МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕЛЕРАНИИ		
федеральное государственное бюджетное образовательное учреждение		
высшего образования		
«Тольяттинский государственный университет»		
Институт машиностроения		
(наименование института полностью)		
Кафедра «Энергетические машины и системы управления»		
(наименование кафедры)		
13.04.03 «Энергетическое машиностроение»		
(код и наименование направления подготовки)		
Энергетические установки транспортных систем		
(направленность (профиль)		

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

на тему Соверш

Совершенствование рабочего процесса газового двигателя

Студент(ка)	В.Н. Максименко (И.О. Фамилия)	(личная подпись)
Научный руководитель	В.В. Смоленский (И.О. Фамилия)	(личная подпись)
Руководитель магистерской программы	<u>д.т.н., профессор А.П. Шайкин</u> (ученая степень, звание, И.О. Фамилия) «	(личная подпись) июня 2019 г.
Допустить к защите		
Зав. кафедрой «ЭМСУ»	к.т.н., доцент Д.А. Павлов (ученая степень, звание, И.О. Фамилия)	(личная подпись)
	«	» июня 2019 г.

Тольятти 2019

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1 Общие сведения проектирования вихревых впускных каналов	
бензиновых двигателей	5
1.1 Генерация вихревого движения заряда	5
1.2 Интенсивность вихревого движения заряда и методы ее	
определения/измерения	9
ГЛАВА 2 Информационно-аналитический обзор аналогов впускных	
каналов с интенсификацией вихреобразования	18
ГЛАВА 3 Экспериментальная проверка полученных входе	
имитационного моделирования результатов	40
3.1 Экспериментальные модели	40
3.2 Стенд с L-коннектором	41
3.2.1 Продувка пластиковых моделей и ГБЦ без пористого тела	42
3.2.2 Продувка пластиковых моделей и ГБЦ с пористым телом	48
3.3 Стенд с двумя крыльчатками внутри цилиндра	55
3.4 Сравнение базового и модернизированного каналов	65
3.5 CFD моделирование продувки с крыльчатками внутри цилиндра	67
ГЛАВА 4 Расчётно-экспериментальная методика проектирования	
впускных газовых каналов ГБЦ с интенсификацией вихреобразования в	
цилиндре ДВС	73
ГЛАВА 5 Согласование конструктивных и технологических	
ограничений газовых каналов второй генерации	74
5.1 Впускной канал головки блока двигателя 21126	74
ЗАКЛЮЧЕНИЕ	79
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	80

ВВЕДЕНИЕ

Актуальность работы.

Поле скоростей в цилиндре двигателя – важнейший фактор, определяющий скорости процессов смесеобразования и сгорания, интенсивность теплообмена между рабочим телом и стенками камеры сгорания (КС). Чтобы процессы смесеобразования и сгорания протекали эффективно, необходимо создать вихревое движение с высокой степенью турбулентности. Принудительное завихрение заряда в КС – эффективное средство для ускорения этих процессов [1].

Целью работы является выявление совершенствование рабочего процесса газового двигателя за счет создания вихревого движения в камере сгорания.

Достижение поставленной цели обеспечивается решением следующих задач:

1. Обобщить сведения по проектированию вихревых впускных каналов.

2. Выявить возможности создания вихревого движения в камере сгорания.

Объект исследования: ДВС с искровым зажиганием.

Предмет исследования: вихревое движения заряда во впускных каналах и камере сгорания ДВС.

Методы исследования. Метод экспериментального исследования, метод статистической обработки результатов эксперимента и метод моделирования вихревого движения заряда во впускных каналах и камере сгорания ДВС

Достоверность полученных результатов исследования обусловлена большим объемом экспериментов, сопоставлением результатов моделирования и результатов экспериментального исследования, применением методов статистической обработки данных.

Научная новизна исследования

Обобщены сведения по проектированию вихревых впускных каналов.

Практическая значимость работы:

Выявлены возможности создания вихревого движения в камере сгорания.

На защиту выносятся:

- 1. обобщенные сведения по проектированию вихревых впускных каналов;
- 2. выявленные возможности создания вихревого движения в камере сгорания.

Апробация работы. Основные положения диссертации докладывались на научных и обсуждались на семинарах кафедры «Энергетические машины и системы управления» и на конференции.

Публикации. По теме диссертации опубликовано 3 печатных работы и 2 патента на изобретение.

Структура и объем диссертации.

Диссертации состоит из введения, четырех глав, основных результатов и выводов, списка использованных источников из 42 наименования. Работа изложена на 84 страницах машинописного текста, иллюстрированного 21 таблицами и 136 рисунками. ГЛАВА 1 Общие сведения проектирования вихревых впускных каналов бензиновых двигателей

1.1 Генерация вихревого движения заряда

Генерация вихревого движения в цилиндре двигателя во время впуска осуществляется тремя способами. Первый заключается в обеспечении с помощью впускного канала подвода струи свежего заряда по касательной к стенке цилиндра двигателя (рисунок 1.1).

Рисунок 1.2 – Схема образования вихревого движения заряда в цилиндре при наличии спирального канала с боковым (а) и вертикальным (б) подводом

вихревого движения заряда в цилиндре при наличии тангенциального канала

Рисунок 1.1 – Схема образования

Второй распространенный способ закрутки заряда основан на генерации вихревого движения во впускном канале до входа заряда в

цилиндр. Впускной канал в этом случае имеет форму спирали, расположенной вокруг стержня впускного клапана (рисунок 1.2).

Спиральный канал, иногда его называют винтовым каналом, в зависимости от конструкции головки цилиндра и компоновки двигателя обычно имеет либо боковой, либо вертикальный (с падающим потоком) подвод заряда (рисунок 1.2, а, б).

Третий способ закрутки заряда использовался еще в ранний период развития быстроходных дизелей и предусматривал создание направленного воздушного потока путем затенения части проходного сечения с помощью специальной сегментной вставки, называемой ширмой, или экраном. При этом вставка может быть запрессована в головку под седло впускного клапана или расположена на самом клапане, как это показано на рисунке 1.3. В настоящее время впускные клапаны с ширмой в серийных двигателях практически не используют, так как кроме увеличения массы и стоимости клапанов повышается гидравлическое сопротивление И снижается коэффициент наполнения примерно на 5...10 %, особенно на высоких частотах вращения коленчатого вала [2, 3]. Кроме того, возникает проблема фиксации впускного клапана от проворачивания.

Рисунок 1.3 – Схема образования вихревого движения заряда при наличии впускного клапана с ширмой (α – угол заширмления)

Гидравлическое сопротивление двухфункционального канала (тангенциального или спирального) обычно выше, чем однофункционального. Потери в двухфункциональных каналах связаны с закруткой заряда, и они неблагоприятно влияют на коэффициент наполнения двигателя. Воздушный поток после истечения через клапанную щель и взаимодействия со стенками цилиндра по мере перемещения поршня к НМТ принимает спиральную форму и опускается вниз (рисунок 1.4).

Рисунок 1.4 – Схема образования вихревого движения заряда в цилиндре двигателя в процессе впуска

Рисунок 1.5 – Эпюры тангенциальной *c_u* и аксиальной *c_a* компонент вектора скорости воздушного заряда в процессе впуска

Интенсивность вихревого движения заряда внутри цилиндра В основном определяется конструкцией впускного канала, а ось вращения заряда не обязательно совпадает с осью цилиндра. Кроме того, на интенсивность вихревого движения значительное влияние оказывают расположение впускных каналов относительно стенки цилиндра,

минимальное расстояние от кромки тарелки клапана до стенки цилиндра, перепад давления между надклапанным и внутрицилиндровым объемами.

Типичные эпюры тангенциальной c_u и аксиальной c_a компонент вектора скорости (далее тангенциальная и аксиальная скорости) движения заряда в цилиндре двигателя при впуске приведены на рисунке 1.5. В цилиндре работающего двигателя закрутка потока неравномерная, так как скорость его истечения из клапанной щели для каждого угла поворота коленчатого вала зависит от эффективного проходного сечения и от скорости движения поршня. Согласно экспериментальным данным скорость максимальна в первой половине процесса впуска [3], а в конце процесса впуска она уменьшается. Распределение скорости закрученного потока характеризуется нарастанием тангенциальной скорости по радиусу цилиндра (рисунок 1.5), исключение составляет пристеночная область, где трение приводит к уменьшению скорости на поверхности до нулевого значения. Как следует из рисунка, на определенном расстоянии h от поверхности головки цилиндра эпюра тангенциальной скорости напоминает эпюру скорости вращения твердого тела. Поэтому часто в инженерных расчетах полагают, что вихревое движение в цилиндре двигателя происходит в соответствии с законом вращения твердого тела, т. е. имеет место так называемое квазитвердое течение. В центральной части цилиндра двигателя (рисунок 1.4) и 1.5) возникает направленный вверх воздушный поток, тогда как основной поток перемещается вниз. Существование такого противотока в литературе обычно объясняется отражением основного потока от стенок КС. Специально проведенные исследования [4] показали, что при вращении воздушного заряда над неподвижной плоскостью в пограничных слоях возникает направленное внутрь радиальное течение, так называемое вторичное течение, которое со своей стороны в силу условия неразрывности вызывает условиях восходящее В осевом направлении вторичное течение. В турбулентного течения в цилиндре необходимо учитывать перенос импульса

турбулентными пульсациями, что «смазывает» эффект вторичного течения, однако его влиянием не следует пренебрегать.

1.2 Интенсивность вихревого движения заряда и методы ее определения/измерения

Способность впускных каналов к генерации вихревого движения заряда, а также их гидравлическое сопротивление обычно оценивают с помощью методов математического и физического моделирования [5]. Простейший и наиболее распространенный из них — метод статической и изотермической (на холодных физических моделях) продувки.

Рисунок 1.6 – Схема измерения интенсивности горизонтального вихря с помощью различных конструкций крыльчатого анемометра

На рисунке 1.6 приведена типичная схема измерения интенсивности горизонтального воздушного вихря с помощью крыльчатого анемометра.

В последнее время появился новый вид закрутки воздушного заряда, при котором его вращение в цилиндре двигателя происходит в вертикальной плоскости, параллельной оси цилиндра, т. е. ось вращения заряда перпендикулярна оси цилиндра. Такой вихрь будем условно называть

вертикальным вихрем. В зарубежной научно-технической литературе вертикальный вихрь называют tumble [7]. Генерации вертикального вихря кроме впускного канала способствует форма КС, чаще всего это выемка на поршне.

При генерации вертикального вихря в цилиндре бензиновых двигателей с непосредственным впрыскиванием топлива преследуют цель расслоения заряда с образованием в области свечи зажигания локальной зоны с обогащенной или нормальной смесью, которая способна воспламеняться. Таким образом, обеспечивается работа бензинового двигателя при α_в >> 1.

Интенсивность вертикального вихря можно оценить методами статической и изотермической продувки воздуха с применением крыльчатых анемометров (рисунок 1.7).

На практике, конечно, не бывает вертикальной закрутки без горизонтального вихря и наоборот, поэтому горизонтальный и вертикальный вихри можно рассматривать только как предельные случаи закрутки воздушного заряда. Движение воздушного заряда в цилиндре трехмерное, и при турбулентном течении вихри могут возникать в любом направлении (рисунок 1.4). Однако здесь речь идет о крупномасштабных вихрях, как вертикальных, так и горизонтальных, которые генерируются благодаря специально сконструированным впускным каналам или конструкции КС.

Рисунок 1.7 – Схемы измерения интенсивности вертикального воздушного

вихря с помощью вращающейся сферы (а) и крыльчатого анемометра (б)

С помощью крыльчатого анемометра с карданным валом (рисунок 1.8) измеряют интенсивность вихревого движения воздушного заряда в произвольной плоскости цилиндра путем изменения угла α и перемещения анемометра вдоль направления х.

Рисунок 1.8 – Схема измерения горизонтального и вертикального вихрей с помощью крыльчатого анемометра: α – угол перемещения крыльчатого анемометра; х – регулируемые параметры

Использование крыльчатых анемометров связано с некоторыми проблемами. На крутящий момент (и на вращение крыльчатого анемометра) оказывает влияние распределение тангенциальных и аксиальных скоростей движения воздушного заряда, крыльчатый анемометр не реагирует на действие всего воздушного заряда, распределенного по сечению, что может привести к погрешности при определении интегральной интенсивности вихревого движения воздушного заряда в цилиндре.

Рисунок 1.9 – Схема движения Рисунок 1.10 – выпрямитель Типпельмана на вихревого воздушного заряда стенде AVL через выпрямитель Типпельмана

Указанных выше недостатков можно избежать, используя ДЛЯ измерения интегральной интенсивности вихревого движения метод, основанный на применении выпрямителя. На рисунке 1.9 приведена схема расположения выпрямителя Типпельмана в цилиндре двигателя, состоящего из легкой керамической матрицы сотовой формы, после прохождения которой, вектор скорости вихревого движения имеет только аксиальную компоненту. Вследствие этого, действующий на выпрямитель крутящий момент соответствует крутящему моменту вихревого движения перед ним. В данном случае в отличие от крыльчатого анемометра распределение аксиальных и тангенциальных скоростей мало влияет на результат измерения интенсивности вихревого движения воздушного заряда. На рисунке 1.10 показан выпрямитель Типпельмана, применяемый при продувках на стенде AVL.

Рисунок 1.11 – Схема сферического выпрямителя

В сферическом выпрямителе (рисунок 1.11) тонкие отверстия в спрямляющей решетке в виде полой сферы расположены так, что их оси пересекаются в одной точке [9]. Через эту точку проходят оси, относительно которых в зависимости от движения вихревого заряда поворачивается сферический выпрямитель и измеряется крутящий момент. Масляная ванна, в которую погружена нижняя часть сферического выпрямителя, представляет собой карман кольцевой формы, при ЭТОМ масло как уплотнитель предохраняет от утечек и гасит ударное действие воздушного вихря на Сферический выпрямитель позволяет измерить выпрямитель. момент движения относительно трех пространственных осей, количества не реагирует на возникновение статического перепада давления, не связанного с

движением заряда, следовательно, и другие силы, действующие на него, не влияют на измеренный момент количества движения.

Измерения, проведенные на стационарной установке [10], показали, что значения интегральной интенсивности движения вихревого воздушного потока одноцилиндрового экспериментального дизеля фирмы AVL (S/D=140/125 мм/мм), полученные с помощью крыльчатого анемометра и выпрямителя (рисунок 1.9), различаются (рисунок 1.12 и 1.13). В целом характер изменения интенсивности вихревого движения в обоих случаях одинаков, однако в выпрямителе по сравнению с крыльчатым анемометром получаются более высокие значения.

Рисунок 1.12 – Изменение интенсивности вихревого движения воздушного заряда в зависимости от хода впускного клапана при наличии

с применением выпрямителя;
- - крыльчатого анемометра

тангенциально канала:

 D_c 4 3 2 1 0 2 4 6 8 10 h_{BII} , MM

Рисунок 1.13 – Изменение интенсивности вихревого движения воздушного заряда в зависимости от хода впускного клапана при наличии

спирального канала:

- с применением выпрямителя;

- - - крыльчатого анемометра

Метод статической продувки имеет некоторые ограничения. В частности, интегральная интенсивность вихревого движении, полученная методом статической продувки, не дает представления о реальных изменениях скорости движения воздушного заряда в пространстве КС с течением времени.

Следует сказать о роли интегральной интенсивности вихревого движения в оценке концентрации токсичных веществ в отработавших газах использование головок цилиндра двигателя двигателя. Например, С одинаковыми интегральными интенсивностями вихревого движения, определенного методом стационарной продувки, но С различными геометрическими конфигурациями каналов (тангенциальных и спиральных) разным значениям концентрации токсичных веществ, в приводит К частности, концентрации оксидов азота, в продуктах сгорания [10]. Кроме того, несмотря на идентичность интегральных интенсивностей вихревого движения, измеренные термоанемометром локальные нестационарные скорости в цилиндре двигателя сильно различаются в зависимости от формы впускного канала. Другими словами, при одинаковых значениях интегральной закрутки заряда концентрация оксидов азота определяется формой впускного канала, генерирующего закрутку. Известно также, что интенсивность вихревого движения в начале процесса сгорания в основном влияет на образование оксидов азота, а в процессе развитого сгорания, вплоть до его окончания, — на образование сажи. Таким образом, интенсивность вихревого движения распределяется по фазам процесса сгорания при различной конфигурации впускных каналов по-разному. Это также указывает на некоторые ограничения метода статической продувки, связанные с объяснением причин разной концентрации оксидов азота при одинаковой интегральной интенсивности вихревого движения. Отметим, что мощность и удельный расход топлива при этом практически не изменяются, что подтверждает достоверность и надежность метода статической продувки, используемого для улучшения эффективных показателей двигателя.

Несмотря на указанные ограничения, метод стационарной продувки эффективное средство для контроля качества изготовления впускных каналов, оптимизации их формы, обеспечивающей требуемые эффективные показатели двигателя. Кроме того, часто его используют для определения расходных характеристик органов газораспределения в цилиндре двигателя.

Этот метод также применяют для сравнения однотипных впускных каналов по их способности к снижению вредных выбросов. Однако окончательно оценить способность впускных каналов к снижению вредных выбросов можно только после дополнительных исследований нестационарных процессов в цилиндре двигателя.

Не исключено, что два одинаково оцененных с помощью метода статической продувки впускных и выпускных канала при установке на двигатель дадут различные результаты [2].

Метод нестационарной продувки предусматривает наличие моделирующей установки, которая отличается от стенда, используемого в методе статической продувки, тем, что имеет: 1) реальный приводной 2) механизм газораспределения; реальные впускные (выпускные) трубопроводы; 3) возможность имитации воздействия движущегося поршня на процессы газообмена; 4) возможность имитации воздействия соседних цилиндров (например, с помощью пульсаторов); 5) возможность имитации турбины, компрессора и т. д.

B [5] описана динамическая «холодная» модель двигателя, предназначенная для исследования процессов газообмена, где в качестве турбины двухступенчатый При имитатора используется дроссель. моделировании нестационарного течения в системе газообмена на такой установке требуется подбирать проходное сечение имитатора в зависимости от скоростного режима работы. На этой одноцилиндровой установке цилиндр, головка цилиндра и трубопроводы серийной конструкции, а поршень заменен золотником, позволяющим получить изменение давления в цилиндре, идентичное тому, которое имеется в двигателе.

Проведение исследований на динамических моделях по сравнению со статистическими моделями связано с большими материальными затратами. Для двигателей небольших размеров, в том числе и автомобильных, эти затраты сопоставимы с затратами на проведение экспериментов на натурных двигателях. В связи с этим динамические модели используют относительно

редко, преимущественно для исследования процессов в двигателях больших размеров. В то же время трудно назвать предприятие, занимающееся созданием, исследованием и доводкой поршневых двигателей, где не использовались бы стенды для статической продувки.

ГЛАВА 2 Информационно-аналитический обзор аналогов впускных каналов с интенсификацией вихреобразования

Был проведен поиск научно-технической литературы по данной теме, опубликованной за последние 10 лет. Найдено множество публикаций, что говорит о том, что тема очень актуальна. В публикациях прослеживается последовательность работ отдельных коллективов разработчиков, которые используют в исследованиях экспериментальные методы определения вихря tumble, а также методы CFD расчётов.

Внутрицилиндровые вихревые потоки tumble и swirl оказывают сильное влияние на эффективность сгорания в двигателе и формирование выбросов. В частности, вихревой поток tumble, использование которого является доминирующим В современных высокопроизводительных бензиновых двигателях, оказывает сильное влияние на топливную экономичность и вредные выбросы при частичных нагрузках. Поэтому важно понимать влияние вихря tumble на работу двигателя при частичных нагрузках и оптимизировать его для улучшения топливной экономичности и снижения токсичности. Вихревое движение заряда tumble применяется чаще всего в двигателях с непосредственным впрыском топлива.

В публикации [11] авторы исследовали CFD подходы оптимизации впускных каналов для интенсификации вихреобразования. Были рассмотрены два подхода: стационарный и нестационарный CFD метод расчёта, с целью сокращения сроков разработки и получения каналов с заданными характеристиками вихреобразования.

На первом этапе проводили CFD моделирование стационарной продувкой при полном открытии впускного клапана и открытии на половину, с целью определения наилучших вариантов впускных каналов для их дальнейшего исследования CFD методом нестационарной продувки.

Для проведения моделирования различных вариантов впускных каналов использовали связку следующего программного обеспечения:

САТІА V5, ICEM-CFD (для генерации сеток), FLUENT-UNS (CFD расчёты), ISIGHT. Начальные конструктивные параметры указывались при запуске скрипта САТІА, который запускал сессию САТІА и обновлял модель, далее эта модель отдавалась в ПО генерации сеток и результат передавался далее в ПО CFD расчётов на суперкомпьютер. Когда расчёт заканчивался, его результаты передавались в ПО ISIGHT. Этот процесс продолжался до завершения всех стадий запланированных ранее в «Планировании эксперимента» (см. рисунок 2.1).

Рисунок 2.1 – Подробности процесса интеграции ПО

Исходя из опыта разработки каналов, для параметризации впускного канала авторами были выбраны 7 независимых переменных параметра, как показано на рисунке 2.2, в том числе:

- 1) Угол между каналом и клапаном (port to valve angle);
- 2) Малый радиус поворота (short turn radius);
- 3) Высота прямого участка (chimney height);
- 4) Размер впускной горловины (throat size);
- 5) Положение перегородки (septum location);
- 6) Высота входного сечения канала (window height);

7) Соотношение длины верхнего участка входного сечения канала к длине нижнего участка (floor to roof ratio).

Рисунок 2.2 – Параметры (для параметризации) при проектировании каналов

Были выбраны различные сочетания параметров канала, основываясь на компоновочных и технологических ограничениях. Нормированные значения выбранных компоновочных параметров даны в таблице 2.1.

	Design Variable	Factors	Baseline
			Daseine
1	Throat size	1.0. 1.04, 1.06, 1.08	1
2	Port short turn	0.6, 0.8, 1, 1.2	1
3	Port septum location	0.88, 0.94.1. 1.2	1
4	Port to valve angle	1. 1.09, 1.2	1
5	Chimney height	0,0.5, 1	0
6	Port window height	1, 1.16, 1.3, 1.5	1
7	Floor to roof ratio	1:1. 1.2:1. 1.4:1	1

Таблица 2.1 – Компоновочные параметры

При использовании полнофакторного метода нужно было анализировать каждую комбинацию факторов, что приводило к 4⁷ (16384) их вариантов, исследовать такое количество практически невозможно. Поэтому в этой работе был использован метод ортогонального массива (доступный в ПО ISIGHT), который охватывает все пространство комбинаций, но с меньшим количеством экспериментов.

С помощью метода ортогонального массива была проанализирована 81 компоновка при стационарной постановке задачи при полном подъеме клапанов и подъеме наполовину. Кроме того, 12 компоновок были отбракованы по технологическим причинам, итого получили 69 вариантов компоновок каналов.

Отобранные варианты компоновок каналов исследовали более детально, повышалось разрешение сеток и с помощью FLUENT 6.2.16 проводилось более точное моделирование в стационарной постановке задачи. Вихревое отношение tumble и swirl рассчитывались по методике AVL. Далее были предприняты шаги для оптимизации компоновок в ПО ISIGHT: были созданы файлы данных со всеми входными параметрами компоновки и параметрами оптимизации, в том числе коэффициент расхода и вихревое отношение tumble; используя встроенные методы «Radial Basis Function» и «Response Surface Model» создали аппроксимационные модели (поверхности отклика).

Отбор компоновок проводился на основе инструмента «анализ на основе компромисса», доступного в ПО ISight. Одна компоновка была выбрана с максимальным коэффициентом расхода (названа далее «канал с высоким наполнением»), другая выбрана с максимальным движением заряда (полученного экспериментально, названа далее «канал с хорошим вихрем tumble»). Оптимизированная компоновка выбрана в ПО ISight по поверхности отклика, как описано выше, что дало лучший компромисс между наполнением и вихрем. Коэффициент расхода (канал с высоким наполнением и вихрем. Коэффициент расхода (канал с высоким наполнением) и вихремости отклика, как описано выше, что дало лучший компромисс между наполнением и вихрем. Коэффициент расхода (канал с высоким наполнением) и вихревое отношение (канал с хорошим вихрем tumble) для всех выбранных компоновок показаны в таблице 2.2.

	Базовая	Оптимизированная	Канал с	Канал с
			высоким	хорошим
			наполнением	вихрем tumble
CFM	1	1,08	1,09	0,98
tumble ratio	1	1,27	1,16	1,82

Таблица 2.2 – Е	ыбранные компоновки
-----------------	---------------------

Затем, используя инструменты аппроксимации и основываясь на поверхности отклика в ПО ISight были подготовлены графики чувствительности для «базового канала» и «канала с высоким наполнением». Эти графики позволяют быстро оценить изменение коэффициента расхода и вихря tumble, при изменении в любом конкретном параметре компоновки. Изменения значений коэффициента расхода и вихря tumble для «базового

канала» и «канала с высоким наполнением» показаны на рисунках 2.3 и 2.4 соответственно.

Рисунок 2.3 – Изменения значений коэффициента расхода и вихря tumble для «базового канала»

Рисунок 2.4 – Изменения значений коэффициента расхода и вихря tumble для «канала с высоким наполнением»

Далее, чтобы понять поведение потока на работающем двигателе, был выполнен CFD анализ в нестационарной постановке задачи с движущейся сеткой с использованием ПО STAR-CD v 3.26.

Авторы сослались на результаты экспериментов и исследования корреляции между CFD моделированием и данными, полученными на испытательном стенде. В том исследовании были выбраны варианты каналов коэффициентом расхода. максимальным Анализ проводился С ДЛЯ удовлетворения жестких критериев сходимости, которая равна 1Е-05 для уравнения непрерывности. Варианты каналов были протестированы при подъёме клапана от минимума до максимума с шагом 1 мм для всего диапазона подъема клапана. Экспериментальные и расчётные данные были сравнены по расходу, было получено их близкое совпадение при подъёмах клапана от середины до максимума (см. рисунок 2.5). Расхождение при низких подъёмах клапана связаны с природой переходных процессов и неустойчивостью численного решения.

Рисунок 2.5 – Корреляции между CFD моделированием и данными, полученными на испытательном стенде

Рисунок 2.6 показывает изменение вихревого отношения выбранных для исследования компоновок.

Рисунок 2.6 – Изменение вихревого отношения на такте впуска и сжатия

Пики вихревого отношения во время такта впуска связаны с импульсами давления на входе. Желательны более высокие значения вихря во время такта впуска, поскольку это помогает улучшить смесеобразование.

Оптимизированная компоновка показывает высокие значения вихря, по сравнению со всеми другими (за исключением вихревой компоновки).

В результате исследования авторы сделали следующие выводы:

• Программное обеспечение CAD совместно с CFD является очень эффективным инструментом для проектирования впускных каналов с заданными характеристиками с учётом компоновочных и технологических ограничений;

• Варианты впускных каналов, полученные в результате планирования эксперимента и оптимизированные варианты необходимо изучить более подробно с уточнёнными сетками в стационарной постановке задачи, а также выполнить CFD анализ в нестационарной постановке задачи;

• График чувствительности параметров компоновки, полученный при стационарной постановке задачи, может быть использован как эффективный инструмент в своей работе инженерами;

 Рассчитанные значения коэффициента расхода и вихря tumble на впуске с использованием стационарной постановки задачи, дают слабое понимание в отношении процесса воспламенения. После закрытия клапана, форма поршня и камеры сгорания играют важную роль в сохранении вихревого движения tumble во время такта сжатия. Что подчёркивает важность анализа канала в нестационарной постановке задачи;

• Внутрицилиндровое CFD моделирование с подвижными сетками демонстрирует результаты, позволяющие проводить оптимизацию каналов на новом уровне. Анализ канала в нестационарной постановке задачи обеспечивает более полное понимание и представление движения потоков, позволяет прогнозировать рост кинетической энергии турбулентных пульсаций и вихря tumble на такте впуска и при воспламенении смеси, а также детализировать картину течения потока при максимальном открытии клапана;

• Использование грубой сетки при анализе в стационарной постановке задачи с последующим проведением анализа в нестационарной постановке задачи является жизнеспособным подходом для проведения оптимизации канала в приемлемое расчётное время;

• Описанный подход может быть использован для оптимизации каналов двигателя с впрыском, как в коллектор, так и с непосредственным впрыском;

• Полная оптимизация процесса сгорания требует полной параметризации конструкции, включая форму поршня и камеры сгорания.

В публикации [6] авторы исследовали способ оптимизации впускных каналов спортивного двигателя, основанный на стационарном CFD расчёте гибридных вариантов, экспериментальной проверке и выборе окончательного варианта с использованием нестационарного CFD расчёта.

На рисунке 2.7 показаны три основных типа движения заряда в камере сгорания. Движение вихря типа swirl в основном используется в дизельных двигателях, в то время как движение вихря типа tumble является предпочтительным в бензиновых двигателях с непосредственным впрыском. Потоки с применением вытеснителя используются более или менее интенсивно во всех видах двигателей внутреннего сгорания.

Рисунок 2.7 – Движение заряда

a) – вихрь типа swirl; б) – вихрь типа tumble; в) – поток из вытеснителя в ГБЦ

Основные формы каналов, использующиеся для создания этих различных потоков, показаны на рисунке 2.8.

Предыдущие исследования компоновок впускных каналов показали, что выбранные параметры: угол наклона канала, высота прямого участка и радиус канала имели наибольшее влияние на вихревое движение tumble.

На рисунке 2.9 отображены типичные геометрические параметры впускного канала.

Рисунок 2.9 – Типичные геометрические параметры впускного канала

Авторы исследовали, как влияет изменение входных параметров: угол наклона канала, высота прямого участка и радиус канала на коэффициент расхода и вихревое число.

Авторы выявили, что радиус канала, угол наклона канала и их сочетание имеют существенное влияние на коэффициент расхода. Высота

прямого участка канала, радиус канала и их сочетание имеют существенное влияние на безразмерное число вихря.

С помощью метода «Планирования эксперимента» и основываясь на опыте разработок впускных каналов, была создана первая концепция впускного канала с малым углом наклона и минимальным радиусом – гибридного канала. Далее, исходя из требований компоновки форсунки и конструктивных особенностей, были разработаны другие гибридные каналы.

Для каждой модели впускного канала было выполнено CFD моделирование стационарной продувкой при подъёмах клапана 1, 3, 5, 7, 9 мм, с целью понять отклик изучаемых переменных при различных положениях клапана. Коэффициент расхода и момент импульса вихря tumble использовались как критерии оценки (см. рисунки 2.10 и 2.11).

Далее провели сравнение свойств различных каналов по этим критериям при подъёме клапана 9 мм и выбрали гибридные каналы с наилучшими свойствами.

Рисунок 2.10 – Сравнение коэффициента расхода различных компоновок каналов в зависимости от подъёма клапана

Изготовили выбранные каналы и продули их на стенде стационарной продувки. Для оценки результатов CFD расчёта за основной параметр был принят коэффициент расхода. Сравнение результатов показало хорошую корреляцию между расчётным и экспериментальным коэффициентом расхода, в пределах 5 %.

Выбрали два наилучших варианта канала и провели их оценку с применением нестационарного CFD 3D моделирования. Провели сравнение числа tumble обоих впускных каналов в зависимости от угла поворота коленчатого вала для такта впуска и такта сжатия, а также сравнение массового расхода внутри цилиндра во время такта впуска при полном открытии дроссельной заслонки. Затем провели сравнение распределения скоростей двух выбранных вариантов каналов в вертикальном сечении, проходящем через впускной клапан.

В результате этот анализ привел к получению самого подходящего впускного канала для использования в предполагаемой концепции двигателя.

В публикации [8] авторы описали три различных метода измерения вихря tumble и исследовали влияние изменения вихря tumble на топливную экономичность и выбросы вредных веществ.

В этом исследовании вихрь tumble был измерен, сравнён и скоррелирован с использованием 3 различных методов измерения:

- стационарной продувкой на стенде;

- 2-мерным PIV (метод измерения скорости частиц по изображению);

- 3-мерным PTV (метод измерения скорости по траектории частиц - стенд водяной проливки).

На стенд стационарной продувки авторы установили Т-образный адаптер между ГБЦ и измерителем момента импульса. На рисунке 2.12 показана общая компоновка установки стационарной продувки.

Рисунок 2.12 – Схема испытательного стенда стационарной продувки для измерения вихря tumble:

1 – установка Superflow SF-600; 2 – измеритель ламинарного потока; 3 – импульсный измеритель момента; 4 – Т-образный адаптер; 5 – Исследуемая

Диаметр Т-образного адаптера такой же, как и диаметр цилиндра двигателя, вертикальный размер (а) равен 1 метру, чтобы избежать интерференции между ГБЦ и фланцем. Высота (б) минимизирована до 25 мм для максимального увеличения измеренного крутящего момента вихря (см. рисунок 2.13).

Рисунок 2.13 – Т-образный адаптер

Второй метод измерения вихря tumble, используемый авторами – это 2мерный PIV метод измерения скорости частиц по изображению. Суть метода: получают два последовательных изображения внутрицилиндрового потока при известной разнице времени и восстанавливают картину внутрицилиндрового потока с использованием статистических методов. Общий вид подобной системы приведен на рисунке 2.14.

Рисунок 2.14 – Общий вид системы измерения вихря tumble методом PIV

Третий метод измерения вихря tumble, используемый авторами – это 3мерный PTV метод измерения скорости по траектории частиц (стенд водяной проливки). Общий вид подобной системы приведен на рисунке 2.15.

Рисунок 2.15 – Общий вид системы измерения вихря tumble методом PTV (стенд водяной проливки)

Также был проведен динамометрический тест двигателя, чтобы выяснить влияние вихря tumble на производительность при частичных нагрузках.

Авторы выяснили, что вихревое отношение tumble, полученное на стенде стационарной продувки хорошо коррелировало с данными полученными на PIV установке и PTV установке (см. рисунки 2.16 и 2.17).

Рисунок 2.16 – Корреляция вихревого отношения между значениями, полученными на стенде стационарной продувки и стенде водяной проливки

Рисунок 2.17 – Корреляция вихревого отношения между значениями, полученными на стенде стационарной продувки и 2-мерным PIV методом
Результаты испытаний двигателя с повышением вихря tumble показали увеличение скоростей сгорания, что повышает термодинамический КПД, но при этом повышаются и локальные тепловые потери, поэтому удельный расход топлива практически не изменялся (см. рисунок 2.18).

При повышении вихревого отношения с 0,4 до 0,7 повышалась температура сгорания и происходило увеличение выбросов CH на 0 - 13 % и NO_x на 30 - 87 % (см. рисунок 2.19).

Рисунок 2.19 – Выбросы вредных веществ при работе на частичных нагрузках; ВНС – углеводороды, BNOx – оксиды азота

Граница обеднения базового двигателя была расширена с 18:1 до 21:1, получили устойчивое сгорание при бедных смесях (см. рисунок 2.20).

Рисунок 2.20 – Результаты эксперимента при работе на частичных нагрузках; MBT spark timing – угол опережения зажигания при максимальном крутящем моменте; Air Fuel Ratio – соотношение воздух-топливо

ГЛАВА 3 Экспериментальная проверка полученных входе имитационного моделирования результатов

3.1 Экспериментальные модели

Для проведения испытаний и получения экспериментальных данных были изготовлены модели, имитирующие ГБЦ с клапанами (рисунок 3.1 и 3.2):

- Модель 1 стандартная, по математической модели впускных каналов двигателя ВАЗ-21126;
- Модель 2 модифицированная, гибридный вариант впускного канала 1-й генерации (2011 год);
- Модель 3 технологическая 1, первый гибридный вариант впускного канала 2-й генерации, построенный с учетом технологических ограничений;
- Модель 4 технологическая 2, второй гибридный вариант впускного канала 2-й генерации, построенный с учетом технологических ограничений;

Также для сравнения в испытаниях использовали ГБЦ ВАЗ-21126 и ГБЦ ВАЗ-21176. Испытания проводились при максимальном открытии клапанов.

Рисунок 3.1 – Экспериментальная модель

Рисунок 3.2 - Экспериментальная модель

3.2 Стенд с L-коннектором

В начальных испытаниях использовалась установка с L-коннектором (см. Рисунки 3.3 - 3.4).

Рисунок 3.3 Схема установки с L-коннектором

Рисунок 3.4 – крыльчатый анемометр

3.2.1 Продувка пластиковых моделей и ГБЦ без пористого тела

На Рисунках 3.5 – 3.8 и в Таблице 3.1 представлены результаты продувки стандартных впускных каналов (Модель 1) на стенде с L-коннектором.

Рисунок 3.7 - Коэффициент вихря tumble C_t

клапана C_f

Рисунок 3.8 - Безразмерное число вихря tumble Nt

Таблица3.1 – Таблица результатов испытаний (Модель 1)

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	Δр, Па	C_{f}	Ct
0,0132142	806,9195	840	3,5472435	220,12007	0,4297675	0,3813493
0,0172613	1054,0576	1175	3,798529	356,74631	0,4409789	0,4190169
0,0205538	1255,1122	1480	4,0181034	516,1436	0,4365465	0,4387831
0,0240169	1466,5866	1776	4,1264556	690,72159	0,4409501	0,4551608
0,0260668	1591,7607	1960	4,1958527	827,34783	0,4372874	0,4589712
0,0289144	1765,6453	2200	4,2458157	971,56443	0,4476112	0,4754013
0,0313072	1911,7633	2450	4,3669065	1138,5521	0,4477039	0,4890611
0,0334906	2045,089	2608	4,3454755	1297,9494	0,4485559	0,487587
0,0354078	2162,1625	2803	4,4175015	1457,3466	0,4475485	0,4945556
0,0378302	2310,0894	3022	4,4576668	1631,9246	0,4518684	0,5038693
0,0403899	2466,3981	3240	4,4763471	1791,3219	0,4604787	0,5156222

На Рисунках 3.9 – 3.12 и в Таблице 3.2 представлены результаты продувки модифицированных впускных каналов (Модель 2) на стенде с L-коннектором.

вращения ne и nt

Рисунок 3.11 - Коэффициент вихря

tumble C_t

клапана C_{f}

Рисунок 3.12 - Безразмерное число

Таблица 3.2 – Таблица	результатов испытаний ((Модель 2)
		(1110,4012) =	,

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	Δр, Па	C_{f}	C_t
0,0137771	841,29503	464	1,879367	204,93937	0,464375	0,2183126
0,0188554	1151,3975	667	1,9739788	356,74631	0,4817023	0,237859
0,0220997	1349,5077	807	2,0376993	508,55326	0,4728685	0,2410343
0,025467	1555,1326	974	2,1341919	652,76985	0,4809729	0,2567748
0,0289144	1765,6453	1188	2,2927405	827,34783	0,4850568	0,2781928
0,0320211	1955,356	1359	2,3682936	979,15478	0,4937799	0,2925279
0,03463	2114,6681	1498	2,4138569	1138,5521	0,4952209	0,2990259
0,0366021	2235,095	1610	2,4545496	1305,5397	0,4888034	0,3001265
0,0408302	2493,2823	1960	2,6787153	1533,2501	0,5031508	0,3371499

На Рисунках 3.13 – 3.16 и в Таблице 3.3 представлены результаты продувки технологических впускных каналов (Модель 3) на стенде с L-коннектором.

вращения ne и nt

Рисунок 3.15 - Коэффициент вихря

tumble Ct

Таблица 3.3 –	Таблица	результатов	испытаний (Молепь	3)
1 иолици 5.5	таблица	pesymbiatob	nondrannin	подель	5)

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C_{f}	Ct
0,0130298	795,6594	372	1,5931537	197,34902	0,4475514	0,1783606
0,0183897	1122,9586	558	1,693216	349,15597	0,4748837	0,2011398
0,0220997	1349,5077	685	1,7296456	508,55326	0,4728685	0,2045954
0,025467	1555,1326	808	1,770459	660,3602	0,4782007	0,2117846
0,0285856	1745,5677	952	1,8584128	827,34783	0,4795411	0,2229289
0,0316624	1933,4549	1083	1,9086942	986,74512	0,4863678	0,2322199
0,0342466	2091,2549	1213	1,9764952	1146,1424	0,4881136	0,241332
0,0366021	2235,095	1310	1,9971801	1305,5397	0,4888034	0,2442023
0,0403899	2466,3981	1557	2,1511335	1518,0694	0,500208	0,2691635

На Рисунках 3.17 – 3.20 и в Таблице 3.4 представлены результаты продувки технологических впускных каналов (Модель 4) на стенде с L-коннектором.

Рисунок 3.17 – Соотношение частот

вращения ne и nt

0.8

0.7 0.6 0.5 C_t(h)_{0.4}

0.3

0.2

0.1

 0^{L}_{0}

клапана C_f

 $n_{e}(h)$

1000

2000

Рисунок 3.20 - Безразмерное число

вихря tumble N_t

Таблица 3.4 – Таблица результатов испытаний (Модель 4)

3000

			-	-		-
G, кг/с	n_{e} , мин ⁻¹	n _t ,мин ⁻¹	\mathbf{N}_{t}	∆р, Па	C_{f}	Ct
0,0134002	818,27827	365	1,5199657	197,34902	0,4602743	0,1750043
0,0188554	1151,3975	505	1,4945417	349,15597	0,4869101	0,1820351
0,0226345	1382,1706	605	1,4915426	516,1436	0,4807393	0,1793674
0,025467	1555,1326	703	1,540387	660,3602	0,4782007	0,1842631
0,0289144	1765,6453	820	1,5825313	827,34783	0,4850568	0,1920186
0,0316624	1933,4549	893	1,5738355	986,74512	0,4863678	0,1914796
0,03463	2114,6681	1015	1,6355573	1153,7328	0,4919521	0,2012736
0,0366021	2235,095	1085	1,654153	1297,9494	0,4902305	0,2028497
0,0408302	2493,2823	1240	1,6946974	1556,0212	0,4994556	0,2117324

На Рисунках 3.21 – 3.24 и в Таблице 3.5 представлены результаты продувки стандартных впускных каналов (ГБЦ ВАЗ-21126) на стенде с L-коннектором.

клапана C_f

Tuomingu 5.5 Tuomingu pesymbratob nembrannin (TDL DI 5 21120)

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C_{f}	Ct
0,0126658	773,4322	277	1,2203923	182,16833	0,4528132	0,1382346
0,0183897	1122,9586	369	1,1197074	341,56562	0,4801312	0,1344816
0,0220997	1349,5077	476	1,2019143	500,96291	0,4764374	0,1432444
0,0260668	1591,7607	571	1,2223632	690,72159	0,4785854	0,1463383
0,0282599	1725,6837	626	1,2361042	819,75749	0,4762684	0,1472669
0,0309554	1890,2796	733	1,321356	971,56443	0,4792074	0,1583951
0,0338668	2068,0624	757	1,2473093	1123,3714	0,487568	0,1521275
0,0362003	2210,5569	867	1,3364704	1290,359	0,4862724	0,1625688
0,0382472	2335,5517	933	1,3612381	1449,7563	0,4847024	0,165047
0,0403899	2466,3981	982	1,35672	1609,1536	0,4858449	0,1648869
0,0421747	2575,3831	1017	1,3456157	1723,0088	0,4902655	0,1650253

На Рисунках 3.25 - 3.28 и в Таблице 3.6 представлены результаты продувки стандартных впускных каналов (ГБЦ ВАЗ-21176) на стенде с Lконнектором.

1.5

1.24

 $0.98 n_t(h)$

2100 n_t(h) $0.72 \ n_e(h)$ **↓ ↓** 1400 700 0.46 0∟ 0 ____0.2 3000 1000 2000 $n_{e}(h)$

3500

2800

0.8

0.7

0.6 0.5

0.3

0.2

 $C_{t}(h)_{0.4}$

Рисунок 3.25 - Соотношение частот

tumble Ct

клапана Cf

Рисунок 3.28 - Безразмерное число

вихря tumble N_t

Таблица 3.6 – Таблица результатов испытаний (ГБЦ ВАЗ-21176)

G, кг/с	n _e , мин ⁻¹	n_t , мин ⁻¹	N _t	∆р, Па	C _f	Ct
0,0179323	1095,0276	790	2,4583514	273,2525	0,5234512	0,3218981
0,0213159	1301,6497	1030	2,6964043	394,69805	0,5177199	0,3492032
0,025467	1555,1326	1340	2,9361573	561,68569	0,5185062	0,3808304
0,0292464	1785,9185	1640	3,1291339	736,26367	0,5200896	0,4070995
0,0323832	1977,4684	1880	3,2395914	895,66096	0,5221207	0,423116
0,0358022	2186,2465	2100	3,2731213	1077,8293	0,5262079	0,4308417
0,0395212	2413,348	2340	3,3039833	1320,7204	0,5247443	0,4336944
0,0435551	2659,6769	2630	3,3695259	1578,7922	0,5289317	0,4458273

47

Сравнительные графики полученных данных представлены на рисунке (3.29)

Рисунок 3.29 – Сравнительные графики полученных данных

3.2.2 Продувка пластиковых моделей и ГБЦ с пористым телом

На Рисунках 3.30 – 3.33 и в Таблице 3.7 представлены результаты продувки стандартных впускных каналов (Модель 1) на стенде с L-коннектором.

клапана C_{f}

tumble C_t

Рисунок 3.33 - Безразмерное число

вихря tumble N_t

Таблица 3.7 – Таблица результатов испытаний (Модель 1)

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	Δр, Па	C_{f}	Ct
0,012847	784,49722	860	3,735502	204,93937	0,433024	0,404631
0,0166081	1014,1662	1200	4,0319399	356,74631	0,4242898	0,4279322
0,0200574	1224,7973	1500	4,1731979	516,1436	0,4260025	0,4447126
0,0226345	1382,1706	1750	4,3143795	667,95054	0,4225934	0,4560782
0,025467	1555,1326	2030	4,4480592	834,93818	0,4252786	0,4731974
0,0279375	1705,9914	2245	4,4841634	994,33547	0,4275074	0,4795383
0,0302618	1847,9289	2462	4,5398836	1153,7328	0,4298985	0,4882125
0,0327488	1999,7936	2700	4,6006641	1320,7204	0,4348234	0,5004167
0,035017	2138,3035	2915	4,6452719	1472,5273	0,4403225	0,5116586
0,0378302	2310,0894	3215	4,7423556	1707,8281	0,4417128	0,5240013

На Рисунках 3.34 – 3.37 и в Таблице 3.8 представлены результаты продувки модифицированных впускных каналов (Модель 2) на стенде с L-коннектором.

вращения ne и nt

клапана Cf

Таолица 4.6 – Таолица результатов испытании (подель 2)	Таблица 4.8 –	Таблица	результатов	испытаний	(Модель 2)
--	---------------	---------	-------------	-----------	------------

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C _f	Ct
0,0132142	806,9195	525	2,2170272	197,34902	0,4538851	0,2517186
0,0177066	1081,2488	727	2,2911351	349,15597	0,4572452	0,2620584
0,0213159	1301,6497	886	2,3194313	500,96291	0,4595413	0,2666272
0,0240169	1466,5866	1610	3,7407621	683,13124	0,443393	0,4149036
0,0260668	1591,7607	1920	4,110223	834,93818	0,4352952	0,4475561
0,0289144	1765,6453	2110	4,0721232	1009,5162	0,4391168	0,4473004
0,0313072	1911,7633	2330	4,1530172	1168,9135	0,4418513	0,459027
0,0338668	2068,0624	2530	4,1686825	1320,7204	0,4496674	0,468909
0,0374171	2284,86	2800	4,1758064	1593,9729	0,4522227	0,4723795

На Рисунках 3.38 – 3.41 и в Таблице 3.9 представлены результаты продувки технологических впускных каналов (Модель 3) на стенде с L-коннектором.

вращения ne и nt

клапана C_f

Tuomingu 5.7 Tuomingu pesymbratob nembrannin (modemb 57	Таблица 3.9 – Та	аблица результатов	испытаний (Модель 3)
---	------------------	--------------------	-------------	----------	---

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C_{f}	Ct
0,0132142	806,9195	408	1,7229469	197,34902	0,4538851	0,1956213
0,017483	1067,5926	545	1,7395338	349,15597	0,4514702	0,1964537
0,0213159	1301,6497	662	1,7330288	500,96291	0,4595413	0,199218
0,0245886	1501,4961	773	1,7542731	667,95054	0,4590767	0,2014563
0,0273018	1667,1749	856	1,7495829	827,34783	0,4580051	0,2004487
0,0306069	1869,0021	980	1,7867271	986,74512	0,4701544	0,2101343
0,0334906	2045,089	1080	1,7995067	1146,1424	0,4773382	0,2148711
0,0354078	2162,1625	1216	1,9164045	1297,9494	0,474234	0,2273412
0,0378302	2310,0894	1372	2,0237984	1464,937	0,4769277	0,2414449

На Рисунках 3.42 – 3.45 и в Таблице 3.10 представлены результаты продувки технологических впускных каналов (Модель 4) на стенде с L-коннектором.

клапана C_f

Таблица 3.10 – Таблица результатов исп	ытаний (Модель 4)
--	-------------------

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C_{f}	Ct
0,0132142	806,9195	403	1,7018323	197,34902	0,4538851	0,193224
0,0179323	1095,0276	470	1,4625635	349,15597	0,463072	0,1694188
0,0215747	1317,4533	517	1,3372027	508,55326	0,4616366	0,1544172
0,0248786	1519,2034	615	1,3794346	683,13124	0,4593007	0,158488
0,0279375	1705,9914	695	1,3881931	827,34783	0,4686688	0,1627474
0,0309554	1890,2796	770	1,3880548	986,74512	0,4755069	0,1651056
0,0334906	2045,089	855	1,4246095	1138,5521	0,4789266	0,1706723
0,0362003	2210,5569	934	1,4397501	1305,5397	0,483437	0,1741106
0,0382472	2335,5517	990	1,4444005	1442,1659	0,4859763	0,1755905

На Рисунках 3.46 – 3.49 и в Таблице 3.11 представлены результаты продувки стандартных впускных каналов (ГБЦ ВАЗ-21126) на стенде с L-коннектором.

клапана C_f

Таблица 3.11 –	Таблица результатов	испытаний (ГБЦ	(BA3-21126)

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C_{f}	Ct
0,0130298	795,6594	294	1,2591053	189,75868	0,4564147	0,143754
0,0181599	1108,9304	375	1,1523089	349,15597	0,4689513	0,1351746
0,0215747	1317,4533	460	1,1897741	500,96291	0,4651207	0,1384294
0,0248786	1519,2034	600	1,3457899	652,76985	0,4698607	0,1581775
0,0282599	1725,6837	728	1,4375141	819,75749	0,4762684	0,1712624
0,0309554	1890,2796	807	1,4547535	971,56443	0,4792074	0,1743858
0,0334906	2045,089	878	1,4629323	1123,3714	0,4821518	0,1764438
0,0358022	2186,2465	928	1,4464079	1282,7687	0,4823454	0,1745208
0,0378302	2310,0894	963	1,4204941	1442,1659	0,4806782	0,1708017
0,0403899	2466,3981	1030	1,4230363	1609,1536	0,4858449	0,1729466

На Рисунках 3.50 – 3.53 и в Таблице 3.12 представлены результаты продувки стандартных впускных каналов (ГБЦ ВАЗ-21176) на стенде с L-коннектором.

расхода клапана C_f

Таблица 4.12 – Таблица результатов испытаний (ГБЦ ВАЗ-21176)

	1 7		· · ·		,	
G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	Δр, Па	C _f	Ct
0,0157635	962,59471	805	2,8496685	212,52972	0,5217553	0,3719285
0,0213159	1301,6497	1200	3,1414419	394,69805	0,5177199	0,4068386
0,0248786	1519,2034	1440	3,2298958	538,91464	0,5171174	0,4178072
0,0282599	1725,6837	1660	3,2778481	683,13124	0,5217258	0,4277888
0,0316624	1933,4549	1892	3,3344869	850,11888	0,5239954	0,4370738
0,0338668	2068,0624	2094	3,450285	986,74512	0,5202288	0,4490013
0,0370077	2259,8623	2310	3,483148	1138,5521	0,5292231	0,4611147
0,0421747	2575,3831	2730	3,6121247	1487,708	0,5276139	0,4767352

Сравнительные графики полученных данных по результатам продувки пластиковых моделей и ГБЦ с пористым телом приведены на рисунке 3.54.

Рисунок 3.54 – Сравнительные графики полученных данных

3.3 Стенд с двумя крыльчатками внутри цилиндра

Последующие продувки моделей проводились на установке с оборудованием для замеров вихря tumble внутри цилиндра, представленной на Рисунках 3.59 – 3.61.

Использовался набор оборудования, составляющий единый измерительный комплекс на базе крейта LTR11с установленным в нем универсальным модулем АЦП с последовательным опросом каналов и датчиков, подключенных к каналам АЦП.

Для расширения диапазона чувствительности крыльчаток установка была усовершенствована – внутрь крыльчаток был помещен неподвижно закрепленный шар-вытеснитель. В результате по мере закрытия клапана вихрь продолжал направляться на крыльчатки и не мог перемещаться в центр цилиндра, что ранее приводило к остановке вращения крыльчаток при подъёмах клапана h_{кл}=5 мм и менее.

Рисунок 3.59 – крыльчатки и шар, установленные внутри цилиндра

Рисунок 3.60 – испытательный стенд с двумя крыльчатками внутри цилиндра

Рисунок 3.61 – измерительный комплекс на базе крейта LTR-U-1-4

На Рисунках 3.62 – 3.65 и в Таблице 3.14 представлены результаты продувки стандартных впускных каналов (ГБЦ ВАЗ-21126-шар) на стенде с двумя крыльчатками внутри цилиндра и с шаром внутри крыльчаток.

вращения ne и nt

клапана C_{f}

Рисунок 3.64 –	Коэффициент	вихря

tumble Ct

Рисунок 3.65 – Безразмерное число

G, кг/с	n _e , мин ⁻¹	n_t , мин ⁻¹	\mathbf{N}_{t}	∆р, Па	C_{f}	Ct
0.0028878	180.36955	0	0	6.6311111	0.5472644	0
0.0042534	265.66293	0	0	12.413333	0.5891277	0
0.0055935	349.3622	0	0	18.304444	0.6379929	0
0.0068662	428.85148	252.3393	2.0050256	30.197778	0.6097173	0.3058065
0.0085113	531.60218	416.652	2.6707218	43.615556	0.6288758	0.4201378
0.0104045	649.84782	622.533	3.2643194	63.055556	0.639343	0.5220653
0.0127169	794.27994	1433.04	6.1478979	91.888889	0.6472975	0.9954716
0.0153498	958.72702	1952.694	6.9403465	135.34667	0.6437241	1.1175814
0.018189	1136.0587	2458.935	7.3754446	188.99333	0.6454535	1.1908347
0.0205806	1285.4373	2926.83	7.7586925	242.46889	0.6447173	1.2512847
0.0236853	1479.3502	3492	8.0435021	320.22667	0.6455487	1.2988904
0.027985	1747.9023	4307.46	8.397423	441.36444	0.6495495	1.3644468
0.0317214	1981.2706	4960.08	8.530742	558.96667	0.6541153	1.395852
0.0361579	2258.3698	5749.59	8.6752848	715.30222	0.6589212	1.4299324
0.0411403	2569.5628	6548.94	8.6846778	906.99111	0.6655693	1.4459233
0.045128	2818.6275	7345.62	8.8804035	1080.68	0.6686375	1.4853257

На Рисунках 3.66 – 3.69 и в Таблице 3.15 представлены результаты продувки стандартных впускных каналов (ГБЦ ВАЗ-21126) на стенде с двумя крыльчатками внутри цилиндра без шара.

вращения ne и nt

клапана Cf

Рисунок 3.69 - Безразмерное число

Таблица 3 15 – Таблица результатов испытаний (ТБП	BA3-21126)
raominga 5.15 raominga pesymbratob nembrannin (трц	$D_{11} D_{11} $,

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C_{f}	Ct
0,0055415	346,112	620,928	6,1131706	36,951111	0,4448431	0,6802548
0,0065527	409,26958	926,829	7,7167083	47,933333	0,4618343	0,8914901
0,0088987	555,80214	1564,746	9,5932457	80,488889	0,4839749	1,161413
0,0108562	678,05953	2065,629	10,380695	116,06667	0,4916515	1,2766802
0,0126589	790,65899	2518,563	10,854393	154,61333	0,4966833	1,3486006
0,0153439	958,35788	3353,13	11,922425	225,22889	0,4987413	1,4874358
0,0182215	1138,0907	4361,04	13,057353	315,61778	0,5002493	1,6339542
0,0205511	1283,5901	5059,05	13,430264	399,95111	0,5011278	1,6835706
0,0243844	1523,0162	6542,88	14,63883	568,97556	0,4983718	1,82498
0,0275486	1720,6434	7621,17	15,092901	724,86	0,4987003	1,8828279
0,0314439	1963,9413	8860,35	15,373201	934,91111	0,5010227	1,926726
0,0341501	2132,9684	9652,23	15,420028	1092,1044	0,5033211	1,9414604
0,0350497	2189,155	9955,98	15,497064	1154,7578	0,5023142	1,9472565

На Рисунках 3.70 – 3.73 и в Таблице 3.16 представлены результаты продувки стандартных впускных каналов (ГБЦ ВАЗ-21176) на стенде с двумя крыльчатками внутри цилиндра без шара.

клапана Cf

Рисунок 3.73 - Безразмерное число

Таблица 3 16 – Таблица результатов испытаний (ТБП	BA3-21176)
raominga 5.10 raominga pesymbratob nembirannin (трц	$D_{11} D_{11} $,

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C_{f}	Ct
0,0063219	351,19006	1041,876	8,99122	23,34	0,558825	1,4362173
0,0083925	466,21538	1680,363	10,923487	41,333333	0,557451	1,7405787
0,0105075	583,70802	2212,167	11,485953	62,675556	0,5667617	1,8607724
0,0128801	715,50968	2925,852	12,393148	98,817778	0,5532536	1,9598894
0,015426	856,93332	3716,1	13,142717	142,77556	0,5512044	2,0707303
0,0180518	1002,8005	4531,17	13,694324	198,16444	0,5474593	2,14298
0,0202921	1127,2514	5239,62	14,087171	250,39778	0,5474137	2,2042718
0,0248195	1378,7582	6637,98	14,591255	376,22889	0,5461043	2,2776863
0,0273588	1519,8202	7342,47	14,64181	459	0,5449239	2,2806378
0,0306076	1700,296	8375,85	14,929633	571,93778	0,5460261	2,3301731
0,032958	1830,863	9012,63	14,919027	660,13556	0,5471856	2,3334626
0,0354698	1970,3977	9690,99	14,905929	762,25778	0,5479233	2,334557
0,0397473	2208,017	10654,56	14,624395	938,11556	0,5532935	2,3129121

На Рисунках 3.74 – 3.77 и в Таблице 3.17 представлены результаты продувки стандартных впускных каналов (Модель 1) на стенде с двумя крыльчатками внутри цилиндра без шара.

вращения ne и nt

Рисунок 3.76 - Коэффициент вихря tumble C_t

расхода клапана C_{f}

Рисунок 3.77 - Безразмерное число вихря tumble N_t

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	N _t	∆р, Па	C_{f}	Ct
0,0151535	946,46855	3300,78	11,883718	193,60444	0,531291	1,5793669
0,019682	1229,3111	4806,33	13,322744	326,95111	0,530887	1,7692697
0,0269845	1685,4132	7072,74	14,299578	602,64222	0,535854	1,9167611
0,0283586	1771,2372	7494,24	14,417594	666,54222	0,5354065	1,9309663
0,0283869	1773,004	7474,98	14,366211	667,77556	0,5354442	1,9242201
0,032385	2022,7211	8556,27	14,414196	861,49556	0,5376258	1,9385133
0,0328109	2049,323	8755,47	14,558311	892,63778	0,5350808	1,9486267
0,0349541	2183,1821	9325,23	14,554977	1005,84	0,5368894	1,9547654

Таблица 3.17 – Таблица результатов испытаний (Модель 1)

На Рисунках 3.78 – 3.81 и в Таблице 3.18 представлены результаты продувки модифицированных впускных каналов (Модель 2) на стенде с двумя крыльчатками внутри цилиндра без шара.

вращения n_e и n_t

клапана Cf

Рисунок 3.81 - Безразмерное число

вихря tumble N_t

Таблица 3.18 – Таблица результатов испытаний (Модель 2)

G, кг/с	n _e , мин ⁻¹	n _t ,мин ⁻¹	Nt	∆р, Па	C_{f}	Ct
0,0045121	281,81854	196,5111	2,3760712	17,226667	0,5305031	0,3153158
0,0066959	418,21384	1108,536	9,0321955	35,551111	0,5479953	1,2381362
0,0090952	568,07242	1750,974	10,50311	63,731111	0,5559188	1,4605875
0,0150869	942,30885	3411,93	12,338114	177,14444	0,5530011	1,7067625
0,0195232	1219,39	4979,64	13,915449	305,11333	0,545143	1,8976056
0,0236366	1476,3103	6760,14	15,603427	443,52444	0,5472818	2,1361378
0,0269917	1685,861	7949,79	16,068518	564,02	0,554082	2,2271434
0,0302914	1891,9565	9090,9	16,373354	701,23778	0,5575355	2,2835391
0,0331264	2069,0293	10166,28	16,743157	866,70222	0,5482748	2,296328
0,0346234	2162,53	10352,07	16,311991	910,19333	0,5591501	2,2815693

На Рисунках 3.82 – 3.87 представлены результаты продувки стандартных впускных каналов с шаром (ГБЦ ВАЗ-21126-шар) на стенде с двумя крыльчатками внутри цилиндра и с шаром внутри крыльчаток при разном поднятии клапанов (8,7,6,5,4,3).

Рисунок 3.82 - Соотношение частот

вращения ne и nt при h_{кл}=8 мм

3000

2500

2000

1000

 $n_{t}(h)_{1500}$

Рисунок 3.83 - Соотношение частот

вращения ne и nt при hкл=7 мм

Рисунок 3.84 - Соотношение частот Ри

вращения ne и nt при h_{кл}=6 мм

Рисунок 3.86 - Соотношение частот

вращения ne и nt при hкл=4 мм

Рисунок 3.85 - Соотношение частот

Рисунок 3.87 - Соотношение частот вращения n_e и n_t при $h_{\kappa\pi}$ =3 мм

 $\frac{4}{n_{t}(h)}$

500 0 500 1000 1500 2000 2500 3000

 $n_e(h)$

Как можно видеть, вращение измерительных крыльчаток сохраняется во всех случаях, но по мере закрытия клапана приобретает неустойчивый характер. По результатам испытаний были разработаны усовершенствованные крыльчатки двух видов: без шара (см. Рисунок 3.88) и с шаром внутри цилиндра (см. Рисунок 3.89), подготовлена документация для их изготовления.

Рисунок 3.88 – Параметры усовершенствованной крыльчатки

Рисунок 3.89 – Схема установки с двумя крыльчатками и шаром

3.4 Сравнение базового и модернизированного каналов

Сравнение было выполнено для пластиковых моделей из фотополимера, выше обозначенных как Модель 1 и Модель 2. Эксперименты проводились на установке с L-коннектором, на впуске был установлен турбинный измеритель расхода воздуха, создающий дополнительное сопротивление. Результаты экспериментов представлены на Рисунках 3.89 – 3.93.

Рисунок 3.90 – Экспериментальные зависимости частоты вращения крыльчатки tumble от приведенной частоты вращения коленчатого вала

Рисунок 3.93 – Экспериментальные зависимости вихревого коэффициента tumble от приведенной частоты вращения коленчатого вала

Экспериментальные продувки моделей базового и модернизированного впускных каналов показали, что с модернизированными впускными каналами вихрь имеет большую частоту вращения примерно на 10-25% в зависимости от приведенной частоты вращения n_e в диапазоне 700-1600 мин⁻¹ при одновременном снижении коэффициента расхода C_f примерно на 5 %

3.5 CFD моделирование продувки с крыльчатками внутри цилиндра

Результаты расчётов каналов второй генерации представлены на рисунках 3.94 – 3.99 и в таблице 3.19.

67

Рисунок 3.95 – Полное давление, Па

Рисунок 3.96 – Скорость, м/с

Модифицированная, расход 0,08 кг/сек Рисунок 3.97 – Векторы скорости, м/с

Таблица 3.19 – Результаты расчета 3-х вариантов впускных каналов ГБЦ ВАЗ-21126 при различном расходе воздуха без учета шероховатости

Модель канала	G, г/с	wt, paд/c	рполн.вх, Па	рстат., Па	∆р, Па
	20	387,09	102121	101670	451
21126-baz	30	584,62	103119	102110	1009
	50	963,7	106256	103480	2776
	80	1473,5	113526,5	106700	6826,5
	20	376,01	102097	101660	437
21126 mod	30	569,12	103069	102090	979
21120-mou	50	939,78	106126	103450	2676
	80	1437,9	113218,5	106620	6598,5
	20	384,85	102105	101670	435
21126 mod toohnol	30	569,72	103065	102090	975
	50	959,73	106167	103470	2697
	80	1466,6	113307	106680	6627

Рисунок 3.98 – Частота вращения вихря tumble в цилиндре ДВС

Рисунок 3.99 – Потери давления в каналах ГБЦ ДВС
4 Расчётно-экспериментальная методика проектирования впускных газовых каналов ГБЦ с интенсификацией вихреобразования в цилиндре ДВС

Разработана расчётно-экспериментальная методика проектирования впускных газовых каналов ГБЦ с интенсификацией вихреобразования в цилиндре ДВС. Методика включает следующие этапы:

- планирование полнофакторного вычислительного эксперимента с использованием упрощенной параметризованной CAD-модели канала, проведение CFD расчетов, корреляционный, регрессионный и дисперсионный анализ результатов, выделение основных параметров, влияющих на вихрь tumble, и диапазона их изменения;
- генерация гибридных впускных вариантов каналов, удовлетворяющих конструктивным и технологическим ограничениям и построенных с учетом результатов предыдущего этапа, проведение стационарного CFD-моделирования продувки каналов, выбор двух вариантов с наилучшими характеристиками для нестационарного моделирования;
- проведение нестационарного CFD-моделирования процессов впуска и сжатия для двух вариантов гибридных каналов с учетом движущихся поршня и клапанов, выбор варианта для экспериментальной проверки;
- экспериментальная проверка модели канала на стенде стационарной продувки, подтверждение изменения вихревых характеристик по отношению к исходному варианту;
- изготовление ГБЦ и проведение огневых испытаний на двигателе.

73

ГЛАВА 5 Согласование конструктивных и технологических ограничений газовых каналов второй генерации

5.1 Впускной канал головки блока двигателя 21126

При согласовании конструктивных и технологических ограничений газовых каналов второй генерации, выявлено существенное влияние качества поверхности на характер течения газа. Грубое исполнение поверхности канала нивелирует некоторые конструктивные особенности, заложенные при проектировании.

Также, при изменении поверхности канала с целью повысить вихреобразование, можно натолкнуться на проблему точности исполнения.

В связи с этим, нами предложено ввести дополнительную операцию – фрезерование, для точного воспроизведения поверхности, отвечающей за увеличение вертикального вихря в цилиндре.

Подробнее эта операция рассмотрена на рисунках 5.1 и 5.2

Рисунок 5.1 – Положение фрезы при обработке

Рисунок 5.2 – Поверхность, образуемая фрезой

Переданная в ТГУ модель впускного канала после продувки показала результаты хуже, чем исходный канал. По результатам анализа можно сделать вывод, что отклонение от предложенной геометрии должно быть только в безвыходной ситуации. Зоны, в которых наблюдается значительное отклонение от геометрии эффективность, которой была подтверждена расчетами и экспериментальной продувкой на стенде, сильно влияют на итоговый результат.

Рисунок 5.3 – Самая чувствительная Зона

Зона 2

Также сильно влияет на конечный результат. Допускаем в данной области лишь сглаживание не совсем идеальной геометрии.

Зона 3. Профиль фрезы в данном случае нарушает исходную геометрию канала, что также оказывает влияние на характер течения газа. Насколько возможно применить в данном случае фрезу, профиль которой прилагаем в файле Freza.igs

Рисунок 5.4 – Зоны, влияющие на движение потока

ЗАКЛЮЧЕНИЕ

Выполнены патентные исследования уровня техники "Впускные каналы с интенсификацией вихреобразования" и информационноаналитический обзор аналогов расчетно-экспериментальной методики проектирования впускных каналов с интенсификацией вихреобразования, включая методики ф. FORD, Chrysler, Hyundai и др.

Разработана расчётно-экспериментальная методика проектирования в пускных газовых каналов ГБЦ с интенсификацией вихреобразования в цилиндре ДВС. Методика оформлена в виде Инструкции в соответствии с требованиями СТП 37-101-0003-2000 «Инструкции и методические указания в ОАО "АВТОВАЗ"».

В соответствии с разработанной методикой выполнен расчёт впускных каналов второй генерации, для которых проведено согласование конструктивных и технологических ограничений. По разработанным математическим моделям изготовлены модели каналов с использованием быстрого прототипирования.

Экспериментальные продувки моделей базового и модернизированного впускных каналов показали, что с модернизированными впускными каналами вихрь имеет большую частоту вращения примерно на 10-25% в зависимости от приведенной частоты вращения n_e в диапазоне 700-1600 мин⁻¹ при одновременном снижении коэффициента расхода C_f примерно на 5 %.

Предложена усовершенствованная схема продувки с крыльчатками внутри цилиндра и помещенным внутрь шаром, неподвижно закрепленным относительно цилиндра. Решение является патентоспособным, готовятся материалы для подачи заявки на изобретение.

79

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- Кавтарадзе Р.З. Теория поршневых двигателей. Специальные главы: Учебник для вузов. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. — 720 с.: ил.
- 2. Вихерт М.М., Грудский Ю.Г. Конструирование впускных систем быстроходных дизелей. М.: Машиностроение, 1982.
- 3. Хейвуд Дж. Гидродинамика рабочих цилиндров двигателей 1986 г. // Тр. внутреннего сгорания. Фримановская лекция общества инженеров-механиков. Американского Теоретические основы инженерных расчетов. М.: 1987. С. 171-229.
- 4. Петриченко М.Р., Валишвили Н.В., Кавтарадзе Р.З. Пограничный слой в вихревом потоке на неподвижной плоскости // РАН. Теплофизика и аэромеханика. Т. 9. № 3. 2002. С. 411–421.
- Манджгаладзе А.А., Кавтарадзе Р.З., Апциаури А.З., Мгеладзе Р.А. Исследования процессов газообмена и теплообмена в дизелях методами математического и физического моделирования. Тбилиси: Мецниереба, 1986.
- 6. Design of a tumble-Orientated Intake Port Layout for a Gasoline Combustion Process Used in Power Sport Application, SAE 2011-32-0589.
- HohenbergG., GrebeU., KrausgrillCh. Die Bestimmung von Drall und tumble und deren Auswirkung auf den Arbeitsprozess des Ottomotors. 5. Tagung «Der Arbeitsprozess des Verbrennungsmotors» // TU Graz. 1995. S. 279–305.
- 8. Tumble Flow Measurements Using Three Different Methods and its Effects on Fuel Economy and Emissions, SAE 2006-01-3345.
- Tippelmann G. R\u00e4umlicher Drallmesser f\u00fcr Drall- und tumblemessung // MTZ. N 6. 1997. S. 327–363.

- 10.Barthelmä L. Einfluss der Luftbewegung im Brennraum auf die Abgasemission eines direkt einspritzenden Dieselmotors: Dissertation. TU München. 1982. 135 S.
- 11.11. Steady and Transient CFD Approach for Port Optimization, SAE 2008-01-1430.
- 12.Smolenskaya N.M. and Korneev N.V. Modelling of the combustion velocity in UIT-85 on sustainable alternative gas fuel, IOP Conf. Series: Earth and Environmental Science 66 (2017) 012016 doi:10.1088/1755-1315/66/1/012016.
- 13.Вибе И.И., Тепловой расчёт двигателей внутреннего сгорания [Текст] / И.И. Вибе // Челябинск.: Челябинский политехнический институт имени Ленинского комсомола, 1972. - с.282
- 14.Улыбышев, К.Е. Расчёт влияния постоянного электрического поля на газодинамику и эмиссию окислов азота в ламинарном диффузионном пламени [Текст] / К.Е. Улыбышев // МЖГ. №1, 2000. С.55-71.
- 15.Проскурин, В.Ф. Цепно-тепловой взрыв и степень ионизации водородовоздушного пламени [Текст] / В.Ф. Проскурин, П.Г. Бережко, Е.Н. Николаев, В.Н. Тараканов, П.Е. Половинкин, А.Г. Лещинская // Физика горения и взрыва. 2005. № 1. С.15-23.
- 16.Сеначин, П.К. Моделирование процесса горения гомогенной смеси в двигателе с искровым зажиганием [Текст] / П.К. Сеначин, М.А. Ильина, Д.Д. Матиевский, М.Ю. Свердлов //Тез. XII симпозиума по горению и взрыву, 11-15 сентября 2000 г. Черноголовка: РАН, 2000.ч.3. - с.155-157.
- 17.Daniels, C. F. The comparison of mass fraction burned obtained from the cylinder pressure signal and spark plug ion signal [Text] / SAE paper № 980140, 1998.
- 18.Eriksson, L. Requirements for and a systematic method for identifying heat release model parameters. Modeling of SI and Diesel Engines [Text] / SAE Paper № 980626, 1998.

- 19.Franke, A. Employing an ionization sensor for combustion diagnostics in a learn burn natural gas engine [Text] / A. Franke, P. Einewall, B. Johansson, R. Reinmann // SAE paper № 2001-01-0992, 2001.
- 20.Frenklach, M. GRI-Mech / M. Frenklach, T. Bowman, G. Smith, B. Gardiner // entnommen am 18.06.2009, http://www.me.berkeley.edu/gri_mech/. 2009.
- 21.Grill, M. Objektorientierte Prozessrechnung von Verbrennungsmotoren [Текст] / M.Grill // Stuttgart, Universität, Dissertation. 2006а.
- 22.Gülder, Ö. L. Turbulent Premixed Combustion Modelling using Fractal Geometry [Текст] / Ö.L. Gülder // in: 23. Symposium (International) on Combustion, The Combustion Institute. 1990.
- 23.Herdin, G. Emissionsproblematik bei Biogasmotoren [Текст] / G.Herdin // in: 11. Tagung Der Arbeitsprozess des Verbrennungsmotors. Graz. 2007.
- 24.Heywood, J. B. Fluid Motion Within the Cylinder of Internal Combustion Engines - The 1986 Freeman Scholar Lecture [Teκct] / J. B. Heywood // Journal of Fluids Engineering Vol. 109 / 3. 1987.
- 25.Heywood, J. B. Internal Combustion Engine Fundamentals [Текст] / J. B. Heywood// New York: McGraw-Hill. 1988.
- 26.Hiroyasu, H. Fuel Droplet Size Distribution in Diesel Combustion Chamber [Текст] / Н. Hiroyasu, T. Kodata // SAE Paper 740715. 1974.
- 27.Huiming, Z. Investigation on the Combustion Characteristics of the Compression Ignition Divided Chamber Combustion System of the Natural Gas Engine [Текст] / Z. Huiming, Z. Defu, Z. Qingping // in: CIMAC Congress. Wien. 2007.
- 28.Jobst, J. Simulation von Zündverzug, Brennrate und NOx-Bildung für direktgezündete Gasmotoren [Текст] / J. Jobst, F. Chmela, A. Wimmer // in:
 1. Tagung Motorprozesssimulation und Aufladung. Berlin. 2005.
- 29.John, A. Entwicklung und Erprobung eines zweistufigen Impaktors zur Messung alveolengängiger Quarzfeinstaubemissionen und Durchführung

von Validierungsmessungen [Текст] / A. John, H. Kaminski, T. Kuhlbusch // Duisburg, IUTA e.V., Bericht. 2004.

- 30.Kettner, M. Experimentelle und numerische Untersuchungen zur Optimierung der Entflammung von mageren Gemischen bei Ottomotoren mit Direkteinspritzung [Текст] / M. Kettner // Karlsruhe, Universität, Dissertation. 2006.
- 31.Klimstra, J. The road to obtain the ultimate performance of gas engines opportunities and challanges [Текст] / J. Klimstra // in: 5. Dessauer Gasmotoren-Konferenz. Dessau. 2007.
- 32.Koch, T. Numerischer Beitrag zur Charakterisierung und Vorausberechnung der Gemischbildung und Verbrennung in einem direkteinspritzenden, strahlgeführten Ottomotor [Teκcτ] / T. Koch // Zürich, Eidgenössische Technische Hochschule, Dissertation. 2002.
- 33.Kogler, G. Potential of HCCI for large natural gas fueled engines [Текст] / G. Kogler, A. Wimmer // in: CIMAC Congress. Wien. 2007.
- 34.Kolb, T. Experimentelle und theoretische Untersuchung zur Minderung der NOx-Emission technischer Feuerungen durch gestufte Verbrennungsführung [Текст] / T. Kolb // Karlsruhe. Technische Hochschule, Dissertation. 1990.
- 35.Kozuch, P. Ein phänomenologisches Modell zur kombinierten Stickoxidund Rußberechnung bei direkteinspritzenden Dieselmotoren [Τεκcτ] / P. Kozuch // Stuttgart, Universität, Dissertation. 2004.
- 36.Kuhlmann, R. M. V. Improvement of a Model for Calculation of Oxides of Nitrogen Emissions from Spark Ignition Engines [Текст] / R.M.V. Kuhlmann, J. R. Sodre // SAE-Paper 2004-01-3001. 2004.
- 37.Lämmle, Ch. Numerical and Experimental Study of Flame Propagation and Knock in a Compressed Natural Gas Engine [Текст] / Ch. Lämmle // Zürich, Eidgenössische Technische Hochschule, Dissertation. 2005.
- 38.Liao, S. Y. Determination of laminar burning velocities for natural gas [Текст] / S. Y. Liao, D. M. Jiang, Q. Cheng // Fuel 83 (2004). Elsevier. Science Direct. 2004.

- 39.Magnussen, B. F. On Mathematical Modeling of Turbulent Combustion with special emphasis on Soot formation and Combustion [Текст] / B. F. Magnussen, B. H. Hjertager // in: 16. Symposium (International) on Combustion. The Combustion Institute. Pittsburgh. 1976.
- 40.Merker, G. Technische Verbrennung Simulation verbrennungsmotorischer Prozesse [Текст] / G. Merker, Ch. Schwarz // Stuttgart: Teubner. 2001.
- 41.Mittermayer, F. Periodisch beladbare Hochdruckzelle zur Untersuchung der Verbrennung in vorkammergezündeten Großgasmotoren [Текст] / F. Mittermayer, C. Heinz, T. Sattelmayer, A. Hanenkamp, I. Wilke // in: Berichte zur Energie- und Verfahrenstechnik, 9. Tagung Motorische Verbrennung, Heft 9.1. München. 2009.
- 42.Noske, G. Ein quasidimensionales Modell zur Beschreibung des ottomotorischen Verbrennungsablaufes [Текст] / G. Noske // Düsseldorf: VDI Verlag. 1988.