO _x	0,11 – 0,15% об.
Анализ очищенных хвостовых газов на выходе из реактора селективной каталитической очистки поз. Р 202 на трубопроводе An28 Анализ очищенных хвостовых газов на выходе из	1 Объемная доля NO _x 2 Объемная доля NH ₃ 3.Объемная доля оксида углерода 1 Объемная доля NO _x 2 Объемная доля NH ₃	не более 0,005 % об. не более 0,009 % об. не более 0,01 % об. не более 0,005 % об. не более 0,009% об.
экономайзера котла утилизатора поз. Т 206, на трубопроводе. An29	3Объемная доля оксида углерода	не более 0,01% об.
Анализ азотной кислоты в дренажном баке, поз Е 401 общецехового отделения стадии 400, на трубопроводе нагнетания An 46	Массовая доля HNO ₃	0 – 57 %
Анализ азотной кислоты в приямке общецехового отделения стадии 400, из приямка и на трубопроводе нагнетания An 47	Массовая доля HNO ₃	0 – 57 %
Анализ кислоты азотной неконцентрированной в резервуарах (хранилищах) поз. Е 502/2 А,Б, на трубопроводе слива кислоты An 1	1 Массовая доля HNO ₃ 2 Массовая доля оксидов азота (в пересчете на N ₂ O ₄) 3 Массовая доля остатка после прокаливания	не менее 57% не более 0,07 % не более 0,004 %
Анализ азотной кислоты, сбрасываемой в дренажный бак поз. E502 из дренажей трубопроводов, на трубопроводе нагнетания погружного насоса An 2	Массовая доля НОО3	0 - 57 %

2.4 Выбор способа модернизации

В технологической схеме производства неконцентрированной азотной кислоты на ПАО «КуйбышевАзот» применяется селективная отчистка хвостового газа от NO_x газообразным аммиаком [11]. За счет более полной абсорбции NO_x возможно решить несколько проблем: экологическую, энерготехническую и экономическую [12], благодаря уменьшению выхлопа нитрозного газа, а следовательно, уменьшить количество газообразного аммиака на его отчистку. Причиной практического подхода к конструкции абсорбционных колонн является наличие нескольких видов оксидов азота от N_2O до N_2O_5 из них оксиды - NO, N_2O_3 , NO_2 и N_2O_4 играют существенную роль в процессе, как в газовой, так и в жидкой фазе [13].

От окислительных и абсорбционных процессов во многом зависит концентрация и количество NO_x в хвостовых газах. С понижением температуры и увеличением давления происходит увеличение образования NO_2 . Установлено М. Боденштейном что, окисление NO_x протекает по уравнению третьего порядка [14].

$$\frac{dP_{NO_2}}{d\tau} = K \cdot P_{NO}^2 \cdot P_{O_2}^2 (2.1)$$

Где: К (константа) - скорость реакции (раз. единицы);

 K_c (значение константы) - концентрация NO_x и O_2 (в моль/л);

 K_p (значение константы) - концентрация, выраженная в $P_{\text{порц.}}$ (атм).;

К_% (значение константы) - скорости реакции (концентрация,
 выраженная в объемных процентах при 1 ата.);

Расчетным путем определены константы скорости реакции при различных температурах (давление 1 ата, время в секундах)

Окисление NO в NO $_2$ в большей части протекает в газовой фазе (между тарелками абсорбционной колонны). Скорость реакции уменьшается при

увеличении Р. Известно, что, от 4 до 5% окисления NO происходит в жидкой фазе.

Таблица 4 Константы скорости реакции окисления оксида азота

Температура, °С	Константы скорости реакции		
	K_{c}	K_p	К%
0	$3,48 \cdot 10^4$	69,3	0,006930
30	$2,65 \cdot 10^4$	42,8	0,004280
60	$2,18 \cdot 10^4$	29,2	0,002920
90	$1,80 \cdot 10^4$	21,0	0,002100

Таблица 5 Скорости реакции окисления NO в NO_2 (при 20 °C)

Давление, ата	1	2	3	4	5	6
K_p	55,3	51,0	45,9	41,4	36,6	31,0

При переработке оксидов азота в азотную кислоту при заданном температурном режиме в абсорбционной колонне, происходит частичная полимеризация NO_2 в N_2O_4 [14,15].

Благодаря расчетным данным по влиянию температуры, давления, концентрации оксида азота на скорость окисления NO в NO_2 можно сделать вывод (для 95%-ного окисления NO в NO_2):

- 1. Начальное содержание NO 8,85% об., O₂ 7,15% об. Время окисления (при 1 атм. и 20 °C): 252,5 с., (при 1 атм. и 50 °C): 401 с.;
- 2. Начальное содержание NO 8,85% об., O_2 7,15% об. Время окисления (при 1 атм. и 20 °C): 252,5 с., (при 5 атм. и 20 °C): 10,25 с.;
- 3. Скорость окисления NO в NO_2 пропорциональна квадрату концентрации оксида азота и прямо пропорциональна концентрации кислорода, в общем являясь пропорциональной кубу давления.

Таблица 6 Время протекания реакции окисления оксида азота

Концентрация, % об.		Время, с
NO O ₂		Окисление - 95% - ного
8,85	7,15	252

4,42	4,00	765
------	------	-----

Для нынешнего производства неконцентрированной HNO_3 для уменьшения содержания NO_x в хвостовом газе и более полной абсорбции следует: изменить расстояние между тарелками колонны так, чтобы степень окисления NO_3 увеличилась [11,16].

Изменить давление, концентрацию NO_x невозможно - эти факторы учитываются при проектировании производства.

Следовательно, для модернизации процесса окисления NO в NO_2 следует изменить окислительный объем между тарелками колонны, оставив неизменным общий окислительный объем - высота колонны должны остаться проектной.

Данные, представленные в таблице 6, были получены в результате изучения УКЛ-7-76. Благодаря этому стало возможным рассчитать процент окисления NO и процент абсорбции NO_2 по тарелкам колонны:

Таблица 7 Степень окисления и абсорбции по тарелкам колонны

№ тарелок	% окисления NO	% абсорбции NO ₂
1	69,0	15,0
5	50,0	25,8
10	35,0	31,8
15	20,45	27,8
20	10,3	22
25	9,6	25
30	4,1	22,7
35	5,25	21,4
40	3,2	18
45	1,78	11

Согласно данным таблицы видно:

- 1. В начале процесс абсорбции отстает от окисления
- 2. В конце процесс абсорбции начинаем доминировать над окислением

Другими словами, скорость окисления больше скорости абсорбции в начале абсорбционного процесса, но после скорость окисления становится меньше скорости поглощения [17].

Следовательно, для полноты абсорбции необходимо:

- 1. Увеличить расстояние между тарелками с 30-й по 45-ю на 0,6 м.
- 2. Уменьшить расстояние между тарелками с 1-й по 30-ю на 0,3 м.

Данное изменение соотношения окислительных и абсорбционных процессов позволило увеличить концентрацию продукционной кислоты, уменьшить выхлоп из абсорбционной колонны - на 12%, уменьшить расход газообразного аммиака на отчистку хвостового газа - на 12%

2.5 Выводы по разделу

Таким образом в технологической части выпускной квалификационной работы рассмотрена технологическая схема процесса абсорбции на действующем производстве, хранении и выдачи продукционной кислоты, аналитический контроль процесса абсорбции. Выбран способ модернизации процесса абсорбции - заключающийся в изменении расстояния между тарелками абсорбционной колонны.

3 Расчетная часть

3.1 Материальный баланс существующей установки

Исходные данные:

Таблица 8 Расстояние между тарелками абсорбционной колонны, м:

До 1-й тарелки	1 м.
1 - 3 тарелка	1,2 м.
3- 14 тарелка	1 м.
14 - 37 тарелка	0,75 м.
37 - 47 тарелка	0,7 м.

Диаметр колонны $3,2 \text{ м}^2$;

Температура хвостового газа на выходе из колонны - 30 °C

Температура процесса на тарелках колонны - 30 °C

Температура HNO₃ на выходе из абсорбционной колонны - 30 °C

Температура конденсата водяного пара, поступающего на орошение абсорбционной колонны - $35\,^{\circ}\mathrm{C}$

Давление нитрозного газа на входе в колонну - 0,716 МПа

Теплопотери - 3,00 %

Расход нитрозного газа, поступающего в абсорбционную колонну:

NO: 1565,09
$$\,\mathrm{Hm^3/\Psi}$$
; 2096,10 $\,\mathrm{кг/\Psi}$; 69,87 $\,\mathrm{кмоль/\Psi}$; NO₂: 2092,83 $\,\mathrm{Hm^3/\Psi}$; 4297,65 $\,\mathrm{кг/\Psi}$; 93,43 $\,\mathrm{кмоль/\Psi}$; $\,\mathrm{O_2}$: 699,55 $+$ 2128,21 $=$ 2827,76 $\,\mathrm{Hm^3/\Psi}$; 999,24 $+$ 3040,32 $=$ 4039,56 $\,\mathrm{кг/\Psi}$; 31,23 $+$ 95,01 $=$ 126,24 $\,\mathrm{кмоль/\Psi}$; $\,\mathrm{N_2}$: 38869,15 $+$ 8003,19 $=$ 46872,34 $\,\mathrm{Hm^3/\Psi}$; 48586,45 $+$ 10004,12 $=$ 58590,57 $\,\mathrm{кr/\Psi}$; 1735,23 $+$ 357,29 $=$ 2092,52 $\,\mathrm{кмоль/\Psi}$;

$$H_2O: 162,40 + 238,54 = 400,94$$
 нм³/ч; $130,50 + 191,70 = 322,20$ кг/ч; $7,25 + 10,65 = 17,90$ кмоль/ч;

Заносим результаты расчета по расходу нитрозного газа, поступающего в абсорбционную колонну в таблицу 9:

Таблица 9 Расход нитрозного газа, поступающего в абсорбционную колонну поз. K -201

Компонент	Нм ³ /ч	Об. %	Кг/ч	Macc. %	Кмоль/ч
NO	1565,09	2,91	2096,10	3,02	69,87
NO_2	2092,83	3,89	4297,65	6,20	93,43
O_2	2827,76	5,26	4039,56	5,83	126,24
N_2	46872,34	87,19	58590,57	84,49	2092,52
H_2O	400,94	0,75	322,20	0,46	17,90
Всего:	53758,96	100,00	69346,08	100,00	2399,96

Проектная производительность агрегата УКЛ-7-76 - 120000 т. в год (в пересчёте на моногидрат HNO_3) или

$$120000/330/24 \cdot 1000 = 15151,52$$
 кг/ч

где 330 - количество рабочих дней в году.

 HNO_3 при концентрации 58% содержит H_2O :

$$15151,52 \cdot 42/58 = 10971,79$$
 кг/ч H_2O

На выходе из колонны получаем:

HNO₃(моногидрат):15151,52 кг/ч;

 $H_2O: 10971,79 \ кг/ч;$

НО3(58 масс. %):26123,31 кг/ч;

Образуется моногидрата HNO₃ в колонне:

$$15151,52 - 5173,03 = 9978,49$$
 кг/ч

где 9978,49 кг/ч - масса моногидрата, образующегося в 2-х последовательных холодильниках - конденсаторах, кг/ч.

Определяем количество H_2O в моногидрате HNO_3 :

При температуре нитрозного газа - 30 °C, константа равновесия реакции составляет:

$$K_p = 10^{(-\frac{5749}{30+273}+1,75\lg(30+273)-0,0005(30+273)+1,8306)} = 1,12\cdot10^{-13}$$

Равновесная степень окисления NO при температуре 30 $^{\circ}$ C и давлении 0,716 МПа, нитрозный газ имеет состав:

Таблица 10 Состав нитрозного газа при определении степени окисления:

Компонент	об. %
NO	2,91
NO_2	3,89
O_2	5,26
N_2	87,19
H_2O	0,75

$$2a = 0,0291$$
 мол. доли; $a = 0,01455$ мол. доли; $b = 0,0526$ мол. доли;

Подставляем значения a, b, $P_{oбщ}$, K_p в уравнение (3.1), решать следует относительно x_p . Получаем значение степени окисления NO:

$$K_{p} = \frac{(1-x_{p})^{2}(b-ax_{p})}{x_{p}^{2}(1-ax_{p})} P_{06iii} (3.1)$$

$$1,12 \cdot 10^{-13} = \frac{(1-x_{p})^{2}(0,01455-0,0526x_{p})}{x_{p}^{2} (1-0,01455x_{p})} 0,716$$

Определяем значение - $x_p = 0.94$ д.е.

Расход нитрозного газа (рабочие условия, сек.):

$$V_{\text{сек}} = \frac{53758,96(30+273)0,1013}{3600\cdot273\cdot0,716} = 2,3 \text{ m}^3/\text{c}$$
 (3.2)

где 53758,96 - расход нитрозного газа на вторую тарелку колонны, нм 3 /ч; 30 - $T_{\rm H.r.}$ в абсорбционной колонне, $^{\rm o}$ С 0,716 - $P_{\rm pao}$ нитрозного газа в абсорбционной колоне, МПа.

Свободный объем между первой и второй тарелкой:

$$V_{cB} = \frac{\pi \cdot d^2}{4} l_{0-1} = \frac{3,14 \cdot 3,2^2}{4} 1,2 = 8,04 \text{ m}^3 (3.3)$$

где l_{1-2} - высота свободного пространства между первой и второй тарелкой абсорбционной колонны, м; d - диаметр колонны, м 2

Определяем время, затраченное на пребывания нитрозного газа в окислительном объеме между первой и второй тарелкой:

$$\tau = \frac{V_{CB}}{V_{CeK}} = \frac{8,04}{2,3} = 3,5$$
 c (3.4)

k - константа скорости реакции окисления NO - 4170,93 MПа $^{-2}$ · c^{-1} (при температуре 30 $^{\rm o}$ C).

Подставляем значения а, т, b, в уравнение (3.5):

$$\begin{split} \gamma = b/a = 0,\!0526/0,\!01455 = 3,\!62 \text{ д.e.} \\ k \cdot a^2 \cdot P_{oбiii}^2 \cdot \tau = \frac{\alpha}{(\gamma - 1)(1 - \alpha)} + \frac{1}{(\gamma - 1)^2} ln \frac{\gamma(1 - \alpha)}{(\gamma - \alpha)} \ (3.5) \\ 4170,\!93 \cdot 0,\!01455^2 \cdot 0,\!716^2 \cdot 3,\!5 = \frac{\alpha}{(3,\!62 - 1)(1 - \alpha)} + \frac{1}{(3,\!62 - 1)^2} ln \frac{3,\!62(1 - \alpha)}{(3,\!62 - \alpha)} \end{split}$$

Определяем значение $\alpha = 0.83$ д.е.

Степень приближения к равновесию реакции (3.6) составляет:

$$2NO + O_2 \leftrightarrow 2NO_2 (3.6)$$

 $\frac{83}{94} \cdot 100\% = 88\%$

Для определения значения окисления NO кислородом пользуемся номограммой В. А. Каржавина:

$$k \cdot a^2 \cdot P_{o \delta m}^2 \cdot \tau = 4170,93 \cdot 0,01455^2 \cdot 0,716^2 \cdot 3,5 = 1,591$$

$$\gamma = b/a = 0,0526/0,01455 = 3,62$$

По номограмме В. А. Каржавина определяем значение $\alpha = 0.83$ д.е. Определяем количество окисленного NO по реакции (3.6):

$$2096,10 \cdot 0,83 = 1739,76$$
 кг/ч

Количество не окисленного NO:

$$2096,10 - 1739,76 = 356,34$$
 кг/ч; $356,34/30 = 11,88$ кмоль/ч; $11,88 \cdot 22,4 = 266,11$ нм³/ч;

где 30 - молярная масса NO, г/моль

При окислении NO по реакции (3.6) получается NO₂:

$$1739,76 \cdot 2 \cdot 46/2/30 = 2667,63$$
 кг/ч;

После окисления NO, в нитрозном газе содержится NO₂:

$$4297,65 + 2667,63 = 6965,28$$
 кг/ч; $6965,28/46 = 151,42$ кмоль/ч; $151,42 \cdot 22,4 = 3391,81$ нм³/ч;

где 46 - молярная масса NO₂ г/моль

На окисление NO расходуется O_2 :

$$1739,76 \cdot 32/2/30 = 927,87$$
 кг/ч;

После окисления NO остается O_2 :

$$4297,65 + 2667,63 = 6965,28$$
 кг/ч; $3111,69/32 = 97,24$ кмоль/ч; $97,24 \cdot 22,4 = 2178,18$ нм³/ч;

где 32 - молярная масса О2 г/моль

Расход газа между первой и второй тарелкой составит:

$$266,11 + 3391,81 + 2178,18 + 46872,34 + 400,94 = 53109,38$$
 нм³/ч; $356,34 + 6965,28 + 3111,69 + 58590,57 + 322,20 = 69346,08$ кг/ч; $11,88 + 151,42 + 97,24 + 2092,52 + 17,90 = 2370,96$ кмоль/ч;

Таблица 11 Состав нитрозного газа, поступающего под вторую тарелку

Компонент	об. %	мас.%
NO	$\frac{266,11}{53109,38} \cdot 100 = 0,50$	$\frac{356,34}{69346.08} \cdot 100 = 0,51$
	53109,38	075-10,00
NO_2	$\frac{3391,81}{100} \cdot 100 = 6,39$	$\frac{6965,28}{60246,00} \cdot 100 = 10,04$
	53109,38	69346,08
O_2	$\frac{2178,18}{53109,38} \cdot 100 = 4,10$	$\frac{3111,69}{60346,08} \cdot 100 = 4,49$
	53109,38	69346,08
N_2	$\frac{46872,45}{52100,20} \cdot 100 = 88,26$	$\frac{58590,57}{60245,00} \cdot 100 = 84,50$
	53109,38	69346,08
H ₂ O	$\frac{400,94}{53100,38} \cdot 100 = 0,75$	$\frac{300,20}{69346.08} \cdot 100 = 0,46$
	53109,38	69346,08
Всего	100	100

Результаты расчетов вносим в таблицу 12

Таблица 12 – Материальный баланс процесса абсорбции оксидов азота в производстве неконцентрированной азотной кислоты

	Приход							Pacx	од		
Компонент	нм ³ /ч	об.%	кг/ч	мас.%	кмоль/ч	Компонент	нм ³ /ч	об.%	кг/ч	мас.%	кмоль/ч
NO	1565,09	2,91	2096,10	3,02	69,87	NO	266,11	0,50	356,34	0,51	11,88
NO_2	2092,83	3,89	4297,65	6,20	93,43	NO_2	3391,81	6,39	6965,28	10,04	151,42
O_2	2827,76	5,26	4039,56	5,83	126,24	O_2	2178,18	4,10	3111,69	4,49	97,24
N_2	46872,34	87,19	58590,57	84,49	2092,52	N_2	46872,34	88,26	58590,57	84,50	2092,52
H_2O	400,94	0,75	322,20	0,46	17,90	H ₂ O	400,94	0,75	322,20	0,46	17,90
Всего:	53758,96	100	69346,08	100	2399,96	Всего:	53109,38	100	69346,08	100	2170,96

3.2 Тепловой баланс существующей установки

Приход тепла: тепло вносится на вторую тарелку абсорбционной колонны вместе:

- 1. Нитрозными газами;
- 2. Кислотой, стекающей с верхних тарелок;
- 3. Конденсацией водяных паров;
- 4. Химических реакций, протекающих в абсорбционной колонне;
- 5. Образованием моногидрата HNO₃ и его разбавлением;

Тепло уносится:

- 1. Нитрозными газами;
- 2. Продукционной кислотой;
- 3. Теплопотери в окружающею среду;

Целью теплового расчета является:

Определение количества тепла, отводимого оборотной водой, образовавшегося в результате химических реакций в абсорбционной колонне;

1 Тепло, поступающего вместе с нитрозными газами на вторую тарелку колонны:

$$Q_{\text{H.г.}}^{\text{вх.}} = (c_{\text{NO}} \cdot n_{\text{NO}} + c_{\text{NO}_2} \cdot n_{\text{NO}_2} + c_{\text{O}_2} \cdot n_{\text{O}_2} + c_{\text{N}_2} \cdot n_{\text{N}_2} + c_{\text{H}_2\text{O}} \cdot n_{\text{H}_2\text{O}}) \cdot t_{\text{H.г.}}^{\text{вх.}} (3.7)$$
 где c_{NO} , c_{NO_2} , c_{O_2} , c_{N_2} , $c_{\text{H}_2\text{O}}$ - теплоемкости (Дж/(моль·К))

 $\rm n_{NO}$, $\rm n_{NO_2}$, $\rm n_{O_2}$, $\rm n_{N_2}$, $\rm n_{H_2O}$ - количество NO, NO_2, O_2, N_2, H_2O (кмоль/ч)

поступающего с нитрозными газами на вторую тарелку колонны;

 $t^{\text{вх}}_{\text{н.г.}}$ - температура нитрозного газа поступающего на вторую тарелку колонны, ${}^{\text{o}}\mathrm{C};$

Таблица 13 Теплоемкости компонентов входящих в состав нитрозного газа при температуре 30 $^{\circ}$ C

Компонент	NO	NO ₂	O_2	N_2	H ₂ O
Теплоемкость,Дж/(моль К)	29,859	38,242	28,381	29,174	33,605

$$Q_{\text{н.г.}}^{\text{вх.}} = (29,859 \cdot 69,87 + 38,242 \cdot 93,43 + 28,381 \cdot 126,24 + 29,174 \cdot 2092,52 + 33,605 \cdot 17,90) \cdot 30 = 2126721,71 кДж/ч = 2126 МДж/ч$$

2 Тепло, поступающее с кислотой на первую тарелку абсорбционной колонны:

$$Q_{\text{HNO}_{3}}^{\text{BX.}} = c_{\text{HNO}_{3}}^{\text{BX.}} \cdot n_{\text{HNO}_{3}}^{\text{BX.}} \cdot t_{\text{HNO}_{3}}^{\text{BX.}} (3.8)$$

Где $c^{\text{вх.}}_{\text{HNO3}}$ теплоемкость HNO₃ (51,58 % - 174,56 Дж/(моль·К)), $n^{\text{вх.}}_{\text{HNO3}}$ - количество HNO₃ поступающей на вторую тарелку (кмоль/ч), $t^{\text{вх.}}_{\text{HNO3}}$ - температура HNO₃, поступающей на вторую тарелку, ${}^{0}\text{C}$.

$$Q_{\mathrm{HNO_3}}^{\mathrm{Bx.}} = 174,56 \cdot 829,74 \cdot 30 = 4345182,43$$
 кДж/ч = 4345,18 МДж/ч

3 Тепло, выделяющееся при реакции (3.6) окислении NO на второй тарелки колонны:

$$\begin{split} Q_{x.p.}^1 &= (\Delta_f H^0(298)_{NO} \cdot n_{NO}^\kappa + \Delta_f H^0(298)_{NO_2} \cdot n_{NO_2}^\kappa) - (\Delta_f H^0(298)_{NO} \cdot n_{NO}^{\scriptscriptstyle H} + \\ &+ \Delta_f H^0(298)_{NO_2} \cdot n_{NO_2}^{\scriptscriptstyle H}) \cdot 1000 \end{split}$$

где $\Delta_{\rm f} {\rm H}^0(298)_{\rm NO}\;$ и $\Delta_{\rm f} {\rm H}^0(298)_{{\rm NO}_2}$ - изменение стандартной энтальпии при образовании NO и NO₂, кДж/моль;

n^н - начальное количество вещества, кмоль/ч;

 n^{κ} - конечное количество вещества, кмоль/ч;

Таблица 14 Изменение стандартной энтальпии при образовании NO и NO₂

Компонент	NO	NO_2
$\Delta_f H^0(298)$, кДж/ моль	91,26	34,19

$$Q_{x.p.}^1 = -[91,26 \cdot 11,88 + 34,19 \cdot 151,42 - 91,26 \cdot 69,87 - 34,19 \cdot 39,43] \cdot 1000 = 3309489,30 кДж/ч = 3309,49 МДж/ч;$$

где 11,88 и 151,42 - содержание NO и NO₂ в нитрозном газе (при окислении NO), кмоль/ч; 69,87 и 93,43 - количество NO и NO₂ находящийся в нитрозном газе, поступающем на вторую тарелку колонны, кмоль/ч

4 Тепло, образовывающееся при конденсации водяных паров на второй тарелке:

$$Q_{H_2O}^{\text{KOH.}} = m_{H_2O} \cdot r (3.9)$$

где m_{H2O} · r - масса сконденсировавшихся водяных паров, кг/ч; r - удельная теплота парообразования, кДж/кг

$$r = i^{\circ} - i^{\circ} (3.10)$$

где і ці- удельная энтальпия пара и воды, кДж/кг

$$Q_{\rm H_2O}^{\rm кон} = (322,20-105,48)\cdot(2770-698) = 449043,84$$
 кДж/ч =
$$449,043684~\rm MДж/ч$$

где (322,20 - 105,48) - масса водяных паров, образовавшихся при конденсации на второй тарелке, кг/ч; 2770 и 698 - удельная энтальпия насыщенного водяного пара и воды при Р в системе 0,716 МПа, кДж/кг

5 Тепло, появляющееся при образовании моногидрата HNO₃:

Таблица 15 Изменение стандартной энтальпии при образовании NO, NO₂, $H_2O(x)$, HNO_3

Вещество	NO	NO_2	H ₂ O (ж.)	HNO ₃
$\Delta_f H^0(298), \kappa \not\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	91,26	34,19	- 285,83	- 173,00

Тепловой эффект равен:

$$\Delta_{\rm f} {\rm H}^0(298) = 2 \Delta_{\rm f} {\rm H}^0(298)_{\rm HNO_3} + \Delta_{\rm f} {\rm H}^0(298)_{\rm NO} - 3 \Delta_{\rm f} {\rm H}^0(298)_{\rm NO_2} -$$

$$\Delta_{\rm f} {\rm H}^0(298)_{\rm H_2O} = 2(-173,00) + (91,26) - -3(34,19) - (-285,83) = -71,48 \ \ \, {\rm кДж/моль}$$

где $\Delta_{\rm f} {\rm H}^0(298)_{\rm NO}$, $\Delta_{\rm f} {\rm H}^0(298)_{{\rm NO}_2}$, $\Delta_{\rm f} {\rm H}^0(298)_{{\rm H}_2{\rm O}}$, $\Delta_{\rm f} {\rm H}^0(298)_{{\rm HNO}_3}$ - изменение стандартной энтальпии при образовании NO, NO₂, H₂O, HNO₃, кДж/моль;

$$Q_{x.p.}^2 = -[-71,48 \cdot (240,50 - 223,97)/2] \cdot 1000 = 590782,20$$
 кДж/ч = 590,78 МДж/ч

где (240,50 - 223,97) - количество моногидрата HNO_3 , образующегося на второй тарелки колонны, кмоль/ч

6 Тепло при разбавлении HNO₃ (моногидрата) до 58 мас. %

$$Q_{\text{раз6}} = 22491 \cdot (240,50 - 223,97) - (23176 - 22491) \cdot 223,97$$

= 218356,78 кДж/ч = 218,36 МДж/ч

где 22491 - теплота разбавления HNO_3 (моногидрата) до 58 мас.%, образующегося на второй тарелке колонны, Дж/моль; (240,50 - 223,97) - количество HNO_3 (моногидрата), образующегося на второй тарелке колонны, кмоль/ч; (23176 - 22391) - тепло укрепления HNO_3 , поступающего с верхней тарелки (с 51,58 мас.% до 58 мас.%), Дж/моль; 223,97 - количество HNO_3 (моногидрата), поступающего со второй тарелки колонны, кмоль/ч.

Общий приход тепла в холодильники - конденсаторы:

$$\begin{split} Q_{\text{прих}} &= Q_{\text{н.г.}}^{\text{вх.}} + Q_{\text{HNO}_3}^{\text{вх.}} + Q_{\text{х.р.}}^{1} + Q_{\text{HNO}_3}^{\text{кон.}} + Q_{\text{х.р.}}^{2} + Q_{\text{разб.}} = \\ &= 2126,72 + 4345,18 + 3309,49 + 449,04 + 590,78 + 218,36 = \\ &\quad 11039,57 \quad \text{МДж/ч} \end{split}$$

Расход тепла

1 Тепло, уносимое нитрозными газами со второй тарелки колонны, рассчитывается:

$$Q_{\text{H.f.}}^{\text{Bbix.}} = (c_{\text{NO}} \cdot n_{\text{NO}} + c_{\text{NO}_2} \cdot n_{\text{NO}_2} + c_{\text{O}_2} \cdot n_{\text{O}_2} + c_{\text{N}_2} \cdot n_{\text{N}_2} + c_{\text{H}_2\text{O}} \cdot n_{\text{H}_2\text{O}}) \cdot t_{\text{H.f.}}^{\text{Bbix.}}$$
(3.11)

гдес $_{\rm NO}$, ${\rm c}_{{\rm NO}_2}$, ${\rm c}_{{\rm O}_2}$, ${\rm c}_{{\rm N}_2}$, ${\rm c}_{{\rm H}_2{\rm O}}$ - теплоемкости NO,NO $_2$,O $_2$,N $_2$,H $_2$ O поступающего но вторую тарелку колонны, (Дж/(моль·К)); ${\rm n}_{{\rm NO}}$, ${\rm n}_{{\rm NO}_2}$, ${\rm n}_{{\rm O}_2}$, ${\rm n}_{{\rm N}_2}$, ${\rm n}_{{\rm H}_2{\rm O}}$ - количество NO,NO $_2$,O $_2$,N $_2$,H $_2$ O поступающего на вторую тарелку колонны, (кмоль/ч); ${\rm t}^{\rm BX}_{\rm H.F.}$ - температура нитрозного газа поступающего на вторую тарелку колонны, ${\rm ^oC}$;

Таблица 16 Теплоемкости компонентов входящих в состав нитрозного газа на выходе со второй тарелки абсорбционной колонны при температуре 30 °C

Компонент	NO	NO_2	O_2	N_2	H ₂ O
Теплоемкость,Дж/(моль К)	29,859	38,242	28,381	29,174	33,605

$$Q_{\text{н.г.}}^{\text{вых}} = (29,859 \cdot 20,14 + 38,242 \cdot 126,63 + 28,381 \cdot 97,24 + 29,174 \cdot 2092,52 + 33,605 \cdot 5,86) \cdot 30 = 2083434,51 кДж/ч = 2083,43 МДж/ч$$

2 Тепло, уносимое кислотой:

$$Q_{\text{HNO}_3}^{\text{bbix}} = c_{\text{HNO}_3} \cdot n_{\text{HNO}_3} \cdot t_{\text{HNO}_3}^{\text{bbix}} (3.12)$$

где сHNO $_3$ теплоемкость HNO $_3$ на выходе со второй тарелки колонны, (Дж/(моль·К)); $n_{\text{HNO}3}$ - количество HNO $_3$ на выходе со второй тарелки колонны, (кмоль/ч); $t^{\text{вых.}}_{\text{HNO}3}$ - температура HNO $_3$ на выходе со второй тарелки колонны, ${}^0\text{C}$

Теплоемкость HNO $_3$ (58%) - 176,80 Дж/(моль·К) на выходе со второй тарелки колонны при температуре 30 0 C

$$Q_{\mathrm{HNO_3}}^{\mathrm{Bbix}} = 176,80 \cdot 850,04 \cdot 30 = 4508612,16$$
 кДж/ч = 4508,61 МДж/ч

3 Теплопотери в окружающею среду Потери тепла в окружающею среду - 3,00%

$$Q_{\text{т/п}} = 0.03 \cdot Q_{\text{прих}} = 11039,57 \cdot 331,19 \text{МДж/ч}$$

4 Тепло, отводимое оборотной водой со второй тарелки колонны:

$$Q_{\text{т/п}} = Q_{\text{прих}} - (Q_{\text{H.г.}}^{\text{вых.}} + Q_{\text{HNO}_3}^{\text{вых.}} + Q_{\text{т/п}}) = 11039,57 - - (2083,43 + 4508,61 + 331,19) = 4116,34 МДж/ч$$

Для отвода тепла с тарелок абсорбционной колонны установлены змеевики: на 1-3 тарелки установлены пятирядные змеевики, 4-14 тарелки установлены четырехрядные, 15-19,22,24,28, 31 тарелки установлены двухрядные. Оборотная вода после колонны с температурой 30 °C поступает в два последовательных холодильника - конденсатора.

Рассчитываем расхода оборотной воды для отвода тепла со второй тарелки колонны:

$$Q_{\text{T/O}} = c^{\text{Bbix.}}_{\text{H2O}} \cdot t^{\text{Bbix.}}_{\text{H.F.}} \cdot m_{\text{H2O}} - c^{\text{Bx}}_{\text{H2O}} \cdot t^{\text{Bx.}}_{\text{H.F.}} \cdot m_{\text{H2O}} (3.13)$$

где $c^{\text{вых.}}_{\text{H2O}}$, $c^{\text{вх}}_{\text{H2O}}$ - теплоемкость оборотной воды на выходе и входе в змеевики второй тарелки абсорбционной колонны (кДж/(кг·К)); $t^{\text{вых.}}_{\text{н.г.}}$ $t^{\text{вх.}}_{\text{н.г.}}$ - температура оборотной воды на выходе и входе в змеевики второй тарелки абсорбционной колонны, °C; m_{H2O} - расход оборотной воды подаваемой в змеевики второй тарелки колонны, кг/ч. Температура оборотной воды подаваемой в змеевики составляет 28 °C, а на выходе 32 °C.

$$m_{H_2O} = \frac{Q_{\text{T/O}}}{c_{H_2O}^{\text{BbIX.}} \cdot c_{H_2O}^{\text{BsX.}} \cdot c_{H_2O}^{\text{Bx.}} \cdot t_{\text{H.F.}}^{\text{Bx.}}} = \frac{4116,34 \cdot 10^3}{(4,181 \cdot 32 - 4,183 \cdot 28) \cdot 1000} = 245 \text{T/y}$$

Результаты теплового расчета второй тарелки абсорбционной колонны заносим в таблицу 17

Таблица 17 Тепловой баланс процесса абсорбции NO₂

Пр	иход			Расход	
Статья прихода	МДж/ч	%	Статья расхода	МДж/ч	%
1)Тепло,	2126,72	19,26	1) Тепло,	2083,43	18,89
приходящее с			уходящее с		
нитрозными			нитрозными		
газами			газами		
2) Тепло,	4345,18	39,36	2)Тепло,	4508,61	40,84
приходящее с			уходящее с		
азотной кислотой			азотной		
			кислотой		
3)Тепло окисления	3309,49	29,98	3)Теплопотери	331,19	3,00
NO B NO ₂					
4)Тепло	449,04	4,07	4)Тепло,	4116,34	37,29
конденсации			отводимое		
водяных паров			охлаждающей		
			водой		
5)Тепло	590,78	5,35			
образования					
моногидрата					
6)Тепло	218,36	1,98			
разбавления					
моногидрата					
Всего:	11039,57	100	Всего:	11039,57	100

3.3 Материальный баланс проектируемой установки

Исходные данные:

Таблица 18 Расстояние между тарелками абсорбционной колонны, м:

До 1-й тарелки	1 м.
1 - 3 тарелка	0,9 м.
4- 14 тарелка	0,7 м.
14 - 30 тарелка	0,45 м.
30 - 37 тарелка	1,35 м.
37 - 47 тарелка	1,3 м.

Диаметр колонны $3,2 \text{ м}^2$;

Температура хвостового газа на выходе из колонны - 30 °C

Температура процесса на тарелках колонны - 30 °C

Температура HNO₃ на выходе из абсорбционной колонны - 30 °C

Температура конденсата водяного пара, поступающего на орошение абсорбционной колонны - 35 $^{\circ}\mathrm{C}$

Давление нитрозного газа на входе в колонну - 0,716 МПа

Теплопотери - 3,00 %

Расход нитрозного газа, поступающего в абсорбционную колонну:

$$130,50 + 191,70 = 322,20$$
 кг/ч; $7,25 + 10,65 = 17,90$ кмоль/ч;

Заносим результаты расчета по расходу нитрозного газа, поступающего в абсорбционную колонну в таблицу 7:

Таблица 19 Расход нитрозного газа, поступающего в абсорбционную колонну поз. K -201;

Компонент	Нм ³ /ч	Об.%	Кг/ч	Macc.%	Кмоль/ч
NO	1565,09	2,91	2096,10	3,02	69,87
NO_2	2092,83	3,89	4297,65	6,20	93,43
O_2	2827,76	5,26	4039,56	5,83	126,24
N_2	46872,34	87,19	58590,57	84,49	2092,52
H_2O	400,94	0,75	322,20	0,46	17,90
Всего:	53758,96	100,00	69346,08	100,00	2399,96

Проектная производительность агрегата УКЛ-7-76 - 120000 т. в год (в пересчёте на моногидрат HNO_3) или

$$120000/330/24 \cdot 1000 = 15151,52$$
 кг/ч

где 330 - количество рабочих дней в году.

HNO₃ при концентрации 58% содержит H₂O:

$$15151,52 \cdot 42/58 = 10971,79$$
 кг/ч H_2O

На выходе из колонны получаем:

 HNO_3 (моногидрат):15151,52 кг/ч;

 $H_2O:10971,79$ кг/ч;

HNO₃(58 масс. %): 26123,31 кг/ч;

Образуется моногидрата HNO₃ в колонне:

$$15151,52 - 5173,03 = 9978,49$$
 кг/ч

где 9978,49 кг/ч - масса моногидрата, образующегося в 2-х последовательных холодильниках - конденсаторах, кг/ч.

Определяем количество H_2O в моногидрате HNO_3 :

При температуре нитрозного газа - 30 °C, константа равновесия реакции составляет:

$$K_p = 10^{(-\frac{5749}{30+273}+1,75\lg(30+273)-0,0005(30+273)+1,8306)} = 1,12\cdot 10^{-13}$$

Равновесная степень окисления NO при температуре 30 $^{\circ}$ C и давлении 0,716 МПа, нитрозный газ имеет состав:

Таблица 20 Состав нитрозного газа при определении степени окисления

Компонент	об. %
NO	2,91
NO_2	3,89
O_2	5,26
N_2	87,19
H ₂ O	0,75

$$2a = 0,0291$$
 мол. доли; $a = 0,01455$ мол. доли; $b = 0,0526$ мол. доли;

Подставляем значения a, b, $P_{\text{общ}}$, K_{p} в уравнение (3.14), решать следует относительно x_{p} .

Получаем значение степени окисления NO:

$$K_{p} = \frac{(1-x_{p})^{2}(b-ax_{p})}{x_{p}^{2}(1-ax_{p})} P_{06III} (3.14)$$

$$1,12 \cdot 10^{-13} = \frac{(1-x_{p})^{2}(0,01455-0,0526x_{p})}{x_{p}^{2} (1-0,01455x_{p})} 0,716$$

Определяем значение - $x_p = 0.94$ д.е.

Расход нитрозного газа (рабочие условия, сек.)

$$V_{\text{сек}} = \frac{53758,96(30+273)0,1013}{3600\cdot273\cdot0,716} = 2,3 \text{ m}^3/\text{c}$$
 (3.15)

где 53758,96 - расход нитрозного газа на второй тарелки колонны, ${\rm \, Hm}^3/{\rm \, u}$;

30 - Т_{н.г.} в абсорбционной колонне, °С

0,716 - $P_{\text{раб.}}$ нитрозного газа в абсорбционной колоне, МПа.

Свободный объем между первой и второй тарелкой:

$$V_{cB} = \frac{\pi \cdot d^2}{4} l_{0-1} = \frac{3,14 \cdot 3,2^2}{4} 0,7 = 5,63 \text{ m}^3 (3.16)$$

где l_{1-2} - высота свободного пространства между первой и второй тарелкой абсорбционной колонны, м; d - диаметр колонны, м²

Определяем время, затраченное на пребывания нитрозного газа в окислительном объеме между первой и второй тарелкой:

$$\tau = \frac{V_{CB}}{V_{CeK}} = \frac{5,63}{2,3} = 2,44$$
 c (3.17)

k - константа скорости реакции окисления NO - 4170,93 МПа⁻² · c⁻¹ (при температуре 30 °C).

Подставляем значения a, τ , b, в уравнение (3.5):

$$\gamma = b/a = 0.0526/0.01455 = 3.62$$
 д.е.

$$k \cdot a^2 \cdot P_{o6 \text{III}}^2 \cdot \tau = \frac{\alpha}{(\gamma - 1)(1 - \alpha)} + \frac{1}{(\gamma - 1)^2} \ln \frac{\gamma(1 - \alpha)}{(\gamma - \alpha)} \ (3.18)$$

$$4170,93 \cdot 0,01455^2 \cdot 0,716^2 \cdot 2,44 = \frac{\alpha}{(3,62 - 1)(1 - \alpha)} + \frac{1}{(3,62 - 1)^2} \ln \frac{3,62(1 - \alpha)}{(3,62 - \alpha)}$$

Определяем значение $\alpha = 0.76$ д.е.

Степень приближения к равновесию реакции (3.19) составляет:

$$2NO + O_2 \leftrightarrow 2NO_2 (3.19)$$

 $\frac{83}{94} \cdot 100\% = 81\%$

Для определения значения окисления NO кислородом пользуемся номограммой В. А. Каржавина:

$$k \cdot a^2 \cdot P_{o \delta i i i}^2 \cdot \tau = 4170,93 \cdot 0,01455^2 \cdot 0,716^2 \cdot 3,5 = 1,10$$

$$\gamma = b/a = 0,0526/0,01455 = 3,62$$

По номограмме В. А. Каржавина определяем значение $\alpha = 0.78$ д.е. Определяем количество окисленного NO по реакции (3.19):

$$2096,10 \cdot 0,78 = 1634,958$$
 кг/ч

Количество не окисленного NO:

$$2096,10 - 1634,958 = 461,142$$
 кг/ч; $461,142/30 = 15,3714$ кмоль/ч; $15,3714 \cdot 22,4 = 344,31936$ нм³/ч;

где 30 - молярная масса NO, г/моль

При окислении NO по реакции (3.19) получается NO₂:

$$1634,958 \cdot 2 \cdot 46/2/30 = 2506,9356$$
 кг/ч;

После окисления NO, в нитрозном газе содержится NO₂:

$$4297,65 + 2506,9356 = 6804,5856$$
 кг/ч; $6804,5856/46 = 147,9257$ кмоль/ч; $147,9257 \cdot 22,4 = 3313,53$ нм³/ч;

где 46 - молярная масса NO_2 г/моль

На окисление NO расходуется O_2 :

$$1634,958 \cdot 32/2/30 = 871,9776$$
 кг/ч;

После окисления NO, остается О2:

$$4039,56 + 871,9776 = 3167,5824$$
 кг/ч;
$$3167,5824/32 = 71,73765$$
 кмоль/ч;
$$71,73765 \cdot 22,4 = 1606,92336$$
 нм³/ч;

где 32 - молярная масса O_2 г/моль

Расход газа между первой и второй тарелкой составит:

$$344,31936+3313,53+1606,92336+46872,34+400,94=52538,05272$$
 нм³/ч; $461,142+6804,5856+3167,5824+58590,57+322,20=69346,08$ кг/ч; $15,3714+147,9257+71,73765+2092,52+17,90=2345,45475$ кмоль/ч;

Таблица 21 Состав нитрозного газа, поступающего под вторую тарелку

Компонент	об.%	мас.%
NO	344,31936	$\frac{461,142}{69346.08} \cdot 100 = 0,66$
	$\frac{344,31936}{52538,05272} \cdot 100 = 0,65$	$\frac{69346,08}{69346,08} \cdot 100 = 0,66$
NO_2	$\frac{3313,53}{52538,05272} \cdot 100 = 6,33$	$\frac{6804,5856}{69346,08} \cdot 100 = 9,81$
	52538,05272	69346,08
O_2	$\frac{1606,92336}{1000000000000000000000000000000000000$	$\frac{3167,5824}{1000000000000000000000000000000000000$
	52538,05272	69346,08
N_2	$\frac{46872,34}{52520,02272} \cdot 100 = 89,21$	$\frac{58590,57}{50245,00} \cdot 100 = 84,50$
	52538,02272	69346,08
H ₂ O	$\frac{400,94}{52538,05272} \cdot 100 = 0,76$	322,20
	52538,05272	$\frac{322,20}{69346,08} \cdot 100 = 0,46$
Всего	100	100

Результаты расчетов заносим в таблицу 22

Таблица 22 – Материальный баланс процесса абсорбции оксидов азота в производстве неконцентрированной азотной кислоты

Приход							Pacx	ЮД			
Компонент	${ m HM}^3/{ m H}$	об.%	кг/ч	мас.%	кмоль/ч	Компонент	нм ³ /ч	об.%	кг/ч	мас.%	кмоль/ч
NO	1565,09	2,91	2096,10	3,02	69,87	NO	344,3193	0,65	461,142	0,66	11,88
							6				
NO_2	2092,83	3,89	4297,65	6,20	93,43	NO_2	3313,53	6,33	6804,585	9,81	151,42
									6		
O_2	2827,76	5,26	4039,56	5,83	126,24	O_2	1606,923	3,05	3167,582	4,57	97,24
							36		4		
N_2	46872,34	87,19	58590,57	84,49	2092,52	N_2	46872,34	89,21	58590,57	84,50	2092,52
H_2O	400,94	0,75	322,20	0,46	17,90	H_2O	400,94	0,76	322,20	0,46	17,90
Всего:	53758,96	100	69346,08	100	2399,96	Всего:	52538,05	100	69346,08	100	2170,96

3.4 Тепловой баланс проектируемой установки

Приход тепла: тепло вносится на вторую тарелку абсорбционной колонны вместе:

- 6. Нитрозными газами;
- 7. Кислотой, стекающей с верхних тарелок;
- 8. Конденсацией водяных паров;
- 9. Химических реакций, протекающих в абсорбционной колонне;
- 10. Образованием моногидрата HNO₃ и его разбавлением;

Тепло уносится:

- 4. Нитрозными газами;
- 5. Продукционной кислотой;
- 6. Теплопотери в окружающею среду;

Целью теплового расчета является:

Определение количества тепла, отводимого оборотной водой, образовавшегося в результате химических реакций в абсорбционной колонне;

1. Тепло, поступающего вместе с нитрозными газами на вторую тарелку колонны:

$$Q_{\scriptscriptstyle \mathrm{H.\Gamma.}}^{\scriptscriptstyle \mathrm{BX.}} = (c_{\scriptscriptstyle \mathrm{NO}} \cdot n_{\scriptscriptstyle \mathrm{NO}} + c_{\scriptscriptstyle \mathrm{NO}_2} \cdot n_{\scriptscriptstyle \mathrm{NO}_2} + c_{\scriptscriptstyle \mathrm{O}_2} \cdot n_{\scriptscriptstyle \mathrm{O}_2} + c_{\scriptscriptstyle \mathrm{N}_2} \cdot n_{\scriptscriptstyle \mathrm{N}_2} + c_{\scriptscriptstyle \mathrm{H}_2\mathrm{O}} \cdot n_{\scriptscriptstyle \mathrm{H}_2\mathrm{O}}) \cdot t_{\scriptscriptstyle \mathrm{H.\Gamma.}}^{\scriptscriptstyle \mathrm{BX.}} \ (3.20)$$
 где $c_{\scriptscriptstyle \mathrm{NO}}$, $c_{\scriptscriptstyle \mathrm{NO}_2}$, $c_{\scriptscriptstyle \mathrm{O}_2}$, $c_{\scriptscriptstyle \mathrm{N}_2}$, $c_{\scriptscriptstyle \mathrm{H}_2\mathrm{O}}$ - теплоемкости (Дж/(моль·К))

 $n_{NO}, n_{NO_2}, n_{O_2}, n_{N_2}, n_{H_2O}$ - количество NO, NO₂, O₂, N₂, H₂O (кмоль/ч) поступающего с нитрозными газами на вторую тарелку колонны;

 $t^{ex}_{h.z.}$ - температура нитрозного газа поступающего на вторую тарелку колонны, ${}^{\circ}\mathrm{C};$

Таблица 23 Теплоемкости компонентов входящих в состав нитрозного газа при температуре 30 $^{\circ}$ C

Компонент	NO	NO_2	O_2	N_2	H ₂ O
Теплоемкость,Дж/(моль · К)	29,859	38,242	28,381	29,174	33,605

$$Q_{\text{н.г.}}^{\text{вх.}} = (29,859 \cdot 69,87 + 38,242 \cdot 93,43 + 28,381 \cdot 126,24 + 29,174 \cdot 2092,52 + 33,605 \cdot 17,90) \cdot 30 = 2126721,71 кДж/ч = 2126,72 МДж/ч$$

2 Тепло, поступающее с кислотой на вторую тарелку абсорбционной колонны:

$$Q^{\text{BX.}}_{\text{HNO3}} = c^{\text{BX.}}_{\text{HNO3}} \cdot n^{\text{BX.}}_{\text{HNO3}} \cdot t^{\text{BX.}}_{\text{HNO3}}$$
 (3.21)

где $c^{\text{вх.}}_{\text{HNO3}}$ теплоемкость HNO_3 (51,58 % - 174,56 Дж/(моль·К)), $n^{\text{вх.}}_{\text{HNO3}}$ - количество HNO_3 поступающей на вторую тарелку (кмоль/ч), $t^{\text{вх.}}_{\text{HNO3}}$ - температура HNO_3 , поступающей на вторую тарелку, ^0C .

$$Q^{\text{вх.}}_{\text{HNO3}} = 173,38775 \cdot 834,10311 \cdot 30 = 4338697,84 \ \text{кДж/ч} = 4338,69 \ \text{МДж/ч}$$

3 Тепло, выделяющееся при реакции (3.17) окислении NO на второй тарелки колонны:

$$\begin{split} Q_{x.p.}^1 &= (\Delta_f H^0(298)_{NO} \cdot n_{NO}^\kappa + \Delta_f H^0(298)_{NO_2} \cdot n_{NO_2}^\kappa) - (\Delta_f H^0(298)_{NO} \cdot n_{NO}^{_H} + \\ &+ \Delta_f H^0(298)_{NO_2} \cdot n_{NO_2}^{_H}) \cdot 1000 \end{split}$$

где $\Delta_f H^0(298)_{NO}$ и $\Delta_f H^0(298)_{NO_2}$ - изменение стандартной энтальпии при образовании NO и NO₂, кДж/моль; $n^{\scriptscriptstyle H}$ - начальное количество вещества, кмоль/ч, $n^{\scriptscriptstyle K}$ - конечное количество вещества, кмоль/ч.

Таблица 24 Изменение стандартной энтальпии при образовании NO и NO₂

Вещество	NO	NO_2
$\Delta_f H^0$ (298), κ Дж $/$ моль	91,26	34,19

$$Q_{\text{x.p.}}^1 = -[91,26 \cdot 15,13714 + 34,19 \cdot 147,9257 - 91,26 \cdot 69,87 - 34,19 \cdot 93,43] \cdot 1000 = 3110334,253 кДж/ч = 3110633 МДж/ч$$

где 15,3714 и 147,9257 - содержание NO и NO₂ в нитрозном газе (при окислении NO), кмоль/ч; 69,87 и 93,43 - количество NO и NO₂ находящийся в нитрозном газе, поступающем в нижнею часть колонны, кмоль/ч

4 Тепло, образовывающееся при конденсации водяных паров на второй тарелке:

$$Q_{H_2O}^{\text{KOH}} = m_{H_2O} \cdot r (3.21)$$

где m_{H2O} · r - масса сконденсировавшихся водяных паров, кг/ч; r - удельная теплота парообразования, кДж/кг

$$r = i^{\cdot \cdot} - i^{\cdot} (3.22)$$

где i и i - удельная энтальпия пара и воды, кДж/кг

$$Q_{H_2O}^{\text{кон}} = (322,20-184,0192) \cdot (2770-698) = 286310,6176 \ \text{КДж/ч} = 286,31 \ \text{Мдж/ч}$$

где (322,20 - 184,0192) - масса водяных паров, образовавшихся при конденсации на второй тарелке, кг/ч; 2770 и 698 - удельная энтальпия насыщенного водяного пара и воды при Р в системе 0,716 МПа, кДж/кг

5 Тепло, появляющееся при образовании моногидрата HNO₃:

Таблица 25 Изменение стандартной энтальпии при образовании NO, NO₂, $H_2O(x)$, HNO_3

Вещество	NO	NO_2	H ₂ O (ж.)	HNO ₃
$\Delta_f H^0$ (298), кДж $/$ моль	91,26	34,19	- 285,83	- 173,00

Тепловой эффект равен:

$$\begin{split} \Delta_{\mathrm{f}}\mathrm{H}^{0}(298) &= 2\Delta_{\mathrm{f}}\mathrm{H}^{0}(298)_{\mathrm{HNO}_{3}} + \Delta_{\mathrm{f}}\mathrm{H}^{0}(298)_{\mathrm{NO}} - 3\Delta_{\mathrm{f}}\mathrm{H}^{0}(298)_{\mathrm{NO}_{2}} - \\ \Delta_{\mathrm{f}}\mathrm{H}^{0}(298)_{\mathrm{H}_{2}\mathrm{O}} &= 2(-173,\!00) + (91,\!26) - -3(34,\!19) - (-285,\!83) = \\ &-71,\!48 \ \mathrm{кДж/моль} \end{split}$$

где $\Delta_{\rm f} {\rm H}^0(298)_{\rm NO}$, $\Delta_{\rm f} {\rm H}^0(298)_{\rm NO_2}$, $\Delta_{\rm f} {\rm H}^0(298)_{\rm H_2O}$, $\Delta_{\rm f} {\rm H}^0(298)_{\rm HNO_3}$ - изменение стандартной энтальпии при образовании NO, NO₂, H₂O, HNO₃, кДж/моль;

$$Q_{\text{x.p.}}^2 = -[-71,\!48\cdot(240,\!50-223,\!972)/2]\cdot 1000 = 590710,\!22\$$
кДж/ч = 590,71 МДж/ч

где (240,50 - 223,97) - количество моногидрата HNO_3 , образующегося на второй тарелки колонны, кмоль/ч

где 22491 - теплота разбавления HNO_3 (моногидрата) до 58 мас.%, образующегося на второй тарелке колонны, Дж/моль; (240,50 - 223,97) - количество HNO_3 (моногидрата), образующегося на второй тарелке колонны, кмоль/ч; (23176 - 22391) - тепло укрепления HNO_3 , поступающего с верхней тарелки (с 51,58 мас.% до 58 мас.%), Дж/моль; 223,97 - количество HNO_3 (моногидрата), поступающего со второй тарелки колонны, кмоль/ч.

Общий приход тепла в холодильники - конденсаторы:

$$Q_{\text{прих.}} = Q_{\text{H.г.}}^{\text{вх.}} + Q_{\text{HNO}_3}^{\text{вх.}} + Q_{\text{х.р.}}^{1} + Q_{\text{HNO}_3}^{\text{кон.}} + Q_{\text{х.р.}}^{2} + Q_{\text{разб.}} = 2126,72 + 4338,69$$

+3110,33 + 286,31 + 590,71 + 218,31 = 10671,07 МДж/ч

Расход тепла

1 Тепло, уносимое нитрозными газами со второй тарелки колонны, рассчитывается:

 $Q_{\text{н.г.}}^{\text{вых.}} = (c_{\text{NO}} \cdot n_{\text{NO}} + c_{\text{NO}_2} \cdot n_{\text{NO}_2} + c_{\text{O}_2} \cdot n_{\text{O}_2} + c_{\text{N}_2} \cdot n_{\text{N}_2} + c_{\text{H}_2\text{O}} \cdot n_{\text{H}_2\text{O}}) \cdot t_{\text{н.г.}}^{\text{вых.}}$ (3.23) где c_{NO} , c_{NO_2} , c_{O_2} , c_{N_2} , $c_{\text{H}_2\text{O}}$ - теплоемкости NO,NO₂,O₂,N₂,H₂O поступающего на вторую тарелку колонны, (Дж/(моль·К)); n_{NO} , n_{NO_2} , n_{O_2} , n_{N_2} , $n_{\text{H}_2\text{O}}$ - количество NO,NO₂,O₂,N₂,H₂O поступающего на вторую тарелку колонны, (кмоль/ч); $t_{\text{н.г.}}^{\text{вх}}$ - температура нитрозного газа поступающего на вторую тарелку колонны, °C;

Таблица 25 Теплоемкости компонентов входящих в состав нитрозного газа на выходе со второй тарелки абсорбционной колонны при температуре 30 °C

Компонент	NO	NO_2	O_2	N_2	H ₂ O
Теплоемкость,Дж/(моль · К)	29,859	38,242	28,381	29,174	33,605

$$Q_{\text{н.г.}}^{\text{вых}} = (29,859 \cdot 7,10 + 38Б242 \cdot 123,1338 + 28,381 \cdot 71,73765 + 29,174 \cdot 2092,52 + 33,605 \cdot 5,7506) \cdot 30 = 2045918,817 кДж/ч = 2045,91 МДж/ч$$

2 Тепло, уносимое кислотой:

$$Q_{HNO_3}^{Bbix} = c_{HNO_3} \cdot n_{HNO_3} \cdot t_{HNO_3}^{Bbix} \cdot (3.24)$$

где c_{HNO3} - теплоемкость HNO_3 на выходе со второй тарелки колонны, $(Дж/(моль \cdot K));$ n_{HNO3} - количество HNO_3 на выходе со второй тарелки

колонны, (кмоль/ч) ; $t^{\text{вых.}}_{\text{HNO3}}$ - температура HNO3 на выходе со второй тарелки колонны, ${}^{0}\text{C}$

Теплоемкость HNO₃ (58%) - 176,80 Дж/(моль·К) на выходе со второй тарелки колонны при температуре 30 0 C

$$Q_{\mathrm{HNO}_2}^{\mathrm{выx}} = 176,80 \cdot 850,04 \cdot 30 = 4508612,16$$
 кДж/ч = 4508,61 МДж/ч

3 Теплопотери в окружающею среду Потери тепла в окружающею среду - 3,00%

$$Q_{\text{т/п}} = 0.03 \cdot Q_{\text{прих.}} = 10671,71 \cdot 0.03 = 320,1321 \,\text{МДж/ч}$$

4 Тепло, отводимое оборотной водой со второй тарелки колонны:

$$Q_{\scriptscriptstyle \mathrm{T/\Pi}} = Q_{\scriptscriptstyle \mathrm{\Pi D H X.}} - \left(Q_{\scriptscriptstyle \mathrm{H. F.}}^{\scriptscriptstyle \mathrm{B b I X.}} + Q_{\scriptscriptstyle \mathrm{HNO_3}}^{\scriptscriptstyle \mathrm{B b I X.}} + Q_{\scriptscriptstyle \mathrm{T/\Pi}}\right) = 10671,\!07 - (2045,\!91 + 4508,\!61 + 320,\!1321) = 3796,\!4179\,\mathrm{MДж/ч}$$

Для отвода тепла с тарелок абсорбционной колонны установлены змеевики: на 1-3 тарелки установлены пятирядные змеевики, 4-14 тарелки установлены четырехрядные, 15-19,22,24,28, 31 тарелки установлены двухрядные. Оборотная вода после колонны с температурой 30 °C поступает в два последовательных холодильника - конденсатора.

Рассчитываем расхода оборотной воды для отвода тепла со второй тарелки колонны:

$$Q_{_{T/O}} = c_{H_2O}^{_{BbIX.}} \cdot t_{_{H.\Gamma.}}^{_{BbIX.}} \cdot m_{H_2O} - c_{H_2O}^{_{BX}} \cdot t_{_{H.\Gamma.}}^{_{BX}} \cdot m_{H_2O} (3.25)$$

где $c^{\text{вых.}}_{\text{ H2O}}$, $c^{\text{вх}}_{\text{ H2O}}$ - теплоемкость оборотной воды на выходе и входе в змеевики второй тарелки абсорбционной колонны (кДж/(кг·К)); $t^{\text{вых.}}_{\text{н.г.}}$, $t^{\text{вх.}}_{\text{н.г.}}$ -

температура оборотной воды на выходе и входе в змеевики второй тарелки абсорбционной колонны, $^{\circ}$ C; m_{H2O} - расход оборотной воды подаваемой в змеевики второй тарелки колонны, кг/ч. Температура оборотной воды подаваемой в змеевики составляет 28 $^{\circ}$ C, а на выходе 32 $^{\circ}$ C.

$$m_{H_2O} = \frac{Q_{\text{T/O}}}{c_{H_2O}^{\text{BbIX}} \cdot t_{\text{H.T.}}^{\text{BbIX}} - c_{H_2O}^{\text{Bx.}} \cdot t_{\text{H.T.}}^{\text{Bx.}}} = \frac{3796,4179 \cdot 10^3}{(4,181 \cdot 32 - 4,183 \cdot 28) \cdot 1000} = 227,76\text{T/y}$$

Результаты теплового расчета второй тарелки абсорбционной колонны заносим в таблицу 26

Таблица 26 Тепловой баланс процесса абсорбции NO₂

Приход			Расход		
Статья прихода	МДж/ч	%	Статья расхода	МДж/ч	%
1)Тепло,	2126,72	19,9	2) Тепло, уходящее	2045,91	19,1
поступающее с			с нитрозными		
нитрозными газами			газами		
3) Тепло,	4338,69	40,6	2)Тепло, уходящее	4508,61	42,3
поступающее с			с азотной кислотой		
азотной кислотой					
3)Тепло окисления	3110,33	29,1	3)Теплопотери	320,1321	3
NO B NO ₂					
4)Тепло	286,31	2,6	4)Тепло, отводимое	3796,4179	35,6
конденсации			охлаждающей		
водяных паров			водой		
5)Тепло образования	590,71	5,5			
моногидрата					
6)Тепло разбавления	218,31	2,3		_	
моногидрата					
Всего:	10671,07	100	Всего:	10671,07	100

3.5 Выводы по разделу

Таким образом в расчетной части предоставлен материальный и тепловой баланс существующей и проектной установки процесса абсорбции оксидов азота в производстве неконцентрированной азотной кислоты.

Заключение

Основными выводами и результатами выпускной квалификационной работы является:

1. Детально разобран процесс абсорбции оксидов азота, используемый в настоящее время на существующей агрегате по производству HNO₃

Рассмотрены физико-химические аспекты процесса абсорбции оксидов азота;

- 2. В результате технологических расчетов: материального и теплового баланса существующей и проектируемой стадии абсорбции оксидов азота в производстве HNO₃ и рассмотренных теоретических данных сделаны выводы об эффективности предлагаемого решения.
- 3. Модернизации процесса абсорбции оксидов азота в производстве неконцентрированной HNO₃ заключается в изменении расстояния между тарелками колонны так, чтобы степень окисления NO в NO₂ увеличилась. Предложенное мероприятие позволит проводить более полную абсорбцию, тем самым увеличить концентрацию продукционной кислоты, уменьшить выхлоп из абсорбционной колонны на 12% и снизить расход газообразного аммиака на его отчистку на 12%;

Таким образом, предлагаемое в работе решения является эффективным.

Список использованных источников

- 1. Ильин А.П., Кунин А.В. Производство азотной кислоты, Учебное пособие-2e, изд.,испр.-СПб.:Издательство «Лань», 2013-256 с.
- 2. Атрощенко В. И., Технология азотной кислоты 3-е изд, Химия 1970-496 с.
- 3. Атрощенко В.И., Кинетика абсорбционных процессов, М.: Химия, 1976 166 с.
 - 4. Мельников Е.Я., Справочник азотчика, М.:Химия, 1987- 464 с.
- 5. Воробьев Н.И., Технология связанного азота и азотных удобрений, УО «Белоруский гос. техн. Университет, 2011 - 216 с.
- 6. Атрощенко В.И., Технология связанного азота, Киев: Высшая школа, 1985
- 7. Самсонов О.А., Технология азотной кислоты. Расчеты на ЭВМ: учебное пособие. Иван.хим.-технол.ин-т-Иваново, 1991-144 с.
- 8. Тертярян К., Очистка «хвостовых газов» в производстве азотной кислоты, СевКав-ГТУ, 2009 217 с.
 - 9. Технологический регламент цеха № 5 (УКЛ) ПАО «КуйбышевАзот»
- 10. Караев М.М., Новые возможные пути связывания молекулярного азота, Хим.пром.,1993 38-41 с.
- 11. Печенко Т.И., Тошинский В.И.,Литвиненко А.А., Оптимизация соотношения окислительных и абсорбционных объемов, НТУ «ХПИ», 2012 38 42 с.
- 12. Кунин А.В., Ильин А.А., Производство азотной кислоты, Иваново: Ивановский гос. хим.-технологический ун-т, 2011 268 с.
- 13. Караев М.М., Гетерогенное окисление молекулярного азота нитрозных газов., Хим.пром., 1999 14-18 с.
- 14. Олевский О.М., Производство азотной кислоты в агрегатах большой единичной мощности, М.: Химия, 1985 400 с

- 15. Schlessinger G.G., Inorganic laboratory preparations, Chemical publishing company, INC, 1962 301 c.
- 16. Лещенко В.О., Процессы и аппараты химической технологии, Нац. техн. ун-т «Харьковсвкий политехнический институт», Х., 2007 540 с
- 17. Hirsch A., Brettreich M. Fullerenes: Chemistry and Reactions, Wiley, 2005
 - 18. Miessler G.L., Fischer P.J., Tarr D.A. Inorganic Chemistry, Pearson, 2014
 - 19. Housecroft C.E., Sharpe A.G. Inorganic chemistry 2ed., Pearson, 2005
- 20. Walton H.F., Inorganic preparations, Prentice hall, New York, 1948 188 c.