МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт химии и инженерной экологии

(наименование института полностью)

Кафедра «Химия, химические процессы и технологии» (наименование кафедры)

18.03.01 Химическая технология органических веществ

(код и наименование направления подготовки, специальности)

Химическая технология

(направленность (профиль)/специализация)

БАКАЛАВРСКАЯ РАБОТА

на тему «Оптимизация процесса получения циклогексанона дегидрированием циклогексанола»

C_{T}	<u>удент</u>	Ю.А Савельева	
		(И.О. Фамилия)	(личная подпись)
<u>Pyi</u>	ководитель	<u>к.х.н.,П.А Глухов</u>	
		<u>(И.О. Фамилия)</u>	(личная подпись)
Доп	устить к защи	те	
Заве	едующий кафед	црой д.х.н., профессор Остапенко Г.И	
		(ученая степень, звание, И.О. Фамилия)	(личная подпись)
<<	>>	2019 г.	

Аннотация

Выпускная квалификационная работа 53., 8 рисунков, 19 таблиц, использовано 36 источников, 5л. графического материал.

ДЕГИДРИРОВАНИЕ ЦИКЛОГЕКСАНОНА, ЦИКЛОГЕКСАНОН, НИЗКОТЕМПЕРАТУРНЫЙ КАТАЛИЗАТОР, МЕДЬСОДЕРЖАЩИЙ КАТАЛИЗАТОР, ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ, ТЕХНОЛОГИЧЕСКАЯ СХЕМА.

Объектом исследования является установка дегидрирования циклогексанола ПАО «КуйбышевАзот»

Цель работы - оптимизация процесса получения циклогексанона дегидрированием циклогексанола.

Графическая часть работы выполнена на 5 листах и включает в себя технологическую схему дегидрирования циклогексанола ,реактор дегидрирования циклогексанола, таблицу материального баланса и химизм процесса.

Пояснительная записка включает в себя три раздела.

В теоретической части рассмотрены физико-химические основы процесса дегидрирования, механизм и кинетика процесса, катализаторы процесса.

В технологической части проведен анализ существующей установки дегидрирования циклогексанола на ПАО «КуйбышевАзот». Предложен способ модернизации существующей схемы.

В расчетной части материального и теплового баланса установки дегидрирования циклогексанола при оптимальных параметрах работы. Выпускная квалификационная работа выполнена в текстовом редакторе Microsoft Word 10. и представлена на электронном носителе.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	5
1.1Физико-химические основы процесса дегидрирования	5
1.1.1Механизм и кинетика процесса	7
1.1.2 Катализаторы процесса	12
2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ	21
2.1 Описание технологической схемы дегидрирования	21
2.2 Аналитический контроль	24
2.3 Выбор способа модернизации	28
3 РАСЧЕТНАЯ ЧАСТЬ	31
3.1 Материальный баланс существующей установки	31
3.2 Тепловой баланс существующей установки	37
3.3 Материальный баланс проектируемой установки	42
3.4 Тепловой баланс проектируемой установки	45
ЗАКЛЮЧЕНИЕ	48
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	50

ВВЕДЕНИЕ

Потребление капролактама России связано с производством полиамида-6, полиамидных волокон, технических нитей, кордных тканей на их основе. На сегодняшний день крупнейшим потребителем капролактама — безоговорочным лидером в полиамидном направлении — является компания «Куйбышев Азот», которая, начиная с 2003 года реализовала проекты по его дальнейшей переработке и производит более 90% полиамида в России. При этом компания рассматривает возможность к 2020 г. расширить мощности по капролактаму до 260 тыс. т/г.

По оценке экспертов, в странах СНГ к 2020 г. прогнозируется рост производства капролактама до 526 тыс. т, а потребление должно подняться на 31% — до 311 тыс. т. В то же время ожидается рост потребления полиамида-6 на технические нити на 26% благодаря вводу новых мощностей.

Для выпуска капролактама в основном применяются три вида сырья — бензол, фенол, толуол. Капролактам, производимый из фенола, имеет более высокую себестоимость, а в случае выпуска капролактама из толуола получается много побочных продуктов. В России производства капролактама работают исключительно по окислительной схеме из бензола через циклогексан в основном из-за преимущества в стоимости базового сырья.

В связи с поставленными целями по увеличению мощностей ПАО «Куйбышевазот» возникает необходимость модернизации существующих установок производства капролактама и проектирование новых.

Целью выпускной квалификационной работы является Оптимизация процесса получения циклогексанона дегидрированием циклогексанола.

В связи с поставленной целью в работе можно выделить следующие задачи:

- ознакомиться с теоретическими основами дегидрирования циклогексанола, в т.ч. механизмом и кинетикой процесса;
- рассмотреть существующие каталитические системы, применяемые в процессе дегидрирования циклогексанола;
- изучить технологию получения циклогексанона, осуществляемую на ПАО «КуйбышевАзот»: привести описание технологической схемы, план аналитического контроля стадии дегидрирования, оценку безопасности и экологичности производства;
- выбрать вариант модернизации технологической схемы стадии дегидрирования производства капролактама;
- произвести расчеты материального и теплового балансов для существующей и модернизованной установок;
- сделать выводы, в т.ч. основываясь на результатах расчетов, об эффективности принимаемого способа модернизации.

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Физико-химические основы процесса дегидрирования

Процесс дегидрирования циклгексанола может быть представлен сложной последовательно-параллельной схемой превращений [1]:

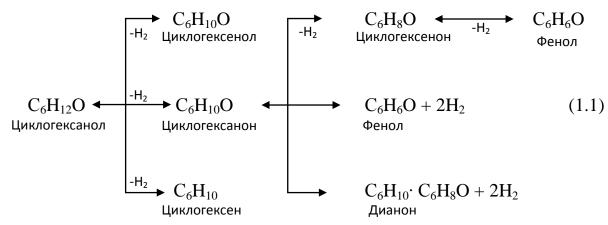


Рисунок 1.1 – Схема основных превращений процесса дегидрирования циклогексанола

Стадия дегидрирования циклогксанола в производстве капролактама оказывает прямое влияние на последующую стадию полимеризации капролактама и качество целевого продукта за счет образования нежелательных побочных веществ [2].

Ненасыщенный лактам значительно снижает качество нейлона. Его содержание в целевом продукте напрямую зависит от наличия в техническом циклогексаноне циклогексенона и фенола. Данные вещества, согласно схеме 1.1, образуются при дегидрировании циклогексанона [3].

Согласно работам [2,4] увеличение концентрации в образующемся циклогексаноне таких побочных продуктов как фенол, циклогексен и бициклических соединений значительно снижает значение перманганатного числа капролактама. Данный показатель характеризует наличие в капролактаме легкоокисляющихся веществ: чем больше значение

перманганатного числа, тем выше качество продукта и тем менее он склонен к окисляемости.

На количество образующихся в процессе циклогексена и воды влияет наличие в катализаторе веществ, представляющих собой кислотные центры, отвечающие за реакции дегидратации. Снизить кислотность катализатора можно путем добавления щелочи [5].

В случае осуществления процесса дегидрирования циклогексанола при высоких температурах (350-400°С) наблюдается образование в реакционной смеси дианонов - 2-циклогексилиденциклогексанона и 2-циклогексенилциклогексанона [6].

На ПАО «КуйбышевАзот» получение циклогексанона методом дегидрирования циклогексанола заключается в каталитическом отщеплении водорода на цинк-хромовом или цинк-кальциевом катализаторе при температуре 330-410 °C в зависимости от используемого катализатора при избыточном давлении по реакции [7]:

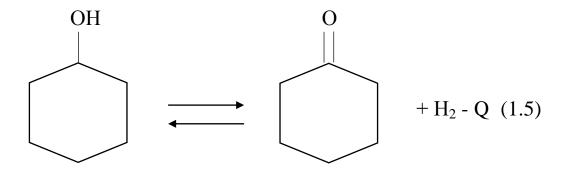
$$C_6H_{11}OH$$
 \longrightarrow $C_6H_{10}O + H_2 - Q$ ккал/моль (1.2)

Реакция эндотермическая. Тепловой эффект реакции 15,42 ккал/моль. Необходимое тепло подводится горячими дымовыми газами при циркуляции их с помощью циркуляционной газодувки.

Степень конверсии процесса 60÷80 %.

Объемная скорость на катализатор по циклогексанолу—ректификату 0,7—0,9 час⁻¹. Выход аннона 97-98 %. Одновременно с реакцией образования циклогексанона идут побочные реакции с образованием циклогексена и фенола:

$$C_6H_{11}OH \longrightarrow C_6H_{10} + H_2O$$
 (1.3)


$$C_6H_{11}OH \longrightarrow C_6H_6O + 3H_2 \tag{1.4}$$

Также имеют место реакции с образованием высококипящих соединений, получающихся при конденсации циклогексанона: циклогексилиден - циклогексанона, дициклогексила и т. д.

С течением времени катализатор начинает терять активность. Для поддержания необходимой степени конверсии температуру в реакторе постепенно повышают до $410~^{0}$ С. При повышении температуры в реакторе выше $410~^{0}$ С гранулы начинают спекаться и требуется замена катализатора.

1.1.1 Механизм и кинетика процесса

Процесс дегидрирования циклогексанола с целью получения цикогексанона является обратимым и протекает в присутствии селективного катализатора с поглощением тепла [8]:

На сегодняшний день в промышленности распространены два типа катализаторов для проведения данного процесса: высокотемпературный (350-450°C) цинк-кальциевый; низкотемпературный (200-300°C) медьсодержащий.

Увеличение температуры процесса и уменьшение парциального давления газов смещают равновесие реакции вправо.

Температурная зависимость константы равновесия описывается уравнением изотермой Вант-Гоффа и для реакции дегидрирования циклогексанола в цикло-гексанон может быть представлена в виде следующего уравнения [1, 9]:

$$\lg K_p = 6.4338 - \frac{3427.05}{T} \tag{1.6}$$

Равновесная степень превращения циклогексанола α может быть найдена из уравнения:

$$K_p = \frac{p_{C6H_{10}O} \cdot p_{H_2}}{p_{C6H_{11}OH}} = \frac{p \cdot \alpha^2}{(1+\alpha)(1-\alpha)}$$
 (1.7)

где $p_{C6H110H}, p_{C6H100}, p_{H2}$ - парциальные давления циклогексанола, циклогексанона и водорода соответственно;

P – общее давление.

На рис. 1.1 представлена зависимость константы равновесия реакции дегидрирования циклогексанола от температуры процесса в интервале от 160° C до 380° C при нормальном давлении.

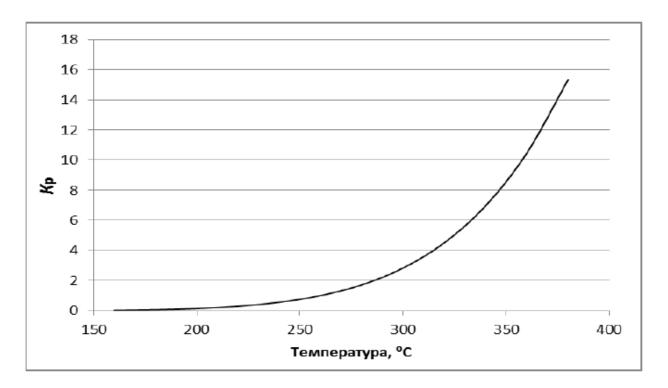


Рисунок 1.1 – Зависимость K_p реакции дегидрирования циклогексанола от температуры

На рис. 1.2 представлена зависимость равновесной степени превращения циклогексанола от температуры в том же интервале при атмосферном давлении.

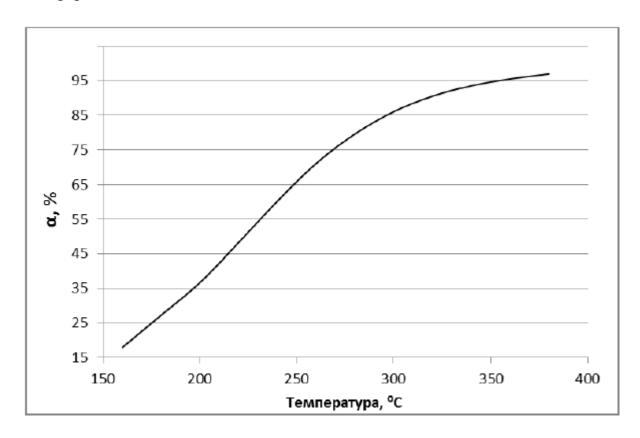


Рисунок 1.2 – Зависимость α от температуры

Из представленных рисунков видно, что с увеличением температуры процесса возрастают константа равновесия и степень превращения. При температуре 350°C степень превращения циклогексанола близка к 100%, а при 250°C составляет всего лишь 50-60%.

В работах [1, 9, 10] приводятся результаты исследования кинетики процесса дегидрирования циклогексанола в циклогексанон. Для процесса, проводимого в паровой фазе при температуре 240-270 °C, объёмной скорости подачи циклогексанола $900 - 30000 \, \text{ч}^{-1}$ и парциальных давлениях циклогексанола 0.4 - 0.12 атм, получено следующее кинетическое уравнение:

$$r = k \cdot \frac{c_1}{(c_1 + Kc_2)^{0.6}} \tag{1.8}$$

где k – константа скорости реакции;

 c_1, c_2 - концентрации циклогексанола и циклогексанона;

К - константа, зависящая от температуры.

Для жидкофазного процесса приводится следующее уравнение [1]:

$$r = k \frac{c_1}{c_2} \tag{1.9}$$

Согласно приведенным уравнениям скорость реакции r снижается с увеличением концентрации в реакционной смеси циклогексанона.

В работе [11] установлено, что кинетика реакция дегидрирования циклогексанола в циклогексанон на катализаторе CuO/Al2O3 описывается уравнением первого порядка. При этом было обнаружено, что если каталитическая реакция проводится на открытой меднометаллической поверхности, то степень превращения циклогексанола в циклогексанон пропорциональна площади этой медной поверхности при условиях равной загрузки катализатора в реактор и скорости подачи сырья. Для реакции первого порядка, проводимой в интегральном реакторе, получено следующее уравнение:

$$-\alpha - 2 \ln 1 - \alpha = aS, \qquad (1.10)$$

где S — удельная площадь поверхности меди,

a — комплексная переменная, зависящая от константы скорости реакции и нагрузки по сырью.

Согласно исследованиям [1, 9, 12] механизм процесса дегидрирования циклогексанола представлен последовательным взаимодействием реагирующих веществ с катализатором, которое представлено на рис. 1.3.

Рисунок 1.3 – Механиз дегидрирования циклогексанола

Скорость реакции дегидрирования циклогексанола в циклогексанон, протекающей на неоднородной поверхности катализатора, описывается следующим уравнением:

$$r = k \cdot \frac{c_1}{k_1 \cdot c_1 + k_2 \cdot c_2 m'} \tag{1.11}$$

где m — показатель степени, изменяющийся в пределах от 0 до 1 в зависимости от степени покрытия поверхности катализатора реактантами.

1.1.2 Катализаторы процесса

Реакцию дегидрирования циклогексанола в циклогексанон про водят в присутствии металлических катализаторов. Особое распространение получили медь- и цинксодержащие катализаторы.

В работе [13] описывается возможность применения в процессе дегидрирования циклогексанола в циклогексанон катализатора состава: кобальт 85-86%, фосфор 14-15%, получаемого путем восстановления водного раствора хлорида кобальта (II) гипофосфитом натрия при рН 9-10 и температуре 65°С. Данный катализатор обеспечивает селективность процесса 82-100% при температуре 280-300°С с выходом циклогексанона 75-84 %. Однако при повышении температуры выше 300°С селективность процесса и выход целевого продукта снижаются, что связано с невысокой термостабильностью катализатора.

Возможность устранения данного недостатка описывается авторском свидетельстве [14]. Увеличение трмостабильности катализатора на основе фосфида кобальта достигается путем введения Состав выражается дополнительного количества меди. следующей эмпирической формулой: $Co_{0.29-0.67}Cu_{0.18-0.61}P_{0.09-0.15}$. Приготовление катализатора осуществляется при рН 9-10 и температуре 80-90°C жидкофазным восстановлением смеси растворов сульфатов и хлоридов кобальта и меди гипофосфитом натрия.

Сравнительная характеристика катализаторов, описанных в работах [13, 14] катализаторов, представлена в таблице 1.1.

Катализатор	Объемная	Температура, °С			
	скорость, ч-1	280	300	320	340
[2]	5,5	73,1/100	84,8/100	89,1/98,4	82,4/92,3
[1]	4,2	77,4/100	84/100	78,2/88	66,8/77,6*

* верхние цифры – выход циклогексанона, нижние – селективность дегидрирования, %

В работе [15] описывается приготовление катализатора дегидрирования циклогексанола на основе кобальта (13-18 % вес.), обладающего повышенной активностью и термостойкостью. В качестве носителя используется обуглероженная волокнистая фракция пушицевого торфа следующего состава: углерод 76,8-80,4%, водород 2,0-2,4%, кислород 3,2-4,2%; в качестве активной фазы – уксуснокислый кобальт. Использование процессе такого катализатора В дегидрирования циклогексанола обеспечивает 100% селективность процесса и 82% выход целевого продукта при температуре реакции 320°C.

Повышение активности данного катализатора достигается использованием в качестве носителя предварительно окисленного торфа, что позволяет равномерно нанести значительно большее количество активной фазы на носитель (до25%) [16]. Использование такого катализатора обеспечивает выход целевого продукта при температуре 300-350°C до 83% и селективность процесса близкой к 100%.

Дальнейшее увеличение выхода циклогексанона достигается добавлением в катализатор меди [17]. Выход целевого продукта, равный 92,5%, при селективности 100% обеспечивает использование катализатора следующего состава: кобальт 21-23%, медь 4-7%, носитель - остальное.

Существует процесса описание катализатора дегидрирования циклогексанола, содержащего 4,0-4,2% никеля, 3,0-4,8% промотора – соединения натрия (гидроксид натрия), остальное – фосфиды никеля [18]. катализатор обеспечивает выход циклогексанона 80% селективности процесса близкой К 100%. Побочные продукты преимущественно бензол и продукты его гидрирования - составляют не более 3%. Катализатор в течение длительного периода сохраняет свою каталитическую активность, не требуя регенерации.

Возможность использования катализаторов на основе меди описывается в работе [19]. Здесь в качестве катализатора дегидрирования циклогексанола используется следующий состав: $(CuO\cdot ZnO)_x\cdot (Cr_2O_3\cdot Fe_2O_3)_x\cdot (NiO\cdot Fe_2O_3)_y\cdot (MgO\cdot Fe_2O_3)_z$, где x+y+z=1; x=0.01-0.98; y=0.01-0.98; z=0.01-0.98. Выход циклогекчсанона 85% при селективности процесса 94% обеспечивают значения x=0.4; y=z=0.3 при температуре $325^{\circ}C$.

В патенте США [20] описывается возможность использование медьцинкового катализатора с массовым соотношением медь:цинк = 1:1. Выход целевого продукта при использовании данного катализатора и температуре процесса 350°C составляет всего 65%.

В патенте [21] предложен медь-цинк-алюминиевый и/или хромовый оксидный катализатор следующего состава: $Cu_{0,1-0,2}Zn_{0,62-0,8}Al(Cr)_{0,05-0,18}O$ и способ его приготовления. Такой катализатор по сравнению с вышеописанным обеспечивает чуть больший выход целевого продукта — 70% - при селективности процесса близкой к 97%.

Для повышения активности и селекктивности медь-цинкового катализатора в патенте [22] было предложено внести в смесь алюминат бария, в результате чего образуется смесь следующего состава: медь 30-40%, алюминат бария 2-30%, окись цинка — остальное. Данный катализатор может использоваться при более низкой температуре процесса (около 300°C), при этом обеспечивая более высокие выход по циклогексанону (до 85%) и селективность процесса (до 97%).

Дальнейшее повышение удельной активности и термостабильности катализатора в процессе дегидрирования циклогексанола достигается использованием следующего состава: соотношение меди и цинка в двойной соли основных карбонатов Cu:Zn = (1,5-2:1); 11-28,5% алюмината кальция;

0,4-0,6% оксида натрия. Использование катализатора такого состава в процессе с температурой 300° С и объемной скорости подачи циклогексанола 1,5 ч⁻¹ обеспечивает селективность процесса 99,8% с выходом циклогексанона 96% [23].

В зарубежном патенте [24] описывается процесс дегидрирования циклогексанола с использованием медно-цинкового катализатора, обеспечивающего высокую степень превращения циклогексанола и малый выход побочных продуктов за счет проморирования его щелочными металлами. Катализатор проявляет высокую стабильность к присутствию воды и высококипящих побочных продуктов реакции. Результаты испытаний представлены в табл. 1.2.

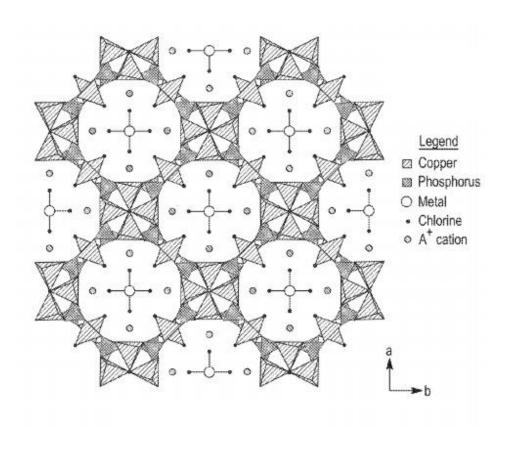
Таблица 1.2. Результаты испытания медно-цинковоых катализаторов

Катализатор	Температура,	Объемная	Конверсия,
	°C	скорость подачи	%
		сырья, ч ⁻¹	
CuO/ZnO (1/2)	280	1,0	82
CuO/ZnO (1/2)+0,2% Na	280	1,0	87
CuO/ZnO (1/2) +0,2% Rb	280	1,0	88
CuO/ZnO (1/2) +0,2% Cs	280	1,0	83
CuO/ZnO (1/2) +0,2% K	217	0,6	39

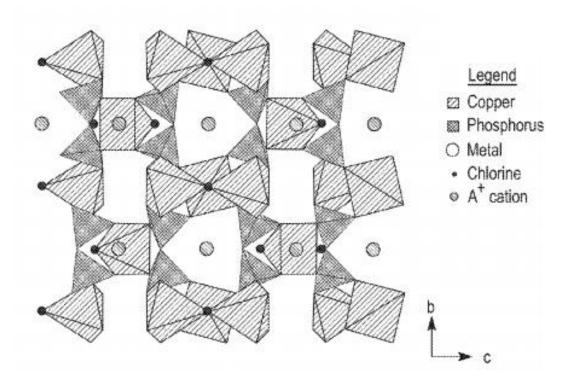
В иностранных источниках [25, 26] также имеется описание катализатора для получения циклогексанона путем дегидрирования циклогексанола, в котором медь диспергируется на поверхности носителя из диоксида кремния в форме частиц менее 200 Å и в количестве от 5 до 40 мас.% в расчете на массу упомянутого носителя диоксида кремния. Носитель - диоксида кремния - представляет собой пористый силикагель, имеющий площадь поверхности 15-400 м²/г, или коллоидный диоксид кремния. Результаты испытания данного катализатора приведены в таблице 1.3.

Температура, °С	250	260	270	280	290	300
Конверсия, %	55,2	58,3	65,0	71,9	78,5	80,4
Селективность, %	99,4	99,7	99,5	99,2	99,0	98,7

Таблица 1.3. Результаты испытания катализатора Cu/SiO₂


В работе [27] имеется описание приготовления и применения в дегирдирования циклогексанола медных катализаторов, процессе представляющих собой медь в количестве 10% масс., нанесенную на KIT-6 мезопористую структуру носителя SiO_2 марок SBA-16. Представленные катализаторы обеспечивают селективность процесса 99% и конверсию циклогексанола 70% при температуре процесса 250°C.

В патенте [28] имеется информация о катализаторе, представляющем собой микропористую структуру хлоропирофосфата меди, включающую в себя некоторое количество благородных металлов. Общую формулу такого катализатора можно выразить следующим образом: $[A_9Cu_6(P_2O_7)_4Cl]\cdot[MX_4]Cl_y$, где A — один из металлов K, Rb, Cs и NH_4 ; M - Cu, Au, Pt и Pd; X - Cl и Br; а также y = 2, когда M представляет собой Pt, Pd или Cu, а y = 3, когда M представляет собой Au. Структура такого катализатора представлена на puc. 1.4a-1.46.


Катализатор Pt/CuCIP при температуре процессаа 200°C обеспечивает конверсию 95% и селективность больше 99%.

В работе [12] предложен катализатор процесса дегидрирования циклогексанола, обладающий длительным сроком службы, обеспечивающим высокий выход целевого продукта и высокую селективность процесса при относительно низких температурах реакции. В качестве активного компонента данного катализатора выступает медь, носителя — α-окись алюминия с поверхностью по БЭТ 50 - 300 м²/г. Катализатор такого состава

при температуре более 230°C уже обеспечивает конверсию, близкую к равновесию, и селективность больше 99%.

a

Рисунок 1.4 – Структура катализатора

а – проекция по оси а; б – проекция по оси с.

В статье [25] исследована зависимость каталитической активности медных катализаторов. Было обнаружено, что больший выход целевого продукта обеспечивают медные катализаторы с примесями оксидов алюминия и хрома.

В работе [26] описывается способ приготовления медного катализатора для процесса дегидрирования из водного раствора медного аммиачно-карбонатного комплекса. В качестве твердого носителя могут использоваться оксиды магния, кремния, алюминия или их смеси. Такой уступает катализатор не ПО величине селективности процесса вышеописанному.

В патенте [27] существует описание катализатора процесса дегидрирования, активный компонент которого – медь из водного раствора аммиачно-карбамидного комплекса, а носитель – смесь белой сажи и бемита в массовом соотношении (2,5-3,5):1. Такой состав катализатора обеспечивает термостабильность в 1,4-2,4 раза выше, чем у прототипа, описанного в работе [13]. Активность катализатора оценивали степенью конверсии циклогексанола; процесс проводился при температуре 220-250°C и скорости подачи сырья 0,5-1 ч⁻¹ [28].

Активность вышеописанного катализатора снижается за счет отложений кокса в порах катализатора. Решение данной проблемы описывается в патенте [29] и заключается в способе приготовления катализатора. При этом массовое отношение активных компонентов оксида меди к гидроксиду меди составляет 0,37-2,7. Диаметр пор в катализаторе равен 16-24 нм, в то время как у прототипа он составлял 5-8 нм. Предлагаемый в работе катализатор обеспечивает непрерывный период, в 2-

2,4 раза превышающий период работы прототипа, при этом сохраняет высокие показатели селективности, активности и стабильности.

Применение кальциевого катализатора в качестве катализатора процесса дегидрирования циклогексанола предложено в патенте [30]. При этом состав катализатора выражен следующим соотношением: 40-50% оксида цинка, 50-60% карбоната кальция в модификации кальцита. Использование такого состава в процессе дегидрирования при температуре 330°C обеспечивает селективность процесса 99% с выходом циклогексанона 70%.

Существует описание кальциевого катализатора следующего состава: карбонат кальция 16,4-37%, графит 1-3%, оксид цинка остальное [31]. При температуре процесса 350°С и объемной скорости 1 ч⁻¹ применение такого катализатора обеспечивает селективность процесса 99,2% с выходом анона 88,8%.

В работе [32] описывается способ дегидрирования циклогексанола в циклогексанон. Для осуществления данного процесса используется катализатор, содержащий активные компоненты следующего состава: 56-88 % оксида цинка, 8-39% карбоната кальция. Катализатор используется в виде каталитической системы с чередованием слоев катализатора и керамики. Оптимальная температура процесса 350-360°C и объемная скорость подачи 1.5ч⁻¹ обеспечивают сырья селективность 97.9%, процесса выход циклогексанона 86,5%, выход побочных продуктов 3,9%.

Возможность повышения удельной поверхности, механической прочности, активности, селективности кальциевого катализатора и увеличения срока его службы предложено в изобретении [33]. В качестве кальциевого катализатора предложен следующий состав: 16-38% карбоната кальция, 61,5-82,5% оксида цинка, 0,5-1,5% терморасширенного графита и шунгита. При температуре процесса 350°C и объемной скорости подачи

сырья 1 ч⁻¹ обеспечивается селективность процесса 99,6% с выходом циклогексанона 93,4%.

В зарубежной практике также исследовались кальциевые катализаторы [34]. Описываемый в патенте катализатор представлен следующим составом: 27,92% CO₂, 29,85% Zn, 18,46% Ca. В температурных пределах процесса дегидрирования $400-450^{\circ}$ C содержание CO_2 снижается, уменьшается объем катализатора. Через год службы состав катализатора 22,46% СО₂, 13,91% Zn, 19,70% Са с массовыми представляет собой: соотношениями $CaO:CaCO_3 = 1:79,5$, $ZnO:ZnCO_3 = 1:0,386$. Конверсия в условиях эксперимента составила 82%, а циклогексанола выход циклогексанона – 86,1%.

В этой же работе существует описание магниевого катализатора состава: 41% CO_2 , 30,5% Zn, 11,4% Mg. В процессе длительной работы состав катализатора меняется: 2,11% CO_2 , 53,1% Zn, 19,5% Mg. При температуре процесса 430°C конверсия циклогексанола достигает 88,2% с выходом циклогексанона 94%.

2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Описание технологической схемы дегидрирования

Технологическая схема дегидрирования циклогексанола на ПАО «Куйбышев Азот» представлена на рис. 2.1.

Переработка циклогексанола-ректификата в циклогексанон осуществляется на трех агрегатах дегидрирования, мощность каждого из которых составляет около 5500 кг/ч. Объем катализатора, загружаемого в каждый из реакторов, равен 3,7 м³. Мощность агрегатов ограничивается производительностью циркуляционного насоса поз. В-604, а также давлением паров реакционной смеси в реакторе поз. Р-606.

Циклогексанол-ректификат поступает на стадию дегидрирования с температурой 50°C по обогреваемому трубопроводу из отделения подготовки сырья, которое необходимо для выравнивания производительности стаций ректификации и дегидрирования. Отделение подготовки сырья включается в себя три емкости циклогексанола-ректификата (поз. Е-5081-3) и две для продуктов дегидрирования (поз. Е-5102,3) объемом 100 м³.

После подогревателя поз. Т-607, где циклогексанол-ректификат подогревается теплом паров реакционной смеси, выходящей из перегревателя поз. Т-607, до температуры 90°С, он поступает в трубное пространство испарителя поз. Т-601. В испарителе происходит испарение и перегрев до 200°С циклогексанола-ректификата.

После сепаратора поз. С-602, в котором происходит отделение паров капельного циклогексанола, пары циклогексанола-ректификата проходят трубное пространство перегревателя поз. Т-608, где нагреваются до температуры не более 340°C за счет тепла паров реакционной смеси, выходящих из реактора поз. Р-606.

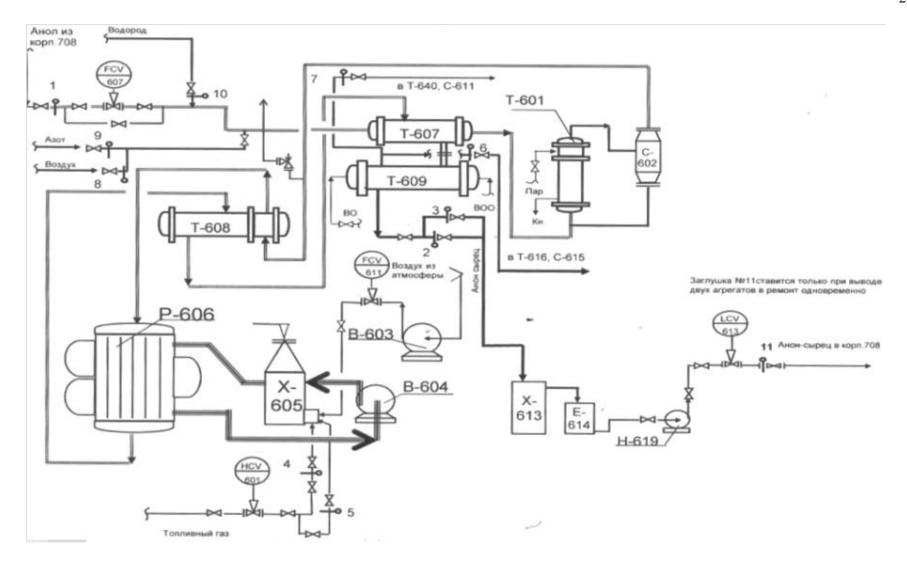


Рисунок 2.1 – Технологическая схема процесса дегидрирования циклогексанола в производстве капролактама ПАО «КуйбышевАзот»

Из перегревателя поз. Т-608 реакционная смесь подается в реактор дегидрирования поз. Р-606. В качестве катализатора процесса используется цинк-хромовый или кальций-цинковый катализаторы. Температура процесса не превышает 450°C.

Подвод тепла в зону реакции осуществляется горячими дымовыми газами, образующимися в камере сжигания поз. X-605. К форсункам камеры сжигания поз. X-605 подается природный газ и воздух, нагнетаемый воздуходувкой поз. В-603. Температура в реакционной зоне реактора дегидрирования поддерживается выбором оптимального расхода природного газа.

Парогазовая смесь из реактора дегидрирования проходит межтрубное пространство перегревателя поз. Т-608, где охлаждается до температуры около 210° С. Отданное тепло расходуется на перегрев паров циклогексанола, поступающего в реактор дегидрирования поз. Р-606. Дальнейшее охлаждение реакционной смеси до 150° С происходит в подогревателе циклогексаноларектификата поз. Т-607.

Конденсация и охлаждение продуктов реакции дегидрирования до температуры не более 40° С происходит в конденсаторе-холодильнике поз. Т- 609, в трубное пространство которого подается оборотная вода.

В межтрубном пространстве конденсатора – холодильника поз. Т-609 реакционная смесь разделяется на жидкую и газообразную фазы. Жидкая фаза циклогексанон-сырец (анон, анол, циклогексен, осмол, вода) направляется в гидрозатвор поз. Х-613, из которого циклогексанон поступает в сборник поз. Е-614, откуда насосом поз. Н-619 откачивается в корпус 708 в емкости поз. Е-5101,2,3.

Газовая фаза (реакционный водород и несконденсировавшиеся пары реакционной смеси) из конденсатора-холодильника поз. Т-609 с температурой не более 40° С по общему коллектору поступает в трубное

пространство аммиачных испарителей поз. Т-616, Т-640, где происходит глубокая конденсация и охлаждение органических продуктов и реакционного водорода за счет испарения жидкого аммиака до температуры $3-10^{0}$ C.

Газожидкостная смесь из аммиачного испарителя поз. Т-616 с температурой $1\div10^{\circ}$ С поступает в сепаратор поз. С-615, где сконденсировавшиеся циклогексанон и цик-логексанол отделяются от водорода и через гидрозатвор поз. X-613 сливаются в сборник поз. Е-614

Реакционный водород из сепаратора поз. C-615 направляется в отделение гидрирования (корпус 704).

Регенерация цинк-хромового катализатора производится 1 раз в 2-3 месяца, когда степень конверсии циклогексанола снижается ниже 60%.

Кальций-цинковый катализатор рассчитан на работу в течение 3-4 лет без регенерации [Регламент].

2.2 Аналитический контроль

План аналитического контроля установки дегидрирования циклогексанола представлен в табл. 2.1.

Таблица 2.1 – Аналитический контроль процесса

Место отбора	Контролируемый параметр	Частота контроля	Норма	Метод испытания	Кто проводит
1	2	3	4	5	6
Трубопровод циклогексанола - ректификата на входе в отделение	а) массовая доля циклогексанола	не менее 75 %	по требованию	Хроматографический	Лаборант ОТК
дегидрирования, $Q-606_1$	б) массовая доля циклогексанона	не более 25%	по требованию	Хроматографический	Лаборант ОТК
	в) объемная доля кислорода при продувке	не более 2 %об	по требованию	Хроматографический	Лаборант ОТК
Трубопровод циркуляционного газа на линии всаса газодувки поз.	а) массовая концентрация циклогексанона	не более 10 мг/м ³	по требованию	Хроматографический	Лаборант ОТК
B-604, 1,2,3 Q-618	б) массовая концентрация циклогексанола	не более 10 мг/м ³	по требованию	Хроматографический	Лаборант ОТК
	в) объемная доля кислорода	не более 11 % об	по требованию	Хроматографический	Лаборант ОТК
Трубопровод сброса дымовых газов от агрегатов дегидрирования при розжиге	а) объемная доляобщих горючих (окись углерода, метан, водород)	не более 0,05 % об	По требованию	Хроматографический	Лаборант ОТК
Q-623 1/2/3	б) массовая доля суммы циклогексанона и циклогексанола	не более 1,0 мг/м ³	по требованию	Хроматографический	Лаборант ОТК
Трубопровод азото -воздушной смеси при регенерации катализатора (прожиг катализатора), 1,2,3 Q-602	а) объемная доля кислорода	не более 8 % об	по требованию	Хроматографический	Лаборант ОТК
Трубопровод на выходе из	а) массовая доля циклогексанона	50-80 %	1 раз в смену	Хроматографический	Лаборант ОТК
холодильника - кондесатора поз.Т- 609, 1,2,3 Q-613 циклогексанон -сырец	б) массовая доля циклогексанола в) массовая доля примесей, в т.ч. г) массовая доля тяжелокипящих	не более 35 % не более 10 %	1 раз в смену 1 раз в смену	Хроматографический	Лаборант ОТК Лаборант ОТК
	примесей	не более 4%		Хроматографический	

Продолжение табл. 2.1

1	2	3	4	5	6
Азот при продувке от горючих и вредных веществ	а) массовая концентрация циклогексанона	не более 30 мг/м ³	по требованию	Хроматографический	Лаборант ОТК
	б) массовая концентрация: циклогексанола	не более 10 мг/м ³	по требованию	Хроматографический	Лаборант ОТК
	в) объемная доля: кислорода	не более 2 %об	по требованию	Хроматографический	Лаборант ОТК
азото -воздушная смесь при регенерации катализатора	а) объемная доля кислорода	не более 8 %об	по требованию	Хроматографический	Лаборант ОТК
	б) объемная доля: углекислого газа при окончании регенерации	не более 0,2 %об	по требованию	Хроматографический	Лаборант ОТК
Трубопровод выдачи конденсата из корп.707 Ап-600	а) общяя жесткость	не более 5 мкг-экв/ дм ³	По требованию	Титриметрический РД 34.37.523.8-88	Лаборант ОТК
	б) общяя щелочность	не более 85 мкг-экв/ дм ³	По требованию	Титриметрический РД 34.37.523.7-88	Лаборант ОТК
	в) рН	не более 8,5 ед	По требованию	Электрометрический	Лаборант ОТК
	г) удельная электропроводность	не более 8,0 мкСм/см	По требованию	Кондуктометрический	Лаборант ОТК
	д) железо общее	не более 70 мкг/дм ³	По требованию	Фотоколориметрический	Лаборант ОТК
	е) перманганатная окисляемость	не более 1,0 мг О/дм ³	По требованию	Фотоколориметрический	Лаборант ОТК
Содержание горючих газов в трубопроводах, аппаратах и в воздухе производственных помещений при проведении огневых работ	а) объемная доля: общих горючих (окись углерода, метан, водород)	не более 0,05 % об	По требованию	Хроматографический или экспресс метод	Лаборант ОТК
Содержание горючих газов в трубопроводах, аппаратах и в	а) объемная доля кислорода	не менее 20 и не более 21% об	По требованию	Хроматографический или экспресс метод	Лаборант ОТК
воздухе производственных помещений при проведении	б) массовая концентрация циклогексана	не более 80 мг/м ³	По требованию	Хроматографический или экспресс метод	Лаборант ОТК
газоопасных работ	в) массовая концентрация циклогексанона	не более 30 мг/м ³	По требованию	Хроматографический или экспресс метод	Лаборант ОТК
	г) массовая концентрация циклогексанола	не более 10 мг/м ³	По требованию	Хроматографический или экспресс методом	Лаборант ОТК

Продолжение табл. 2.1

Отдувочные газы агрегатов	а) объёмная доля кислорода при	не более 2 % об	по требованию	Хроматографический	Лаборант ОТК
дегидрирования после испарителей	продувке				
поз. Т-616/1, Т-640, Т-616/2					
1,2,3 An-615					
Трубопровод выдачи конденсата	а) общяя жесткость	не более	По требованию		Лаборант ОТК
от сепаратора поз. С-639		5 мкг-экв/ дм ³		Титриметрический	
Q-639				РД 34.37.523.8-88	
	б) общяя щелочность	не более	По требованию		Лаборант ОТК
		85 мкг-экв/ дм ³		Титриметрический	
				РД 34.37.523.7-88	
	в) рН	не более 8,5 ед	По требованию	Электрометрический	Лаборант ОТК
	г) удельная электропроводность	не более 8,0 мкСм/см	По требованию	Кондуктометрический	Лаборант ОТК
	д) общее содержание железа	не более 70 мкг/дм ³	По требованию	Фотоколориметрический	Лаборант ОТК
	е) перманганатная окисляемость	не более 1,0 мг O/ дм ³	По требованию	Фотоколориметрический	Лаборант ОТК

2.3 Выбор способа модернизации

Значительные резервы повышения производительности катализатора заключены в оптимальном выборе пористой структуры, размера и формы зерен катализатора.

Оптимальными принято называть такие формы и размеры пористых зерен, которые позволяют достигнуть заданной производительности при минимальных расходах на контактный аппарат с катализатором и преодоление его гидравлического сопротивления.

Уменьшение диаметра зерен и доли свободного объема засыпаемого катализатора снижаются затраты на него и контактный аппарат, однако возрастают расходы на преодоление гидравлического сопротивления. Положение оптимума зависит от технологического режима, процесса капитальных затрат и эксплуатационных расходов.

Оптимальные размеры зерен соответствуют переходной области, когда степень использования внутренней поверхности составляет 0,75-0,85.

Нерационально также увеличивать размеры зерен, т.к. возрастание необходимого количества катализатора не компенсируется уменьшением гидравлического сопротивления.

Для процессов, происходящих в неподвижном слое в области внешней диффузии, предпочтительнее использовать катализатор с возможно более мелкими зернами. Нижняя граница зависит от гидродинамических и практических режимов эксплуатации катализатора. Наиболее целесообразны в данном случае зерна размером 2-3 мм.

В процессе дегидрирования циклогексанола ПАО «КуйбышевАзот» применяется катализатор фирмы BASF H5-15.

Катализатор H5 - 15 производства фирмы БАСФ в форме таблеток размером 5 х 3 мм.

Согласно данным элементного анализа катализатор H5-15 содержит в мас.%: CuO -20 ± 0.6 ; SiO2 -76 ± 0.7 ; Na2O -1.4 ± 0.2 . Основные характеристики данного катализатора представлены в табл. 2.2.

Таблица 2.2 - Физико-механические и текстурные характеристики катализатора BASF H5-15

	Насыпная	Механичес	Удельная	Общий	Средний
	плотность, кг/см3	кая прочность на раздавлива ние	поверхнос ть м2/г	объём пор, см3/г	диаметр пор, нм
		кгс/см			
H5 – 15	0,72	50	127	0,50	25

В качестве катализатора для осуществления низкотемпературного процесса дегидрирования предлагается использовать катализаторы, описанные в работах [34].

Катализатор МАК-К, описанный в патенте [14], имеет структурные характеристики, приведенные в табл. 2.3.

Таблица 2.3 - Физико-механические и текстурные характеристики катализаторов

	Насыпная	Механичес	Удельная	Общий	Средний
	плотность,	кая	поверхнос	объём пор,	диаметр
	кг/см3	прочность	ТЬ	см3/г	пор, нм
		на	м2/г	CW13/1	
		раздавлива	1412/1		
		ние			
		кгс/см			
МАК-К	0,58	25	220	0,62	3,5

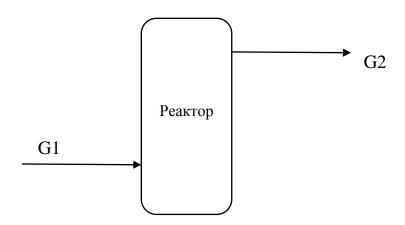
Сравнение характеристик промышленного катализатора и описываемого в патенте [14] представлены в табл. 2.4.

Таблица 2.4 - Активность и селективность катализаторов при 250 °C и объёмной скорости 1 \mathfrak{q}^{-1}

Катализатор	Активность, %	Селективность, %				
MAK – K	61,3	99,0				
	После пе	После перегрева при 350 °C				
	43,2	99,3				
H5 – 15	53,1	99,4				
(БАСФ)	После пе	После перегрева при 350 °C				
	27,1	99,7				

В работе [34] описывается медьсодержащий катализатор, период непрерывной работы которого в 2-2,4 раза превышает период непрерывной работы катализатора МАК-К при сохранении высоких показателей селективности, активности и термостабильности. Это связано с наличием в катализаторе МАК-К узких пор, в которых происходит отложение кокса. Его характеристики представлены в табл. 2.5.

Таблица 2.5 – Характеристики медьсодержащего катализатора [34]


	Насыпная	Удельная	Общий	Средний
	плотность,	поверхность	объём пор,	диаметр пор,
	кг/см3	м2/г	см3/г	HM
[19]	0,58	160	0,6	24

Таким образом, в качестве модернизации существующей технологии дегидрирования циклогексанола принимаем замену катализатора H5-15 фирмы BASF на низкотемпературный медьсодержащий катализатор, описанный в работе [19], применение которого обеспечивает высокие показатели конверсии и селективности процесса при длительной работе каталитической системы.

3 РАСЧЕТНАЯ ЧАСТЬ

3.1 Материальный баланс существующей установки

Схема материальных потоков реакторного блока оделения дегидрирования циклогексанола представлена на рис. 3.1.

G1 – циклогексанол-ректификат; G2 – продукт дегидрирования

Рисунок 3.1 – Схема материальных потоков реакторного блока дегидрирования

Исходные данные к расчету:

- 1. Производительность одного реактора $\Pi_1 = 5500 \text{ кг/ч}$;
- 2. Количество реакторов дегидрирования n=3 шт.;
- 3. Состав потоков G1 и G2 представлены в табл. 3.1.

Производительность реакторного блока рассчитывается по формуле (3.1):

$$\Pi = n \cdot \Pi_1, \tag{3.1}$$

где:

n – количество реакторов в реакторном отделении дегидрирования, шт.;

 Π_1 — производительность одного реактора, кг/ч.

$\Pi = 3 \cdot 5500 = 16500 \,\mathrm{kr/y}$

Таблица 3.1 – Состав исходного и конечного потоков реакторного блока

	Содержание, % масс.	
Компонент	G1	G2
Водород	-	1,30
Циклогексан	0,87	0,87
Циклогексанон	6,17	66,56
Циклогексанол	91,30	27,35
Фенол	0,04	0
Легкокипящие	0,03	0,96
Тяжелокипящие	1,60	2,91

Производительность реактора численно равна массовому расходу исходного или конечного потоков, т.е.:

$$\Pi = G_1 = G_2$$

Массовый расход компонентов в потоке рассчитывается по формуле (3.2):

$$G_i^j = \frac{W_i^j \cdot G_j}{100\%},\tag{3.2}$$

где:

 $G_i^{\,j}$ — массовый расход i-го компонента в потоке j, кг/ч;

 $W_i^{\ j}$ — содержание і-го компонента в потоке j, % масс.;

 G_j – массовый расход j-го потока, кг/ч;

i – компонент рассматриваемого потока;

j – номер потока.

Мольный расход компонента реакционной смеси рассчитывается по формуле:

$$g_i^j = \frac{G_i^j}{M_i'} \tag{3.3}$$

где:

 g_i^j — мольный расход i-го компонента в потоке j, кмоль/ч;

 M_i – молярная масса і-го компонента, кг/кмоль.

Молярные массы рассматриваемых в расчете веществ приведены в табл. 3.2.

Таблица 3.2 – Молярные массы веществ

Компонент	Формула	M_i , кг/кмоль
Водород	H_2	2
Циклогексан	C_6H_{10}	84
Циклогексанон	$C_6H_{10}O$	98
Циклогексанол	C ₆ H ₁₁ OH	100
Фенол	C ₆ H ₅ O	94

Рассчитаем расходы компонентов потока G1:

- циклогексан

$$G_{ ext{ iny L}- ext{aH}}^1 = rac{0.87 \cdot 16500}{100} = 143.55 \ ext{кг/ч}$$
 $g_{ ext{ iny L}- ext{aH}}^1 = rac{143.55}{84} = 1.71 \ ext{кмоль/ч}$

- циклогексанон

$$G_{ ext{ahoh}}^1 = rac{6,17\cdot 16500}{100} = 1018,05 \ ext{кг/ч}$$
 $g_{ ext{ahoh}}^1 = rac{1018,05}{98} = 10,39 \ ext{кмоль/ч}$

- циклогексанол

$$G_{
m aho J}^1 = rac{91,30 \cdot 16500}{100} = 15064,50 \ кг/ч$$

$$g_{ ext{ahoл}}^1 = rac{15064,50}{100} = 150,65$$
 кмоль/ч

- фенол

$$G_{\Phi \text{енол}}^1 = \frac{0.04 \cdot 16500}{100} = 6.6 \text{ кг/ч}$$

$$g_{\Phi^{\mathrm{ehon}}}^1 = \frac{6.6}{94} = 0.07$$
 кмоль/ч

- легкокипящие

$$G_{\pi \kappa}^1 = \frac{0.03 \cdot 16500}{100} = 4.95 \ \kappa \Gamma / \Psi$$

- тяжелокипящие

$$G_{\text{тк}}^1 = \frac{1,60 \cdot 16500}{100} = 264 \text{ кг/ч}$$

Аналогичным образом рассчитываем расходы потока G2. Результаты расчета представлены в табл.3.3.

Таблица 3.3 – Состав потока G2

Компонент	G_i^2 , кг/ч	g_i^2 , кмоль/ч
Водород	214,50	107,250
Циклогексан	143,55	1,709
Циклогексанон	10982,40	112,065
Циклогексанол	4512,75	45,128
Легкокипящие	158,40	
Тяжелокипящие	480,15	
ИТОГО:	16500	

Материальный баланс реакторного блока стадии дегидрирования циклогексанола представлен в табл. 3.4.

Конверсия циклогексанола рассчитывается по формуле:

$$X_{\text{анол}} = \frac{G_{\text{анол}}^{1} - G_{\text{анол}}^{2}}{G_{\text{анол}}^{1}}$$
 (3.4)

$$X_{\text{анол}} = \frac{15064,50 - 4512,75}{15064,50} = 70\%$$

Селективность процесса по циклогексанону рассчитывается следующим образом:

$$\varphi_{\text{анон}} = \frac{G_{\text{анон}}^2 - G_{\text{анон}}^1}{G_{\text{анол}}^1 - G_{\text{анол}}^2}$$
(3.5)

$$\varphi_{\text{анон}} = \frac{10982,40 - 1018,05}{15064,50 - 4512,75} = 94,4\%$$

Таблица 3.4 – Материальный баланс существующей установки

		Приход			Расход	
Компонент	кг/ч	кмоль/ч	% масс.	кг/ч	кмоль/ч	% масс.
Водород	-	-	-	214,50	107,250	1,30
Циклогексан	143,55	1,71	0,87	143,55	1,709	0,87
Циклогексанон	1018,05	10,39	6,17	10982,40	112,065	66,56
Циклогексанол	15064,50	150,65	91,3	4512,75	45,128	27,35
Фенол	6,60	0,07	0,04	-		-
Легкокипящие	4,95		0,03	158,40		0,96
Тяжелокипящие	264,00		1,6	480,15		2,91
ИТОГО:	16500		100	16500		100

3.2 Тепловой баланс существующей установки

Исходные данные:

- 1. Данные табл. 3.4;
- 2. Температура потока на входе в реактор 320°С;
- 3. Температура потока на выходе из реактора 380°C.

В рассматриваемом процессе приход тепла в зону реакции осуществляется за счет физического тепла компонентов исходного сырья, а также подводимого дымовыми газами тепла, необходимого для поддержания требуемого температурного режима. Расходуется тепло на осуществление эндотермической реакции, часть тепла отдается в окружающую среду в качестве потерь, а часть уходит вместе с продуктами реакции.

Уравнение теплового баланса реактора для данного процесса:

$$Q_{\rm BX} + Q_{\rm J,\Gamma} = Q_{\rm D} + Q_{\rm BMX} + Q_{\rm II} \tag{3.6}$$

где Q_p - теплота эндотермической реакции, кДж;

 $Q_{\mbox{\tiny BX}}$ - тепловой поток исходного сырья на входе в реактор, кДж;

 $Q_{\text{вых}}$ - тепловой поток реакционной массы на выходе из реактора, кДж;

 Q_n - теплопотери в окружающую среду, кДж;

 $Q_{\text{д.г.}}$ – тепло, подводимое в зону реакции с дымовыми газами, кДж.

Тепловой эффект химической реакции составляет q= -15,42 ккал/моль.

Количество поглощаемого тепла в результате реакции по формуле:

$$Q_{\rm p} = q \cdot g_{\rm ahoh}, \tag{3.7}$$

где q — тепловой эффект реакции, $\frac{\text{ккал}}{\text{кмоль}}$;

 $g_{\rm anoh}$ — количество анон, образовавшегося в результате целевой реакции, кмоль/ч.

$$Q_{\mathrm{p}} = -15420 \cdot 112,065 - 10,39 = -1567828,5 \frac{\mathrm{ккал}}{\mathrm{q}} = -6559794 \; \mathrm{кДж/q}$$

Физическое тепло веществ, поступающих и покидающих реактор, рассчитывается по формуле:

$$Q_i = c_i \cdot g_i \cdot t \tag{3.8}$$

где c_i –молярная теплоемкость вещества при данной температуре, Дж/моль·град;

 g_i - мольный расход вещества, моль/ч;

t – температура вещества на входе (выходе) в реактор, °С.

Теплоемкости исходных веществ при данной температуре рассчитываются по формулам:

$$C_p = a + bT + c/T^2$$
 (3.9)

или

$$C_{p} = a + bT + cT^{2} + dT^{3} (3.10)$$

Формула (3.9) используется для неорганических веществ, (3.10) – для органических.

Значения коэффициентов a, b, c, d и результаты расчета теплоемкостей, а также средние значения теплоемкостей компонентов приведены в табл. 3.5.

Вещество	Коэффициенты			С _{р,} Дж/моль·К		
	a	b·10 ³	С	при	при	
				Т=593К	Т=653К	
Водород	27,28	3,26	$0,502 \cdot 10^5$		29,53	
Циклогексан	-51,72	598,8	-230·10 ⁻⁶	222,49	241,22	
Циклогексанон	-	-	-	226		
Циклогексанол	-	-	-	249		
Фенол	-	-	-	134,7		

Таблица 3.5 – Теплоемкости компонентов реакционной массы

Тепло отдельных компонентов на входе в реактор:

$$Q_{\text{ц-ан}} = 222,49 \cdot 1,71 \cdot 320 = 121746,1 \ кДж/ч$$
 $Q_{\text{анон}} = 226 \cdot 10,39 \cdot 320 = 751404,8 \ кДж/ч$ $Q_{\text{анол}} = 249 \cdot 150,65 \cdot 320 = 12003792 \ кДж/ч$ $Q_{\text{фенол}} = 134,7 \cdot 0,07 \cdot 320 = 3017,28 \ кДж/ч$

Рассчитаем количество теплоты, поступающее в реактор вместе с входящим материальным потоком по формуле:

$$Q_{\text{BX}} = Q_{\text{Ц-ан}} + Q_{\text{анон}} + Q_{\text{анол}} + Q_{\phi \text{енол}}$$
 (3.11)

$$Q_{\rm BX}=121746$$
,1 + 751404,8 + 12003792 + 3017,28 = 12879960,1 кДж/ч Тепло отдельных компонентов на выходе из реактора:

$$Q_{\mathrm{B-Д}}=29{,}53\cdot 107{,}250\cdot 380=1203353\ \mathrm{кДж/ч}$$
 $Q_{\mathrm{ц-ан}}=241{,}22\cdot 1{,}709\cdot 380=156654{,}6\ \mathrm{кДж/ч}$ $Q_{\mathrm{анон}}=226\cdot 112{,}065\cdot 380=9621142\ \mathrm{кДж/ч}$ $Q_{\mathrm{анол}}=249\cdot 45{,}128\cdot 380=4270011\ \mathrm{кДж/ч}$

Количество теплоты, покидающее реактор вместе с потоком G2 по формуле:

$$Q_{\text{вых}} = Q_{\text{в-д}} + Q_{\text{ц-ан}} + Q_{\text{анон}} + Q_{\text{анол}}$$
 (3.12)

$$Q_{\scriptscriptstyle \mathrm{BMX}} = 1203353 + 156654,6 + 9621142 + 4270011 = 15251160,6$$
 кДж/ч

Потери тепла процесса примем равными 3%. Тогда:

$$Q_{\text{вых}} + Q_p = 0.97 \cdot Q_{\text{pacx}}, \tag{3.13}$$

где:

 $Q_{
m pacx}$ – общий расход тепла, кДж/ч.

$$Q_{\mathrm{pacx}} = \frac{15251160,6+6559794}{0,97} = 22485520,2$$
 кДж/ч

Количество потерь:

$$Q_{\Pi} = 0.03 \cdot 22485520.2 = 674565.6$$
 кДж/ч

Согласно основному закону теплового баланса должно выполняться условие:

$$Q_{\text{прих}} = Q_{\text{pacx}}, \tag{3.14}$$

где $Q_{\text{прих}}$ – общий приход тепла, кДж/ч.

Найдем количество теплоты, подводимое в зону реакции дымовыми газами:

$$Q_{\text{д.г.}} = Q_{\text{pacx}} - Q_{\text{BX}} \tag{3.15}$$

$$Q_{\text{д.г.}} = 22485520,2 - 12879960,1 = 9605560,1$$
 кДж/ч

Найдем количество теплоносителя (дымовых газов), необходимое для поддержания требуемого температурного режима процесса:

$$G_{\text{д.г.}} = \frac{Q_{\text{д.г.}}}{C_{p \text{ д.г.}} (t_{\text{H}} - t_{\text{K}})},$$
(3.16)

где:

 $G_{\text{д.г.}}$ – массовый расход дымовых газов, кг/ч;

 $\mathcal{C}_{p\ \ensuremath{\mbox{\mbox{\sc L}}\mbox{\sc L}}$ – теплоемкость дымовых газов, кДж/кг·град;

 $t_{\rm H},\,t_{\rm K}$ – температура дымовых газов на входе в реактор и выходе из него соответственно, $^{\rm o}{\rm C}.$

$$G_{\text{д.г.}} = \frac{9605560,1}{1,16\cdot(470-400)} = 118295,075 \text{ кг/ч}$$

Тепловой баланс процесса представлен в табл. 3.6.

Таблица 3.6 – Тепловой баланс процесса

Приход	кДж/ч	%	Расход	кДж/ч	%
Тепло с	12879960,1	57,28	Тепло с	15251160,6	67,83
сырьем			продуктом		
Тепло от	9605560,1	42,72	Тепло	6559794	29,17
теплоносителя			реакции		
			Теплопотери	674565,6	3,00
Итого:	22485520,2	100	Итого:	22485520,2	100

3.3 Материальный баланс проектируемой установки

Исходные данные к расчету:

- 1. Состав потока G1 соответствует данным табл. 3.4;
- 2. Конверсия циклогексанола на промышленном катализаторе в среднем на 5% ниже конверсии на медьсодержащем низкотемпературном катализаторе. Принимаем $X_{\text{анол}} = 75\%$;
- 3. Селективность процесса по циклогексанону на предлагаемом катализаторе несколько ниже по сравнению с промышленным. $\varphi_{\text{анон}} = 93,6\%$.

Количество вступившего в реакцию циклогексанона определяем из формулы конверсии (3.4):

$$0,75 = \frac{15064,50 - x}{15064,50}$$
 $G_{\mathrm{анол}}^2 = x = 15064,50 - 0,75 \cdot 15064,50 = 3766,125 \ кг/ч$ $g_{\mathrm{анол}}^2 = \frac{3766,125}{100} = 37,661 \ кмоль/ч$

Количество покидающего реактор анона находим из формулы (3.5):

$$0,936 = \frac{y - 1018,05}{15064,50 - 3766,125}$$
 $G_{\mathrm{ahoh}}^2 = y = 11593,33 \ \mathrm{кг/ч}$ $g_{\mathrm{ahoh}}^2 = \frac{11593,33}{98} = 118,299 \ \mathrm{кмоль/ч}$

Следовательно, количество циклогексанона с применением низкотемпературного катализатора увеличилось на 118,299 — 112,065 = 6,234 кмоль/ч. Согласно уравнению основной реакции, протекающей в процессе дегидрирования:

$$C_6H_{11}OH \rightarrow C_6H_{10}O + H_2,$$
 (3.17)

количество водорода увеличивается также. Т.е. количество водорода в конечной смеси составляет:

$$g_{\mathrm{B-Д}}^2 = 107,250 + 6,234 = 113,484$$
 кмоль/ч $G_{\mathrm{B-Д}}^2 = 113,484 \cdot 2 = 226,97$ кг/ч

Общее количество побочных продуктов определяется из формулы:

$$G_{\Pi\Pi}^2 = G_1 - G_{B-\Pi}^2 - G_{AHOH}^2 - G_{AHO\Pi}^2 - G_{\Pi-H}^1$$
 (3.18)

$$G_{\pi\pi}^2 = 16500 - 226,97 - 11593,33 - 3766,125 - 143,55 = 770,025$$
 кг/ч

Принимаем массовое соотношение побочных продуктов процесса аналогично данным табл. 3.4. Соотношение легкокипящих и тяжелокипящих компонентов равно 1:3.

Количество легкокипящих компонентов:

$$G_{\text{лк}}^2 = \frac{770,025}{4} = 192,506 \text{ кг/ч}$$

Количество тяжелокипящих компонентов:

$$G_{\text{тк}}^2 = 770,025 - 192,506 = 577,519 \,\text{кг/ч}$$

Материальный баланс процесса представлен в табл. 3.7.

Таблица 3.7 – Материальный баланс проектируемой установки

	Приход			Расход			
Компонент	кг/ч	кмоль/ч	% масс.	кг/ч	кмоль/ч	% масс.	
Водород	-	-	-	226,97	113,484	1,38	
Циклогексан	143,55	1,71	0,87	143,55	1,709	0,87	
Циклогексанон	1018,05	10,39	6,17	11593,33	118,299	70,26	
Циклогексанол	15064,50	150,65	91,3	3766,125	37,661	22,83	
Фенол	6,60	0,07	0,04	-		-	
Легкокипящие	4,95		0,03	192,506		1,17	
Тяжелокипящие	264,00		1,6	577,519		3,50	
ИТОГО:	16500		100	16500		100	

3.4 Тепловой баланс проектируемой установки

Данные к расчету:

- 1. Данные табл. 3.7;
- 2. Температура сырья на входе в реактор 200°С;
- 3 Температура реакции 250°C.

Результаты расчета удельной теплоемкости покидающих реактор компонентов по формулам (3.9), (3.10) приведены в табл. 3.8.

Таблица 3.8 – Теплоемкости компонентов реакционной массы

Вещество	Коэффициенты			С _{р,} Дж/моль·К	
	a $b\cdot 10^3$ c		при	при	
				Т=473К	Т=523К
Водород	27,28	3,26	$0,502 \cdot 10^5$		29,16
Циклогексан	-51,72	598,8	-230·10 ⁻⁶	180,05	198,54

Средние теплоемкости остальных компонентов смеси приведены в табл. 3.5.

Тепло отдельных компонентов на входе в реактор:

$$Q_{\text{ц-ан}}=180,\!05\cdot 1,\!71\cdot 200=61577,\!1\ \text{кДж/ч}$$
 $Q_{\text{анон}}=226\cdot 10,\!39\cdot 200=469628\ \text{кДж/ч}$ $Q_{\text{анол}}=249\cdot 150,\!65\cdot 200=7502370\ \text{кДж/ч}$ $Q_{\text{фенол}}=134,\!7\cdot 0,\!07\cdot 200=1885,\!8\ \text{кДж/ч}$

Рассчитаем количество теплоты, поступающее в реактор вместе с входящим материальным потоком по формуле:

$$Q_{\rm BX} = Q_{\rm ц-ан} + Q_{\rm анон} + Q_{\rm анол} + Q_{\rm фенол} \tag{3.19}$$

$$Q_{\rm BX} = 61577,1 + 469628 + 7502370 + 1885,8 = 8035460,9 \ кДж/ч$$

Тепло отдельных компонентов на выходе из реактора:

$$Q_{\mathrm{B-J}}=29{,}53\cdot 107{,}250\cdot 250=827298{,}3\ \mathrm{кДж/ч}$$
 $Q_{\mathrm{ц-ан}}=241{,}22\cdot 1{,}709\cdot 250=84826{,}2\ \mathrm{кДж/ч}$ $Q_{\mathrm{анон}}=226\cdot 112{,}065\cdot 250=6683893{,}5\ \mathrm{кДж/ч}$ $Q_{\mathrm{анол}}=249\cdot 45{,}128\cdot 250=2344397{,}3\ \mathrm{кДж/ч}$

Количество теплоты, покидающее реактор вместе с потоком G2 по формуле:

$$Q_{\text{вых}} = Q_{\text{в-д}} + Q_{\text{ц-ан}} + Q_{\text{анон}} + Q_{\text{анол}}$$
 (3.20)
$$Q_{\text{вых}} = 827298,3 + 84826,2 + 6683893,5 + 2344397,3$$
$$= 9940415,3 \text{ кДж/ч}$$

Потери тепла процесса примем равными 3%. Общий расход теплоты из формулы (3.13):

$$Q_{\mathrm{pacx}} = \frac{9940415,3 + 6559794}{0,97} = 17010525 \, \mathrm{кДж/ч}$$

Количество потерь:

$$Q_{\Pi} = 0.03 \cdot 17010525 = 510315,7$$
 кДж/ч

Согласно основному закону теплового баланса должно выполняться условие:

Найдем количество теплоты, подводимое в зону реакции дымовыми газами по формуле (3.15):

$$Q_{\text{д.г.}}=17010525-8035460,9=8975064,1$$
 кДж/ч

Найдем количество теплоносителя (дымовых газов) по формуле (3.16):

$$G_{\text{д.г.}} = \frac{8975064,1}{1,16 \cdot (470 - 300)} = 45 512,5 \text{ кг/ч}$$

Таким образом за счет снижения температуры реакции количество теплоносителя сократилось в $\frac{118295,075}{45\,512,5}=2,6$ раза.

Тепловой баланс процесса представлен в табл. 3.9.

Таблица 3.9 – Тепловой баланс процесса

Приход	кДж/ч	%	Расход	кДж/ч	%
Тепло с	8035460,9	47,24	Тепло с	9940415,3	58,44
сырьем			продуктом		
Тепло от	8975064,1	52,76	Тепло	6559794	38,56
теплоносителя			реакции		
			Теплопотери	510315,7	3,00
Итого:	17010525	100	Итого:	17010525	100

ЗАКЛЮЧЕНИЕ

Основными выводами и результатами выпускной квалификационной работы является:

- 1. В работе рассмотрен процесс дегидрирования циклогексанола с целью получения сырья стадии оксимирования производства капролактама циклогексанона. В работе изучены физико-химические основы процесса дегидрирования, в т.ч. механизм и кинетика;
- 2. Приведен обзор катализаторов, используемых в процессе дегидрирования. Современные научные исследование направлены на выявление новых каталитических составах, позволяющих проводить процесс при низких температурах. Одними из таких составов являются медьсодержащий катализатор МАК-К и его модернизация, отличающаяся большим диаметром пор для предотвращения отложений кокса.
- 3. В качестве модернизации стадии дегидрирования циклогексанона производства капролактама предложена замена катализатора H5-15 фирмы BASF на низкотемпературный медьсодержаний катализатор с диаметром пор 16-24 нм. Данный катализатор в процессе дегидрирования обеспечивает высокие показатели конверсии и селективности, при этом длительность его работы более чем в 2 раза превышает время работы существующего промышленного катализатора. Основным достоинством предлагаемого состава является его высокая активность в условиях температуры 250°C.
- 4. Для подтверждения эффективности предлагаемого в работе решения были произведены технологические расчеты. К ним относятся материальный и тепловой балансы для существующего и проектируемого реакторного блока отделения дегидрирования циклогексанола.
- 5. В результате сравнения данных материальных балансов существующей и модернизированной установок сделан вывод о том, что

применение низкотемпературного катализатора позволяет увеличить количество циклогексанона в продукте дегидрирования на 4%.

- 6. Согласно данным тепловых балансов снижение температуры процесса дегидрирования с 380 до 250°С позволяет снизить количество теплоносителя, требуемого для поддержания оптимального температурного режима, в 2,6 раза.
- 7. Требуемая для активации катализатора температура сырьевого потока на входе в реактор, равная 200°С, позволяет исключить из технологической схемы перегреватель Т-608.

Модернизированная технологическа схема процесса отличается:

- сниженными энергозатратами на процесс за счет более низкой температуры его проведения;
- меньшей металлоемкостью, а, следовательно, меньшими затратами на ремонт и обслуживание оборудования, вследствие исключения из схемы теплообменного аппарата для перегрева сырья;
- увеличением срока службы катализатора, т.е. сниженными затратами на его закупку.

Таким образом, предлагаемое в работе решения является эффективным.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Бадриан А.С., Кокоулин Ф.Г., Овчинников В.И. и др. Производство капролактама. под ред. Овчинников В.И., Ручинский В.Р. М.: Химия, 1977. 262с.
- 2. Дружинина Ю.А., «Способы переработки капролактамсодержащих продуктов на основе исследований их химического состава», Автореферат канд. дисс., Самара, 2009.
- 3. Ernesto Simon, Fernando Prado, David Lorenzo. Kinetic model of 2-cyclohehenone formation from cyclohexanol and 2-cyclohexanol dehydrogena-tion // Chemical Engineering journal. 2012. 192. P. 129 137.
- 4. Romero A., Santos A., Yustos P. et al., «J. Ind. Eng. Chem.», 2005, 11, №1, 88-95.
- 5. Gyung Soo Jeon, Gon Seo, Jong Shik Chung. Effect of copper loading on prod-uct selectivities in the dehydrogenation of cyclohexanol over Cu/SiO2 Catalyst // Korean J. of Chem Eng., 1996. 13(6), P. 642-646.
- 6. Бадриан А. С. О побочных продуктах конденсации в процессе дегидрирования циклогексанола на медномагниевом катализаторе. // Нефтехимия.- 1973. Т.13, №5. -С.733-737.
- 7. Технологический регламент химического цеха №22 ПАО «КуйбышевАзот», 2016 г.
- 8. Медведева О.Н., Бадриан А.С., Киперман С.Л. Кинетика дегидрирования циклогексанола в циклогексанон в паровой фазе на медношлаковом ката-лизаторе. // Кинетика и катализ.- 1976. -Т. 17, №6.-С. 1530 1536.
- 9. Лебедева О.Е. Катализаторы и носители из нетрадиционного силикатного и железосодержащего сырья: дис. ... д-ра хим. наук: 02.00.15 / Лебедева Ольга Евгеньевна. Алматы, 2000. 220с.
- 10.Rovskii V.A., O.N. Medvedeva, R.I. Bel'skaya, N.I. Kol'tsov. The Kinetics of the dehydrogenation of cyclohexanol to cyclohexanon on a modified

- copper magnesium catalyst. Plenum Publishing Corporation. 1981. P. 366 368.
- 11.Gyung Soo Jeon, Gon Seo, Jong Shik Chung. Dehydrogenation of cyclohexanol to cyclohexanone over CuO/SiO2 catalysts: dispersion and catalytic activity // Korean J. of Chem. Eng., 1996. 13(4), P. 412-414.
- 12.Медведева О.Н., Гудков Б.С., Бадриан А.С., Киперман С.Л. / Механизм газофазного дегидрирования циклогексанола до циклогексанона на медь-магниевом катализаторе // Кинетика и катализ.-1976. -Т. 17, №6.
- 13. Авторское свидетельство СССР №632387. Б.В. Ерофеев, Е.А. Тыборисская, Р.И. Бельская. Катализатор для дегидрирования циклогексанола в циклогексанон.
- 14. Авторское свидетельство № 891145. Б.В. Ерофеев, Е.А. Тыборисская, Р.И. Бельская. Катализатор для дегидрирования циклогексанола в циклогексанон, 1981
- 15.Патент СССР №697177. Катализатор для дегидрирования циклогексанола в циклогексанон. П.И. Белькевич, К.А. Гайдук, В.Е, Тушинская и др. 1979.
- 16.№ 856539. П.И. Белькевич, К.А. Гайдук, Э.В. Трубилко и др. Катализатор для дегидрирования циклогексанола в циклогексанон. 1981
- 17.№ 936989 П.И. Белькевич, К.А. Гайдук, Э.В. Трубилко и др. Катализатор для дегидрирования циклогексанола в циклогексанон.
- 18.№ 716583 . Катализатор для дегидрирования циклогексанола в циклогексанон. Б.В. Ерофеев, И.П, Кутанов, Е.Н. Ермоленко и др. 1980
- 19.№ 563185. Н.В, Никифорова. Катализатор для дегидрирования циклогексанола. 1977
- 20.US 2552300. Catalytic conversion of cyclohexyl formate to cyclohexanone. John N Cosby, Lyle A Timm. 1951
- 21.Патент РФ 2101083. Юрьева Т.М.; Давыдова Л.П.; Итенберг И.Ш.; Макарова О.В.; Демешкина М.П. Способ приготовления катализатора для дегидрирования циклогексанола в циклогексанон.

- 22.№ 660701. Катализатор для дегидрирования циклогексанола в циклогексанон. В.С. Комаров, М.Д. Эфрос, Р.И. Бельская и др. 1979
- 23.Патент EP 0204046 A2. Process and catalyst for the conversion of cyclohexanol to cyclohexanone. Horn-Ming Chiu, Min-Hon Rei. 1986
- 24.Патент WO 1998010864 A1. Catalyst for preparing cyclohexanone by dehydrogenation of cyclohexanol and process for the preparation thereof. Jong-Sik Jeong, Kyung-Su Jeon, 1998
- 25.Gyung Soo Jeon t, Gon Seo, Jong Shik Chung. Dehydrogenation of cyclohexanol to cyclohexanone over Cu/SiO₂ catalysts: dispersion and catalytic activity. Korean J. of Chem. Eng., 13(4), 412-414 (1996)
- 26.Arturo Romero, Aurora Santos, Daniel Escrig. Comparative dehydrogenation of cyclohexanol to cyclohexanone with commercial copper catalysts: Catalytic activity and impurities formed. Applied Catalysis A-general. 2010
- 27.Патент US 20170096380 A1. Nanoparticle catalysts for conversion of cyclohexanol to cyclohexanone. Alan B. Levy, Scott R. Keenan, Robert Raja. 2017
- 28.Патент РФ 2353425 Комова З.В., Шашков А.Ю., Вейнбендер А.Я. Способ приготовления катализатора для дегидрирования циклогексанола в циклогексанон. 2008
- 29.№ 2574730. Способ приготовления катализатора для дегидрирования циклогексанола в циклогексанон. Ванчурин Виктор Илларионович (RU), Костюченко Вячеслав Валериянович (RU), Джумамухамедов Данияр Шарафиевич (RU). 2016
- 30.РФ 2181624. БРЕККЕР Франц Иозеф (DE), XECCE Михаэль (DE), МЭРКЛЬ Роберт (DE). Способ и катализатор дегидрирования циклических И способ вторичных спиртов получения данного катализатора.
- 31. РФ № 2447937. Катализатор для дегидрирования циклогексанола в циклогексанон и способ его приготовления. Открытое акционерное

- общество "Куйбышев Азот". Резниченко Ирина Дмитриевна, Садивский Сергей Ярославович (RU), Целютина Марина Ивановна.
- 32. РФ № 2525551. Способ дегидрирования циклогексанола в циклогексанон. Садивский Сергей Ярославович (RU), Ардамаков Сергей Витальевич (RU), Хусаенов Ильдар Фаезрахимович (RU), 2014
- 33. Джумамухамедов Д.Ш., Ванчурин В.И., Попова Н.А. Медьсодержащий катализатор на алюмокремнеземном носителе для дегидрирования циклогексанола. Успехи в химии и химической технологии. Т. XXVIII, №2. 2014.
- 34. Патент RU 2612216. Способ приготовления медьсодержащего катализатора для дегидрирования циклогексанола в циклогексанон. Караченко Ольга Ивановна (ВУ), Дульнев Алексей Викторович (RU), Садовников Андрей Александрович (RU), 2016
- 35. Основные процессы и аппараты химической технологии. Пособие по проектированию. Под ред. Ю.И. Дытнерского М: Химия 1991. 496 с.
- 36. Павлов. К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л: Химия, 1987. 576 с.