МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт машиностроения					
(институт, факультет)					
Кафедра «Энергетические машины и системы управления»					
(наименование кафедры)					
13.03.03 «Энергетическое машиностроение»					
(код и наименование направления подготовки, специальности)					
Двигатели внутреннего сгорания					
(направленность (профиль/специализация)					

БАКАЛАВРСКАЯ РАБОТА

на тему	Повышение эфо	рективности системы нейтрализац	(ИИ
	отработавших г	азов двигателя	
Студент			
•		Н.Д. Стрижаков	
	_	И.О. Фамилия	(личная подпись)
Руководит	гель	Д.А. Павлов	
	_	(И.О. Фамилия)	(личная подпись)
Нормокон	тролер	А.Г. Егоров	
•	_	(И.О. Фамилия)	(личная подпись)
Консульта	анты	Т.С. Анисифорова	
•	_	(И.О. Фамилия)	(личная подпись)
Топустить	ь к защите		
	црой «ЭМСУ»	к.т.н., доцент Д.А. Павлов	
		(ученая степень, звание, И.О. Фамилия)	(личная подпись)
		<i>u</i>	2010 -
		«	2019 г.

КИЦАТОННА

В представленной выпускной квалификационной работе бакалавра Н.Д. Стрижакова, соответствии cтемой работы «Повышение В эффективности системы нейтрализации отработавших газов двигателя» представлены расчеты и чертежи двигателя ВАЗ 21127. По результатам теплового расчета, кинематического расчета и динамического расчета двигателя ВАЗ 21127, получены основные характеристики двигателя ВАЗ 21127 определены силы, действующие на кривошипно-шатунный механизм данного двигателя. Так же, по результатам теплового расчета ДВС. построены индикаторные диаграммы двигателя И диаграмма внешней скоростной характеристики двигателя. По результатам расчета кинематики и динамики двигателя, получены диаграммы перемещения поршня, скорости поршня, ускорения поршня и др.

В представленной выпускной квалификационной работе разработаны следующие пункты:

- обзор актуальности рассматриваемой проблемы;
- обзор конструкции исследуемого ДВС;
- расчеты рассматриваемого двигателя (тепловой расчет, расчет кинематики, расчет динамики) ДВС;
- спецчасть работы, с расчетом времени прогрева улучшенного каталитического нейтрализатора;
- раздел безопасности жизнедеятельности;
- общий обзор экономической составляющей ВКР.

Страниц в представленной выпускной квалификационной работе 74, Иллюстраций 23, Таблиц 22, Библиографических ссылок 26.

ABSTRACT

This graduation project deals with improving the efficiency of engine exhaust gases.

The aim of the work is to give some information about exhaust gas neutralization systems and methods to improve their efficiency.

The object of the graduation work is the exhaust gas neutralization system.

The subject of the graduation work is VAZ 21127 engine.

Issues of improving the efficiency of the system, the environmental performance, the safety and the economic component are highlighted in the project's general part.

The graduation work describes in details the need to improve the efficiency of the engine exhaust gas neutralization system.

The first chapter gives an analysis of the relevance of the problem and the means of its solution.

The second chapter presents thermal calculation of the under consideration VAZ 21127 engine.

The kinematics and dynamics calculation of the engine is presented in the third chapter.

In the fourth part, the heating rate calculation of the catalytic converter with honeycomb made of metal foil is presented.

In conclusion we'd like to stress that the technology is compliant with the environment and safety standards.

The work graduation project consists of an explanatory note on 74 pages, introduction, including 23 figures, 22 tables, the list of 26 references including 12 foreign sources and five appendices, and the graphic part on 6 A1 sheets.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	6
1 Анализ актуальности рассматриваемой проблемы и рассмотрение средсти	В
ее решения	7
1.1 Обзор систем нейтрализации ОГ	8
1.2 Принцип работы трехкомпонентного катализатора	10
1.3 Способ модернизации системы нейтрализации ОГ	14
1.4 Обзор модернизируемого двигателя	17
2 Тепловой расчет двигателя	21
2.1 Исходные данные	21
2.2 Расчёт наполнения цилиндров	22
2.3 Процесс сжатия рабочего тела	23
2.4 Термохимический расчет	24
2.5 Термодинамический расчет	25
2.6 Расчет процесса расширения и выпуска	27
2.7 Индикаторные показатели рабочего цикла	29
2.8 Эффективные показатели и параметры двигателя	29
2.9 Индикаторные диаграммы и ВСХ	31
3 Расчет кинематики и динамики	32
3.1 Кинематический расчет	32
3.2 Динамический расчет	34
4 Специальная часть	40
4.1 Расчет прогрева модернизированного катализатора	40
5 Безопасность и экологичность бакалаврской работы	43
5.1 Оценка экологичности, по выбросам ОГ двигателя	43
5.2 Безопасность и надежность модернизированного двигателя	44
6 Экономический раздел	45
6.1 Экономическое обоснование работы	45
Заключение	48

Список используемых источников	49
Приложение А	52
Приложение Б	65
Приложение В	67
Приложение Г	69
Приложение Д	72

ВВЕДЕНИЕ

В современном мире к двигателям внутреннего сгорания применяются всё более жесткие требования по нормам экологичности и токсичности в целом. Для того чтобы соответствовать, регулярно обновляющимся и ужесточающимся стандартам, производителям силовых агрегатов требуется прибегать к новым исследованиям, использованию новых материалов, разработке технологий и поиску новых решений при производстве двигателей. Помимо внедрения инновационных элементов конструкции двигателей не прекращается и модернизация старых, хорошо проверенных решений для снижения токсичности ДВС.

Одним из основных и наиболее эффективных средств, по борьбе с токсичностью двигателя, является каталитический нейтрализатор Его конструкция довольно хорошо отработанных газов. применяется на абсолютном большинстве современных ДВС, но несмотря на его высокий спрос и повсеместное использование и по сей день продолжаются работы по его совершенствованию. Помимо того, постоянно ведутся доработки рабочего процесса двигателя, делая его максимально приближенным к показателям, на которых катализатор мог бы работать максимально эффективно. Так же, при постановке вопроса о повышении системы эффективности СНОГ, не обходят стороной и прочие системы ДВС. Туда входят: система впуска, выпуска, охлаждения и др. Всё это влияет на общий уровень токсичности двигателя и в итоге определяет: проходит он или нет по нормам токсичности, и может ли данный двигатель эксплуатироваться в различных странах.

В данной работе рассмотрена система выпуска отработанных газов и каталитический нейтрализатор, который, как уже сказано выше, является важной частью в картине общей экологичности двигателя.

Представленная выпускная квалификационная работа, оформлена в соответствии с требованиями, указанными в литературе [23 - 25].

1 Анализ актуальности рассматриваемой проблемы и рассмотрение средств ее решения

На данный момент в странах Европейского Союза, большинстве стран мира, в том числе и в России, действует Правило ЕЭК ООН №83-06. В России данное правило дублирует ГОСТ Р 41.83. Правило Европейской экономической комиссии Организации Объединенных Наций №83-06 «Единообразные имеет название официального предписания, касающиеся утверждения транспортных средств в отношении выбросов загрязняющих веществ в зависимости от топлива, необходимого для двигателей», такое же название имеет и российский ГОСТ Р 41.83.

В содержании Правил №83 включены в себя: официальные утверждения, технические требования, методики испытаний, правила соответствие производства, процедуру проверки выполнения требований, предельные значения вредных выбросов в ДВС и др.

Таблица 1.1, демонстрирует предельные значения вредных выбросов в ДВС. Категория N_1 , в таблице, включает в себя значения актуальные для легковых автомобилей.

Как мы видим, Правило ЕЭК ООН №83-06 служит для жесткого контроля токсичности в ДВС и действует на все автопроизводства мира. В следствии этого, на данный момент, чтобы не только производить, но и продавать автомобили с ДВС, двигатели должны отвечать жестким экологическим требованиям, которые регулярно ужесточаются.

Как уже было сказано ранее, основным средством, для прохождения экологического контроля, является каталитический нейтрализатор. Благодаря данному устройству, двигатели внутреннего сгорания можно спокойно использовать на автомобилях и благодаря этому проходить экологический контроль, a значит модернизация конструкции нейтрализатора, первостепенной каталитического является задачей.

Характеристика транспортного средства		Контрольная масса (КМ), кг	углер	а оксида ода (СО)) , г/км	углев	Ласса одородов) L ₂ , г/км	азота	а оксидов (NO _x) L ₃ ,	оксид углев (СН +	рная масса ов азота и одородов NO_x) L_2 + I_2 , I_3 , I_4	Масса вредных частиц ¹⁾ (РМ) <i>L</i> ₄ , г/км	
Votor	ODUG	V посс				Топли	во, необход	димое д	ля работы	двигате	ЯП	
Kalei	кидо	Класс		бензин	дизельное	бензин	дизельное	бензин	дизельное	бензин	дизельное	дизельное
	$M^{2)}$	-	≥ 400 кг	2,3	0,64	0,20	-	0,15	0,50	100	0,56	0,05
	$N_1^{(3)}$	I	КМ ≤ 1305 кг	2,3	0,64	0,20	=	0,15	0,50	-	0,56	0,05
A		II	1305 Kr < KM ≤ 1760 Kr	4,17	0,80	0,25	-1	0,18	0,65	(02)	0,72	0,07
		III	КМ > 1760 кг	5,22	0,95	0,29	5	0,21	0,78		0,86	0,10
	$M^{2)}$	-	≥ 400 кг	1,0	0,50	0,10		0,08	0,25	-	0,30	0,025
		I	КМ ≤ 1305 кг	1,0	0,50	0,10	2	0,08	0,25	-	0,30	0,025
В	N ₁ ³⁾	II	1305 Kr < KM ≤ 1760 Kr	1,81	0,63	0,13	-1	0,10	0,33	-	0,39	0,04
		III	КМ > 1760 кг	2,27	0,74	0,16	=	0,11	0,39	-	0,46	0,06

¹⁾ Для двигателей с воспламенением от сжатия.

Таблица 1.1 – Предельные значения вредных веществ в отработавших газах

1.1 Обзор систем нейтрализации ОГ

В современных двигателях внутреннего сгорания, применяется большое количество различных катализаторов. Они имеют разное расположение, отличаются друг от друга видом и формой, но все они имеют примерно одинаковую суть работы, которая будет рассмотрена ниже. Общий вид, стандартного катализатора, применяемого в ДВС, показан на рисунке 1.1.

На рисунке 1.2 изображена общая система выпуска: катализатор ставится сразу после выпускного коллектора. С одной стороны, коллектор крепится к головке блока цилиндров, откуда в него и попадают отработавшие газы, а с другой, соединяется с впускной воронкой катализатора. Газы, проходя через весь катализатор, достигают его выпускной воронки, соединенной с трубой выпускного тракта, которая, идёт к резонатору и к другим элементам системы глушения звуков.

 $^{^{2)}}$ Кроме транспортных средств максимальной массой более 2500 кг. $^{3)}$ А также транспортные средства категории M, указанные в сноске $^{2)}$.

 $^{^{4)}}$ L - предельные значения содержания вредных веществ в отработавших газах:

 L_1 - CO; L_2 - CH; L_3 - NO_x; L_4 - вредные частицы.

Рисунок 1.1 – Общий вид каталитического нейтрализатора

После прохождения всех элементов системы выпуска, отработавшие газы попадают в атмосферу. Так же, стоит отметить, что до и после нейтрализатора, устанавливаются лямбда зонды, о назначении которых будет рассказано позже.

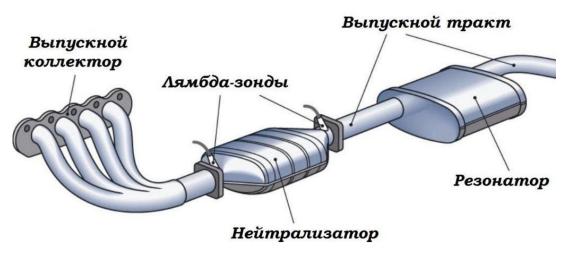


Рисунок 1.2 – Общий вид системы выпуска

Общее устройство каталитического нейтрализатора в разрезе, показано на рисунке 1.3. Выхлопные газы попадают в катализатор через впускную воронку. В катализаторе, они проходят через пористый керамический монолит, закрепленный в монтажный мат. Стоит отметить, что ячейки в керамическом блоке внутри катализатора покрыты драгметаллами, которые и служат катализаторами для процессов окисления и преобразования отработавших газов. Пройдя через него, выхлопные газы выходят через выпускную воронку и продолжают своё движение по выпускной системе

ДВС. Сам катализатор, как мы можем видеть по рисунку 1.3, закрывается металлическим кожухом. Его основная задача состоит в том, чтобы экранировать тепло, ведь катализатор, во время работы двигателя, может раскаляться до 1000°С. Так же, данный кожух, удерживает тепло внутри, не позволяя катализатору быстро остывать после прекращения работы ДВС, для того, чтобы повысить эффективность работы катализатора, при повторном пуске двигателя. А эффективный режим работы начинается с температуры 350 °С

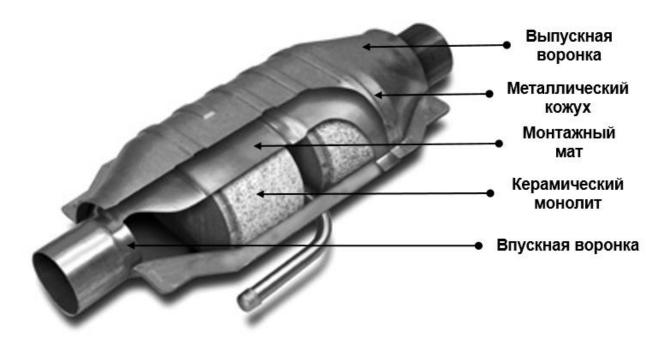


Рисунок 1.3 – Катализатор в разрезе

1.2 Принцип работы трехкомпонентного катализатора

Рассмотрим более подробно рабочие процессы в трехкомпонентном катализаторе отработавших газов.

Большинство катализаторов называются трехкомпонентными благодаря своей основной функции по нейтрализации трех, наиболее опасных, элементов выхлопа двигателя. Этими элементами являются: углеводороды - СН (канцерогенные соединения), угарный газ - СО (смертельно ядовитый газ при превышении его концентрации в воздухе

свыше 0,1 %), окислы азота – NOх (ядовитый для человека элемент).

Для нейтрализации этих компонентов, в катализаторе, применяются драгметаллы: родий - Rh, палладий - Pd, платина – Pt.

Драгметаллы, нанесённые на керамические соты катализатора (рисунки 1.4 и 1.5), контактируют с выпускными газами, проходящими через них. При таком контакте происходит следующее. Палладий и платина, контактируя с углеводородами и угарным газом, окисляют их, в результате чего, углеводород преобразуется в водяной пар, угарный газ в углекислый. Родий же, преобразует оксид азота NOx, в обычный азот, составляющий большую часть воздуха нашей атмосферы и кислород. Ниже, приведена запись преобразований, проходящих в катализаторе.

$$NO_x \rightarrow O_2 + N_2;$$

 $CO + O \rightarrow CO_2;$
 $CH + O_2 \rightarrow H_2O + CO_2.$

Как мы видим, самые опасные компоненты отработанных газов, пройдя через каталитический нейтрализатор преобразуются в: H_2O , CO_2 и N_2 .

Так же, стоит отметить, что трехкомпонентный катализатор, состоит из 2 керамических блоков. (рисунок 1.3). Один блок, покрыт палладием и платиной, он преобразует углеводороды и угарный газ, а второй – родием преобразует оксиды азота.

Стоит отметить, что режим эффективной работы катализатора входит в температурные рамки от 350°C до 850°C. На режимах холодного пуска двигателя, когда катализатор холодный и имеет температуру ниже 350°C, нейтрализация токсичных веществ идет крайне неэффективно. А при температурах свыше 850°C, наблюдается ускоренный износ катализатора и его разрушение, что грозит, в случае с керамическим катализатором, повреждением двигателя.

Рисунок 1.4 – Блок сот

Рисунок 1.5 – Соты внутри корпуса

Для того, чтобы убедиться в исправности катализатора, а так же в том, что он действительно нейтрализует отработавшие газы, в выпускную систему, встраивают лямбда зонды (рисунок 1.6) расположение их указано на рисунке 1.2.

Рисунок 1.6 – Лямбда зонд

Их задача состоит в замере и оценке количества остаточного (недоокисленного) кислорода, на входе в катализатор и на выходе, а так же корректировки рабочего процесса двигателя, путем передачи собираемых данных на ЭБУ.

Регулировка рабочего процесса двигателя с помощью лямбда зондов, требуется, так как рассматриваемый нами трехкомпонентный катализатор, может эффективно нейтрализовать токсичные выбросы двигателя, только при том составе рабочей смеси, при котором будет происходить полное сгорание

Коэффициент избытка топлива, близком к нему. воздуха необходимый для такого состава, колеблется в пределах $\alpha = 0.95 - 1.0$. пределах которого ЭБУ корректируют состав Этот диапазон α, В топливо-воздушной смеси, называется «окно бифункциональности». Конечно, на режимах прогрева, при максимально открытой дроссельной заслонке или на режиме сильной нагрузки двигателя, состав рабочей смеси может уходить далеко за пределы стехиометрического, но при этом, он будет всегда стремиться к нему.

Важной деталью, при корректировке коэффициента избытка воздуха, в современных ДВС, является пропуск режима работы двигателя, при котором $\alpha = 1,0-1,2$. Это связано с тем, что при $\alpha \sim 1,1$, количество NO_x, в составе отработанных газов, возрастает примерно в 2 раза, по сравнению с $\alpha = 0,95-1,0$. Как мы уже выяснили, оксид азота является самым опасным компонентом ОГ и его увеличение в выхлопе автомобильного двигателя, негативно сказывается на общей экологичности автомобиля.

График с зависимостью количества основных компонентов ОГ от коэффициента избытка воздуха α , показан на рисунке 1.7. Окно бифункциональности на рисунке 1.7 показано штриховкой и лежит в пределах $\alpha = 0.95$ - 1.0.

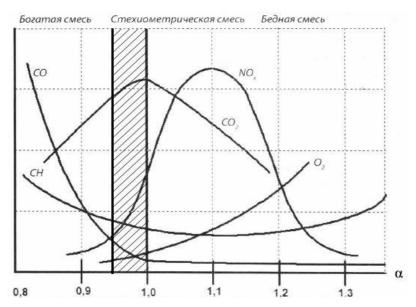


Рисунок 1.7 – Зависимость ОГ от α

Как мы видим, на рисунке 1.7, стехиометрическая смесь является оптимальной, исходя из содержания опасных компонентов в отработавших газах, по отношению к другим составам смеси.

1.3 Способ модернизации системы нейтрализации ОГ

Как уже было сказано выше, на режимах прогрева и холодного пуска двигателя, катализатор работает крайне неэффективно, следовательно, количество токсичных веществ в отработавших газах двигателя сильно возрастает. Это портит общую картину экологичности двигателя и может даже повлиять на соответствие экологическим нормам в худшую сторону.

Для того, чтобы максимально сгладить этот недостаток, требуется максимально ускорить процесс прогрева катализатора и позволить ему выходить на эффективный режим работы в кратчайший срок.

По мимо этого, возможно, совершенствование конструкции катализатора путем применения в каталитическом нейтрализаторе новых материалов и проведение доработок его общей конструкции. К примеру, керамика, используемая в качестве сот, в большинстве нейтрализаторов, на данный момент, при своем разрушении, губительно влияет на двигатель. Данный недостаток не был обговорен выше, но его стоить отметить. Керамические пластины, при своем разрушении, образовывают керамическую крошку, которая, благодаря импульсному воздействию в ходе работы двигателя, может быть заброшена в его цилиндры.

Наиболее близким по технической сущности и достигаемому техническому результату к заявленному, является каталитический нейтрализатор (Патент RU №2204027, C1, МПК F01N 3/00, опубл. 10.05.2003, Бюл. №13), содержащий входной и выходной газовые патрубки, наружный и

внутренний цилиндрический корпус между которыми находится слой тепловой изоляции, каталитический реактор, состоящий из плоских и гофрированных металлических фольг, покрытых слоем пористого катализатора и теплового аккумулятора фазового перехода плавлениекристаллизация, состоящего из равномерно расположенных по объему цилиндрических капсул, заполненных теплоаккумулирующим реактора материалом (ТАМ). Недостатком данного каталитического нейтрализатора является низкая эффективность работы на режимах пуска и прогрева ДВС после длительной стоянки транспортного средства. Техническим результатом заявленного каталитического нейтрализатора с индукционным устройством эффективности электроподогрева является повышение работы каталитического нейтрализатора на режимах пуска и прогрева ДВС после стоянки транспортного средства. Технический длительной результат достигается за счет размещения индукционного устройства электроподогрева, обмотка которого равномерно расположена на поверхности корпуса каталитического нейтрализатора. Предложение поясняется рисунком 1.8, на изображен каталитический нейтрализатор c индукционным котором устройством электроподогрева. Заявленный каталитический нейтрализатор с индукционным устройством электроподогрева содержит (см. рисунок 1.8): наружный цилиндрический корпус 1 и внутренний цилиндрический корпус 2, выполненные из диэлектрического материала, между которыми находится слой тепловой изоляции 3, при этом в центральной части располагаются плоские и гофрированные металлические фольги, 4 вокруг металлических заполненных ТАМ 6, в торцевых частях цилиндрических капсул 5, расположены выходной 7 и входной 8 газовые патрубки и ввод электропитания 9, а обмотка индукционного устройства электроподогрева 10 равномерно расположена по поверхности наружного цилиндрического корпуса 1. Стр.: 3 RU 188 227 U1 5 10 15 20 25 30 35 40 45 Заявленный каталитический нейтрализатор c индукционным устройством электроподогрева работает следующим образом. При работе двигателя на режиме номинальной или близкой к ней нагрузках, температура ОГ, поступающих через входной газовый патрубок 8, составляет 300...500°C. В результате теплообмена ОГ с плоскими и гофрированными фольгами 4 и выделения теплоты экзотермической каталитической реакции их температура более 300°C. В результате чего процесс каталитической достигает нейтрализации ОГ происходит достаточно эффективно. При этом ОГ отдают часть своей тепловой энергии цилиндрическим капсулам 5 заполненным ТАМ 6. В процессе теплообмена ТАМ 6 нагревается до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой равновесной температуры. Благодаря наличию слоя тепловой изоляции 3 находящегося между наружным 1 и внутренним 2 цилиндрическими корпусами из диэлектрического материала диссипация тепловой энергии в окружающую среду незначительна. При кратковременной стоянке машины с выключенным двигателем температура металлических фольг каталитического реактора будет составлять примерно 300°C за счет постепенного выделения скрытой теплоты фазового перехода ТАМ 6. Аналогичная картина наблюдается и при работе двигателя на режимах холостого хода, пуска-прогрева и на долевых нагрузках, когда температура ОГ составляет не более 100...200°C, но металлические фольги имеют значительно более высокую температуру за скрытой теплоты фазового перехода TAM 6. выделения продолжительной стоянке машины с выключенным ДВС, особенно в условиях низких температур окружающей среды, температура металлических фольг каталитического нейтрализатора будет значительно ниже требуемой для эффективного протекания процесса каталитической нейтрализации ОГ. В этом случае нагрев плоских и гофрированных металлических фольг 4 осуществляется кратковременной подачи тока зa счет через ввод электропитания 9 (от аккумуляторных батарей или внешнего источника электрического тока) обмотку устройства на индукционного электроподогрева 10, которое создает переменное электрическое поле бесконтактно передающее энергию в нагреваемые электропроводящие тела в качестве которых выступают металлические цилиндрические капсулы 5 заполненные ТАМ 6 и плоские и гофрированные металлические фольги 4. Последние нагреваются до температуры, необходимой для эффективной работы каталитического нейтрализатора. По сравнению с прототипом предлагаемый каталитический нейтрализатор с индукционным устройством электроподогрева позволит обеспечить эффективную работу каталитического нейтрализатора при пуске и прогреве после продолжительной стоянки машины с неработающим двигателем особенно в условиях низких температур окружающей среды.

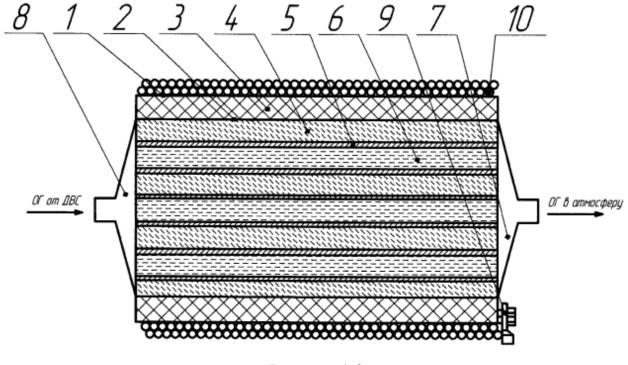


Рисунок 1.8

1.4 Обзор модернизируемого двигателя

В представленной работе, модернизации будет подвергаться, двигатель ВАЗ 21127. Именно на его примере будет рассмотрен способ повышения экологических характеристик двигателей семейства ВАЗ, путем установки катализатора, с индукционным устройством электроподогрева.

На данный момент, двигатель BA3 21127 является одним из самых используемых двигателей Волжского автомобильного завода. Данный

силовой агрегат активно устанавливается на автомобили семейства LADA Granta, LADA Vesta и другие автомобили Волжского автомобильного завода.

Двигатель ВАЗ 21127, является модернизацией двигателя ВАЗ 21126. Главным отличием стодвадцатьседьмого мотора от своего предшественника, стало появление регулируемого впускного ресивера, в котором появились управляемые заслонки, позволяющие изменять длину воздушных каналов на впуске.

Послуживший прототипом стодвадцатьседьмому мотору двигатель ВАЗ 21126, тоже является модернизацией, но уже другого двигателя, имеющего индекс ВАЗ 21124. В двигатель ВАЗ 21126, в отличии от своего предшественника, была установлена облегченная шатуннопоршневая группа и ремень ГРМ с автоматическим натяжителем. Это были основные отличия двигателя ВАЗ 21126 от ВАЗ 21124.

В свою очередь, двигатель ВАЗ 21124, является двигателем ВАЗ 2112 с увеличенным ходом поршня. Увеличение хода поршня, привело к увеличению массогабаритных размеров блока цилиндров и увеличению рабочего объема двигателя с 1,5 до 1,6 литров.

Как мы видим, двигатель BA3 21127 имеет достаточно длинную историю своего появления, но данный двигатель и по сей день, является очень перспективным силовым агрегатом и имеет большой потенциал для своего развития.

Общий вид, двигателя ВАЗ 21127 в сборе, представлен на рисунке 1.9.

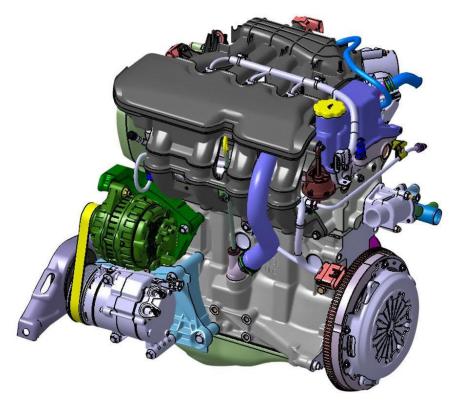


Рисунок 1.9 – Двигатель ВАЗ 21127

Основные характеристики двигателя, представлены ниже, в таблице 1.2.

Таблица 1.2 – Основные характеристики двигателя ВАЗ 21127

Параметр	Показатель
Максимальная мощность	106 л.с при 5800 об.мин ⁻¹
Максимальный крутящий момент	148 Нм при 4000 об.мин ⁻¹
Экологический класс	Пятый
Рабочий объем	1597 см ³
Смешанный расход топлива	7 л/100 км
Количество цилиндров	4
Pecypc	200 тыс. км

Как мы видим, двигатель BA3 21127 имеет достойную мощность, высокий класс экологичности, внушительный крутящий момент и ничем не уступает зарубежным, более дорогим, аналогам.

Данный двигатель, является типичным представителем двигателей,

устанавливающихся на автомобили Волжского автомобильного завода и именно с использованием его характеристик, будут проводится все дальнейшие расчеты и модернизации, которые, с незначительными изменениями, смогут в дальнейшем применяться ко все двигателям семейства ВАЗ.

2 Тепловой расчет двигателя

Ниже приведен тепловой расчет малолитражного автомобильного двигателя ВАЗ 21127 с модернизированным каталитическим нейтрализатором, выполненный по методике И.И. Вибе [1 - 3]. В расчете определены все основные параметры двигателя, необходимые для его эксплуатации, а также построены его индикаторные диаграммы. Данный расчёт, является одним из основных в проектировании автотракторных ДВС и служит основополагающим расчётом в теории рабочего процесса. Расчет базового двигателя ВАЗ 21127 приведен ниже.

2.1 Исходные данные

В ходе выполнения расчета, двигатель будет рассчитан на пяти установившихся режимах работы. В числовом значении, выбранные режимы, представляют собой следующие обороты коленчатого вала двигателя:

 $n_1 = 840 \text{ (мин}^{-1})$ — обороты холостого хода;

 $n_2 = 2400 \text{ (мин}^{-1})$ – рабочие обороты двигателя;

 $n_3 = 4000 \, (\text{мин}^{-1}) - \text{обороты максимального крутящего момента;}$

 $n_4 = 5800 \text{ (мин}^{-1})$ — обороты максимальной мощности;

 $n_5 = 6100 \, (\text{мин}^{-1}) - \text{максимальные обороты «отсечка»}.$

Так же, для начала расчёта, нам необходим ряд характеристик двигателя, который сведён в таблицу 2.1.

Таблица 2.1 Исходные данные для начала расчета

i	<i>D, мм</i>	τ	V_{π} , π	α	3	S, мм
4	82	4	1,597	1	11	75,6

Задаём атмосферные условия:

$$p_0 = 0.1$$
 (M Π a); $T_0 = 293$ (K).

Принимаем давление и температуру остаточных газов:

$$p_{\rm r} = 0.1 - 0.12$$
 (M Π a); $T_{\rm r} = 912 - 1110$ (K).

2.2 Расчёт наполнения цилиндров

Плотность заряда на впуске двигателя:

$$\rho_0 = \frac{p_0 \cdot 10^6}{Rb \cdot T_0}$$

Температура подогрева свежего заряда $\Delta T = 5$.

Потери давления на впуске:

$$\Delta p_a = \frac{2.8 \cdot A_n^2 \cdot n^2 \cdot \rho_0 \cdot 10^{-6}}{2}, (M\Pi a)$$

Сила, приложенная на площадь, в конце процесса впуска:

$$p_{\rm a} = p_0$$
 - $\Delta p_{\rm a}$

Коэффициент остаточных газов:

$$\gamma_r = \frac{T_0 + \Delta T}{T_r} \cdot \frac{p_r}{\varepsilon \cdot p_a - p_r}$$

Температура в конце впуска:

$$T = \frac{T_0 + \Delta T + \gamma_r \cdot T_r^a}{1 + \gamma_r}$$

Рассчитываем коэффициент наполнения при условии, что коэффициент дозарядки равен: $\varphi_{\text{доз}} = 1,1$

$$\eta_V = \frac{T_0}{T_0 + \Delta T} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{1}{p_0} \cdot (\phi_{\partial o_3} \cdot \varepsilon \cdot p_a - p_r)$$

По окончанию процесса наполнения удельный объем газовой эмиссии рассчитывается по представленной формуле:

$$V_a = 8.314 \cdot 10^{-3} \frac{T_a}{\mu_B \cdot p_a};$$

- где $\mu_{\scriptscriptstyle B} = 28,98$ — молярная масса воздуха

Данные, полученные в ходе расчётов, для всех пяти режимов работы двигателя, сводятся в таблицу 2.2.

Таблица 2.2 Процесс наполнения

	$n_1 = 840$	$n_2 = 2400$	$n_3 = 4000$	$n_4 = 5800$	$n_5 = 6100$
A_n	0,003966	0,010791	0,017168	0,02381146	0,024
Δp_a	0,003716	0,004497	0,007284	0,01074277	0,013416
p_a	0,096284	0,095503	0,092716	0,08925722	0,086584
γ,	0,036465	0,034913	0,035651	0,03509217	0,03725
T_a	327,5778	325,8082	325,4067	324,511722	326,6791
$\eta_{\scriptscriptstyle V}$	0,913996	0,922008	1,010836	0,93351388	0,82356
V_a	0,976052	0,978712	1,006891	1,043034	1,082413

2.3 Процесс сжатия рабочего тела

Вычисляем политропу сжатия:

$$n^{1} = 1 + \frac{8,314}{20,16 + 1,738 \cdot 10^{-3} \, \left(n^{1} + 1 \right) T_{a}}.$$

Параметры в конце сжатия: температура, давление:

$$p_{\rm C} = p \cdot \varepsilon^{\rm n}_{\rm 1}; \ T_{\rm C} = T_{\rm a} \cdot \varepsilon^{\rm n-1}_{\rm 1}$$

Давление, температура и удельный объём рабочего тела в момент воспламенения, при УОЗ $\Theta=17^{\circ}\div33^{\circ}$ и $\lambda=0.284$:

$$\begin{split} p_{y} = & \left(\frac{V_{a}}{V_{y}} \right)^{n_{1}} \cdot p_{a}; \\ T_{y} = & \left(\frac{V_{a}}{V_{y}} \right)^{n_{1}-1} \cdot T_{a}. \\ V_{y} = & \frac{V_{a}}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \cdot \left[\left(1 + \frac{1}{\lambda} \right) - \left[\cos \left(\frac{\Theta \cdot \pi}{180} \right) + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^{2} \left(\sin \left(\frac{\Phi \cdot \pi}{180} \right) \right)^{2}} \right] \right] \end{split}$$

Текущие значения p_y , T_y , V_y вычисляются по формулам аналогичным тем, что приведены выше.

Итоговые значения сведены в таблицу 2.3.

Таблица 2.3 Процесса сжатия

	$n_1 = 840$	$n_2 = 2400$	$n_3 = 4000$	$n_4 = 5800$	$n_5 = 6100$
n^{I}	1,37	1,373	1,375	1,377	1,378
P_c	2,571942	2,569514	2,506517	2,424606	2,357649
T_c	795,4809	796,8957	799,7398	801,3743	808,6633
V_y	0,113503	0,123198	0,146047	0,165196	0,181843
P_y	1,835561	1,643582	1,318501	1,128895	1,011512
T_y	726,2165	705,8002	671,2132	650,0439	641,1452
Θ	17	20	25	28	30

2.4 Термохимический расчет

Теоретическая масса воздуха, необходимая для сгорания 1,0 килограмма топлива, при C=0.855 и H=0.145 будет равна:

$$l_0 = \frac{1}{0.23} \cdot \left(\frac{8}{3} \cdot C + 8H \right); l_0 = 14,957$$
 (кмоль.возд./ кг.топл)

Количество воздуха, которое требуется для сгорания 1,0 килограмма топлива:

$$L_{0}=rac{1}{0,208}\cdot\left(rac{C}{12}+rac{H}{4}
ight)\!;L_{_{\it I}}=0,\!517\,($$
кмоль.возд./ кг.топл $)$.

Количество свежего заряда при $\alpha = 1$:

$$M_{_{1}}=lpha\cdot L_{_{0}}+rac{1}{m_{_{T}}};M_{_{1}}=0,\!517$$
(кмоль.г ор.см./ кг.топл) .

- где $m_T = 115 \ \kappa г/моль - молярная масса паров бензина$

Суммарное количество элементов сгорания:

$$M_2 = 0.553$$
 (кмоль гор. см./кг топл.)

Коэффициент молекулярного изменения свежей смеси:

$$\mu_0 = \frac{M_2}{M_1}; \mu_0 = 1,052.$$

Коэффициент молекулярного изменения рабочей смеси:

$$\mu = \frac{\mu_0 + \gamma_r}{1 + \gamma_r}; \mu = 1,05.$$

2.5 Термодинамический расчет

Коэффициент эффективности сгорания топлива, при коэффициенте избытка воздуха $\alpha=1$, выбираем из таблицы и принимаем его в диапазоне $\zeta=0.9\div0.98.$

Учтенная удельная теплота сгорания топлива будет равна:

$$H_{\rm u} = 43,928 \; (\frac{\kappa_{MOЛb}}{\kappa_{z}})$$

$$q_Z = \frac{\zeta \cdot H_u}{(1 + \gamma_r)(\alpha \cdot l_0 + 1)}.$$

Давление газов в процессе сгорания определяется следующим образом:

$$\begin{aligned} p_{2} &= E_{2} \cdot \Delta X_{1-2} + p_{1} \cdot \langle \langle \langle \psi \rangle \rangle - \psi \langle \langle \psi \rangle \rangle \langle \langle \psi \rangle \rangle \langle \langle \psi \rangle \rangle \langle \psi \rangle \langle \psi \rangle \\ &= \left(0.002 \cdot \frac{\varepsilon}{V_{c}} \right) \cdot q_{z}; \end{aligned}$$

Часть топлива, сгоревшего на рассматриваемом участке:

$$\Delta X_{1-2} = \exp\left[-6.908 \left[\frac{\varphi_1}{\varphi_Z}\right]^{m+1}\right] - \exp\left[-6.908 \left[\frac{\varphi_2}{\varphi_Z}\right]^{m+1}\right]$$

Для расчёта требуется указать следующие значения:

 p_1 – давление в начале рассматриваемого участка, МПа;

 ϕ '₁ и ϕ '₂ – углы поворота коленчатого вала в начале и в конце определенного участка соответственно;

 ϕ_1 и ϕ_2 — углы поворота коленчатого вала, отсчитываемые от момента воспламенения доначала или конца рассматриваемого участка соответственно;

$$K_{1-2} = \frac{k_{1-2} + 1}{k_{1-2} - 1}$$
 - фактор теплоемкостей.

Расчёты теплоемкостей рабочего тела на участке 1-2, сведены в Приложение и могут быть вычислены по уравнению:

$$k_{1-2} = 1,259 + \left[76,7 - \left(13,6 - \frac{14,2}{\alpha}\right) \cdot x_{1-2}\right] \cdot \frac{1}{T_{1-2}} - \left(0,0665 - \frac{0,0245}{\alpha}\right) \cdot x_{1-2}.$$

Среднее значение части топлива, приведенного в Приложении, сгоревшего на участке 1-2:

$$x_{1-2} = 0.5 \left[\exp \left[-6.908 \left[\frac{\varphi_1}{\varphi_Z} \right]^{m+1} \right] - \exp \left[-6.908 \left[\frac{\varphi_2}{\varphi_Z} \right]^{m+1} \right] \right];$$

 $T_{1-2} = (T_1 + T_2)/2$ – промежуточная температура на участке 1-2;

$$\psi \bullet = 1 + \frac{\varepsilon - 1}{2} \cdot \sigma$$

$$\sigma = \left(1 + \frac{1}{\lambda}\right) - \left[\cos \bullet + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^2 \cdot \sin \bullet}\right]$$

Сведённая в Приложение температура газов во время процесса сгорания:

$$T_2 = \frac{T_y \cdot p_2 \cdot \psi \cdot \varphi_2}{p_y \cdot \psi \cdot \varphi_y \cdot \mu_{1-2}}$$

 $\mu_{1-2}=(\mu_1+\mu_2)/2$ — средний на рассматриваемом участке коэффициент молекулярного изменения смеси;

$$\mu_{1} = 1 + \frac{4\mu_{0\text{max}} - 1\left[1 - \exp\left[-6.908\left(\frac{\varphi_{1}}{\varphi_{Z}}\right)^{m+1}\right]\right]}{1 + \gamma_{r}}$$

Данные μ_1 показаны в приложении для каждого из рабочих режимов. $\mu_0 = \mu_{0\,\text{max}} - \text{расчетный коэффициент молекулярного изменения свежей смеси.}$

Результаты расчета сведены в таблицу 2.4.

Таблица 2.4 – Термодинамические данные

	$n_1 = 840$	$n_2 = 2400$	$n_3 = 4000$	$n_4 = 5800$	$n_5 = 6100$
q_z	2390,594	2447,384	2605,137	2553,349	2494,952
E_2	53,88347	55,01357	56,92078	53,85602	50,70981

2.6 Расчет процесса расширения и выпуска

Данный пункт рассматривает нахождение средних показателей Политроп расширения, находящихся методом последовательных приближений, при заданной начальной $T_{\rm Z}$ и n_2 . Значение $V_{\rm Z}$ — объем рабочего тела, соответствует конечному значению давления $p_{\rm Z}$ при сгорании, т.е. при ϕ = ϕ Z (данные значения берутся из Приложения A).

Рассчитываем n_2 по представленной формуле:

$$n2 = 1 + \frac{8,341}{23,7 + 0,0046 \cdot 2872,74 \cdot \left(1 + \frac{1}{\delta^{n_2 - 1}}\right)}$$

Значения в конце процесса расширения, как политропного процесса:

$$p_b = \frac{p_Z}{\delta^{n_2}}; p_b; \quad T_b = \frac{T_Z}{\delta^{n_2-1}}; T_b,$$

где $p_{\rm Z}$ и $T_{\rm Z}$ – параметры в конце сжатия (берутся из Приложения A).

Текущие значения удельного объема, давления и температуры газов от конца процесса сгорания до 540° поворота коленчатого вала находятся из соотношений :

$$V_{y} = \frac{V_{a}}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \cdot \left[\left(1 + \frac{1}{\lambda} \right) - \left[\cos \phi_{pm} + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^{2} \sin^{2} \phi_{pm}} \right] \right] \right]$$

фрт – значение угла п.к.в. в данный момент

Необходимо провести проверку на верность подбора значений полученных температур отработавших газов. Для проведения проверки, воспользуемся представленной формулой:

$$T_r = \frac{T_b}{\sqrt[3]{\frac{p_b}{p_r}}};$$

Построим таблицу 2.5 и заполним её полученными значениями.

Таблица 2.5 Впуск и расширение

	$n_1 = 840$	$n_2 = 2400$	$n_3 = 4000$	$n_4 = 5800$	$n_5 = 6100$
n^2	1,182371	1,181792	1,177413	1,185279	1,195219
V_z	0,17391	0,15961	0,14187	0,13497	0,13262
p_z	4,619724	5,099123	6,097444	5,870654	5,32309
P_b	0,600958	0,598186	0,60684	0,520079	0,432876
T_{c}	2003,956	2000,43	2088,037	1861,749	1616,613

2.7 Индикаторные показатели рабочего цикла

Следующий этап расчета предназначен для получения индикаторных показателей за цикл работы двигателя. Теоретическая индикаторная работа за цикл определяется по методу «трапеций»:

$$L_{iT} = \sum_{i=1}^{n} \frac{P_{1i} + P_{2i}}{2} |V_{2i} - V_{1i}|$$

Расчётное среднее индикаторное давление

$$P_{iT} = \frac{\varepsilon \cdot L_{iT}}{(-1) \sum_{a}}, \quad M\Pi a$$

Индикаторный коэффициент полезного действия

$$\eta_i = 8.314 \frac{M_1 \cdot P_{iT} \cdot T_0}{P_0 \cdot \eta_V \cdot H_u}.$$

Удельный индикаторный расход топлива

$$g_i = \frac{3600}{\eta_i \cdot H_u} \cdot 10^3, \ \Gamma/\kappa BT \cdot \Psi$$

Полученные результаты расчета индикаторных показателей рабочего цикла, сведены в таблицу 2.6.

Таблица 2.6 - Индикаторные показатели

		1			
	$n_1 = 840$	$n_2 = 2400$	$n_3 = 4000$	$n_4 = 5800$	$n_5 = 6100$
η_i	0,417998	0,431834	0,411654	0,39959	0,397761
g_i	196,0524	189,7708	199,0736	205,0841	206,0268
P_{iT}	1,311009	1,366277	1,427909	1,280036	1,124101
L_{iT}	1,163284	1,215629	1,307044	1,213747	1,106128

2.8 Эффективные показатели и параметры двигателя

В этом пункте, по формулам, представленным ниже, рассчитываются наиболее важные, при повседневной эксплуатации, показатели двигателя,

такие как: расход топлива, мощность, крутящий момент и другие. Данный этап, является финальным в расчёте.

Расчет средней скорости поршня

$$v_n = \frac{S \cdot n}{30} \text{ m/c}$$

Среднее давление вследствие воздействия механических потерь

$$P_{M} = 0.034 + 0.0113v$$
 , M Π a

Среднее эффективное давление

$$P_e = P_{iT} - P_M$$
, M Π a

Механический коэффициент положительного действия

$$\eta_M = \frac{P_e}{P_{iT}}$$

Эффективный коэффициент положительного действия

$$\eta_e = \eta_i \cdot \eta_M$$

Удельный эффективный расход топлива

$$g_e = \frac{g_i}{\eta_M}, \kappa B_T \cdot \Psi$$

Расчетная эффективная мощность

$$N_e = \frac{P_e \cdot V_{JI} \cdot n}{30\pi}$$
, кВт.

Часовой расход топлива

$$G_T = N_e \cdot g_e$$
, кг/ч

Крутящий момент двигателя

$$M_e = \frac{3 \cdot 10^4 \cdot N_e}{\pi \cdot n}, \text{ H} \cdot \text{M}$$

Значение, рассчитанных эффективных показателей двигателя, сводятся в таблицу 2.7.

Таблица 2.7 - Эффективные показатели двигателя

при n =	$V_{ m n.cp}$	рм	pe	$\eta_{\scriptscriptstyle \mathrm{M}}$	η_{e}	ge	Ne	Me	$G_{\scriptscriptstyle \mathrm{T}}$
840	2,1168	0,0615	1,2495	0,95308	0,39838	205,705	13,9679	158,79	2,87326
2400	6,048	0,1126	1,2537	0,91757	0,39624	206,819	40,0412	159,319	8,28128
4000	10,08	0,16504	1,2629	0,88442	0,36407	225,09	67,2259	160,49	15,1319
5800	14,616	0,224	1,05603	0,825	0,32966	248,587	81,512	134,204	20,2628
6100	15,372	0,2338	0,8903	0,79198	0,31501	260,141	72,2715	113,138	18,8008

По сравнению с базовым двигателем, двигатель с модернизированным каталитическим нейтрализатором отработанных газов, немного теряет в показателях эффективной мощности и крутящего момента. Такой «провал» по мощности и моменту, обусловлен несколько увеличенным сопротивлением на выпуске и увеличенным, с целью снижения температуры горения рабочей смеси, углом опережения зажигания.

2.9 Индикаторные диаграммы и ВСХ

По результатам расчетов двигателя ВАЗ 21127, выполненных выше, построен ряд индикаторных диаграмм двигателя. Индикаторные диаграммы, сведены в Приложение X и показывают зависимость давления в цилиндре двигателя от угла поворота коленчатого вала, а так же зависимость давления в цилиндре двигателя от объема цилиндра.

По мимо индикаторных диаграмм, по результатам расчетов, сведенных в таблицу 2.7, была построена внешняя скоростная характеристика двигателя ВАЗ 21127. ВСХ двигателя ВАЗ 21127, находится в Приложении Б.

3 Расчет кинематики и динамики

Ниже, приведены основные пункты расчетов кинематики и динамики двигателя ВАЗ 21127 с модернизированным каталитическим нейтрализатором отработанных газов. Расчеты выполнены по формулам из литературы [1 - 10].

Данные для проведения расчетов, берутся из результатов теплового расчета, представленного выше и заводских характеристик двигателя ВАЗ 21127.

Обороты коленчатого вала	n = 5800 об/мин		
Диаметр цилиндра	$D_{\Pi} = 82 \; { m MM}$		
Ход поршня	S = 75,6 mm		
Отношение радиуса кривошипа к	λ ~ 0,284		
длине шатуна			

Угловая скорость вращения коленчатого вала
$$\omega = \frac{\pi \cdot n}{30} = \frac{3,14 \cdot 5800}{30} = 607 \text{ c}^{-1}$$
 Радиус кривошипа
$$r = \frac{S}{2} = \frac{75 \text{ 6}}{2,} = 37,8 \text{ мм}$$
 Длина шатуна
$$l = \frac{37,8}{\lambda} = 135 \text{ мм}$$

3.1 Кинематический расчет

Перемещение поршня состоит из перемещения первого порядка $S_{\Pi 1}$ при длине шатуна равной ∞ , и второго порядка $S_{\Pi 2}$, дополнительного перемещения, зависящей от конечной длины шатуна и определяется по формуле:

$$S_x = r \cdot ((1 - \cos\varphi) + \frac{1}{4}(1 - \cos2\varphi))$$

где: ϕ — угол поворота коленчатого вала;

$$S_{\Pi 1} = r(1 - cos \varphi)$$
 – перемещение первого порядка;

$$S_{\Pi 2}=r \ \frac{\lambda}{4} \ 1-cos2 \varphi$$
 — перемещение второго порядка.

При $\varphi = 0^{\circ}$:

$$S_x = 37.8 \quad 1 - \cos 0 + \frac{0.284}{4} \quad 1 - \cos 2 \cdot 0 = 0 \text{ mm}$$

Рассчитаем перемещения поршня до 720° и построим график перемещения $S_x = f(\varphi)$. Так как перемещение поршня цикличны, график строится до 360°. Таблица с полными результатами вычислений, в целях удобства восприятия, вместе с графиками, сведена в Приложение В.

Рассчитаем скорость поршня по формуле:

$$V_x = \omega \cdot r \quad \sin\varphi + \frac{\lambda}{2}\sin2\varphi$$

 $V_{x1} = \omega \cdot r(sin\varphi)$ – скорость первого порядка;

$$V_{x2} = \omega \cdot r \ \frac{\lambda}{2} sin2 \varphi$$
 — скорость второго порядка.

При $\varphi = 0^\circ$:

$$V_x = 586,43 \cdot 37,8 \quad \sin 0 + \frac{\lambda}{2} \sin 2 \cdot 0 = 0 \text{ m/c}$$

Рассчитаем скорость поршня до 720° и построим график скорости $V_x = f(\varphi)$. Так как скорость поршня циклична, график строится до 360°. Таблица с полными результатами вычислений, в целях удобства восприятия, вместе с графиками, сведена в Приложение В.

Рассчитаем ускорение поршня, вычислив его по формуле:

$$j=\omega^2\cdot r\cdot (cos\varphi+\lambda cos2\varphi)$$

$$j_{\Pi 1}=\omega^2\cdot r(cos\varphi)$$
 — ускорение первого порядка;
$$j_{\Pi 2}=\omega^2\cdot r(\lambda cos2\varphi)$$
 — ускорение второго порядка.

При $\varphi = 0^\circ$:

$$j = 607^2 \cdot 37.8 \cdot (\cos 0 + 0.284 \cdot \cos 2 \cdot 0) = 17.9 \text{ m}^2/\text{c}$$

Рассчитаем ускорение поршня до 720° и построим график ускорения $j=f(\varphi)$. Так как ускорения поршня цикличны, график строится до 360° . Таблица с полными результатами вычислений, в целях удобства восприятия, вместе с графиками, сведена в Приложение В.

По результатам расчета кинематики, можно увидеть, что по сравнению с базовым двигателем ВАЗ 21127, двигатель с модернизированным каталитическим нейтрализатором, по всем основным пунктам расчета, ничем не отличается от своего прототипа. Исходя из этого, можно сделать вывод, что модернизированный каталитический нейтрализатор с сотами, выполненными из фольги, оказывает крайне незначительное влияние на общую картину кинематики ДВС.

3.2 Динамический расчет

Определим силу давления газов рассчитав ее по формуле:

$$P_{\Gamma} = p_{\Gamma} \cdot F_{\Pi}$$

где: F_{Π} – площадь поршня.

$$P_{\Gamma} = (p_{X} - p_{0}) \cdot \frac{\pi \cdot d_{\Pi}^{2}}{4}$$

Величина давление p_X берется с индикаторной диаграммы приведенной в Приложении Γ , p_0 – атмосферное давление, d_Π – диаметр поршня.

При $\varphi = 0^{\circ}$:

$$P_{\Gamma} = (0.1166 - 0.1) \cdot \frac{3.14 \cdot 0.082^2}{4} = 0.088 \text{ H}$$

Рассчитаем силы давления газов действующих на поршень до 720° и построим график давления $P_{\Gamma} = f(\varphi)$. Таблица с полными результатами вычислений, в целях удобства восприятия, вместе с графиками, сведена в Приложение Γ .

К возвратно-поступательно движущимся массам относятся: поршень, поршневой палец, поршневые кольца, верхняя часть шатуна (0,275 массы шатуна).

Определим сумму инерции по формуле:

$$P = -m \cdot j$$

где: j — ускорение поршня, m — масса поршневой группы, равная:

$$m = m_{\Pi} + m_{\coprod \Pi}$$

Масса поршня:

$$m_{\Pi}=m_{\Pi}^{'}\cdot F_{\Pi}=100\cdot 0$$
,0053 = 0,53 кг

удельную конструктивную массу поршня примем равной $m_\Pi^{'}=100~{\rm kr/m^2}.$

Масса шатуна:

$$m_{
m III}=m_{
m III}^{'}\cdot F_{
m II}=130\cdot 0{,}0053=0{,}686$$
 кг

удельную конструктивную массу шатуна примем равной $m_{\rm III}^{'}=130~{\rm kr/m^2}.$

Масса шатуна, сосредоточенная на оси поршневого пальца:

$$m_{\text{IIII}} = 0.275 \cdot m_{\text{III}} = 0.275 \cdot 0.686 = 0.188$$
 кг

Массы, совершающие возвратно-поступательное движение:

$$m = m_{\Pi} + m_{\Pi\Pi\Pi} = 0.53 + 0.188 = 0.716$$
 кг

Формулу суммарной силы инерции представляем в виде:

$$P = -m \cdot j = -m \cdot r(\cos\varphi + \lambda\cos 2\varphi) \cdot \omega^{2}$$

$$P = -m \cdot \omega^{2} \cdot r\cos\varphi - m \cdot \lambda\cos 2\varphi \cdot \omega^{2}$$

$$j = j_{1} + j_{2}$$

Сила инерции первого рода:

$$P = -m \cdot \omega^2 \cdot r \cos \varphi = -m \cdot j_{\Pi 1}$$

Сила инерции второго рода:

$$P = -m \cdot \lambda \cos 2\varphi \cdot \omega^2 = -m \cdot j_{\Pi 2}$$

При $\varphi = 0^{\circ}$:

$$P_1 = -m \cdot j_{\Pi 1} = -0.716 \cdot 13.9 = -9.9 \text{ H}$$

 $P_2 = -m \cdot j_{\Pi 2} = -0.716 \cdot 3.9 = -2.8 \text{ H}$
 $P_1 = P_1 + P_2 = -9.9 - 2.8 = -12.8 \text{ H}$

Рассчитаем силы инерции до 720° и построим график сил инерции Р = $f(\varphi)$. Так как силы инерции цикличны, график строится до 360° . Таблица с полными результатами вычислений, в целях удобства, вместе с графиками, сведена в Приложение Γ .

К вращающимся массам относятся кривошип и нижняя часть шатуна (0,725 массы шатуна).

Определим силу инерции по формуле:

$$P_r = -m_r \cdot \omega^2 \cdot r$$

где: m_r – масса вращающихся деталей.

$$m_r = m_k + m_{\text{IIIK}}$$

Масса неуравновешенных частей одного колена без противовесов находится по формуле:

$$m_k = m_k^{'} \cdot F_{\Pi} = 170 \cdot 0,0053 = 0,897$$
 кг

удельную конструктивную массу вала принимаем равной $m_{k}^{'}=170~{\rm kr/m^{2}}.$

Масса шатуна, на оси кривошипа:

$$m_{\text{IIIK}} = 0.725 \cdot m_{\text{III}} = 0.725 \cdot 0.686 = 0.5 \text{ Kg}$$

Масса вращающихся частей:

$$m_r = m_k + m_{\text{иг}} = 0.897 + 0.5 = 1.4 \text{ кг}$$

Силы инерции, создаваемые ими:

$$P_r = -m_r \cdot \omega^2 \cdot r = -1.4 \cdot 607^2 \cdot 0.0378 = -19459 \text{ H}$$

Суммарная сила P_1 рассчитывается по формуле:

$$P_1 = P_{\Gamma} + P$$

При $\varphi = 0^{\circ}$:

$$P_1 = P_{\Gamma} + P = 0.088 - 12.8 = -12.7 \text{ KH}$$

Рассчитаем суммарные силы в КШМ действующие на поршень до 720° и построим график $P_1 = f(\varphi)$. Таблица с полными результатами всех вычислений, в целях удобства восприятия, вместе с графиками, сведена в Приложение Γ .

На поршневом пальце суммарная сила инерции P_1 раскладывается на две составляющие:

N – нормальная к поверхности цилиндра, прижимающая поршень к поверхности цилиндра, вызывает механические потери и износ цилиндропоршневой группы.

K — действует вдоль оси шатуна, передает усилие поршня на коленчатый вал, вызывает деформации сжатия и растяжения в шатунах.

Силу N, определим по формуле:

$$N = P_1 \cdot tg\beta$$

При $\varphi = 0^{\circ}$:

$$N = P_1 \cdot tg\beta = -12,7 \cdot 0 = 0$$
 кН

Проведем расчет до $\phi = 720^{\circ}$. Результаты расчетов сводятся в приложение Γ .

Силу K, определим по формуле:

$$K = \frac{P_1}{\cos\beta}$$

При $\varphi = 0^{\circ}$:

$$K = \frac{P_1}{c \ s\beta} = \frac{-12,7}{1} = -12,7 \text{ kH}$$

Проведем расчет до $\varphi=720^\circ$. Результаты расчетов сводятся в приложение Γ .

Разложим силу K на две составляющие:

Z – радиальная сила, изгибающая шатунную шейку.

 Т – тангенциальная сила, изгибающая шатунную шейку, щеки коленчатого вала и дополнительно скручивает коренную шейку.

Определим силу Z, рассчитав ее по формуле:

$$= P_1 \cdot \frac{\cos(\varphi + \beta)}{\cos\beta}$$

При $\varphi = 0^\circ$:

$$Z = -12.7 \cdot \frac{\cos \varphi + \beta}{\cos \beta} = -12.7 \text{ kH}$$

Проведем расчет до $\phi = 720^{\circ}$. Результаты расчетов сводятся в приложение В.

Определим силу Т, рассчитав ее по формуле:

$$T = P_1 \cdot \frac{\sin \varphi + \beta}{\cos \beta} = -12,7 \cdot 0 = 0 \text{ KH}$$

Проведем расчет до $\varphi = 720^\circ$. Результаты расчетов сводятся в приложение В. Все значения тригонометрических функций берутся из справочной литературы [1].

По результатам расчета динамики двигателя, можно увидеть, что по BA3 21127. базовым двигателем сравнению двигатель cмодернизированным каталитическим нейтрализатором, по всем основным пунктам расчета, ничем не отличается от своего прототипа. Исходя из этого, модернизированный онжом сделать вывод, что каталитический нейтрализатор с сотами, выполненными из фольги, оказывает крайне незначительное влияние на общую картину динамики ДВС.

4 Специальная часть

Данная часть работы, рассматривает преимущества каталитического нейтрализатора, с применением сот, выполненных из нержавеющей фольги и оборудованного разогревающим устройством. Далее, будет рассчитана скорость прогрев конструкции такого типа и ее отличие от обычного катализатора, в котором применяются керамические соты.

4.1 Расчет прогрева модернизированного катализатора

Для начала расчета, нам понадобится ряд исходных данных, взятых из справочной литературы [10]. К исходным данным, в нашем расчете, относятся теплофизические характеристики материала, из которого выполнены соты катализатора, а именно: коэффициент теплопроводности (λ), коэффициент температуропроводности (α), плотность тела (α) и его удельная теплоемкость (α).

Так же, к исходным данным, относится и температуру окружающей среды катализатора (t_c), которая приравнивается к температуре отработанных газов двигателя, обтекающих соты катализатора с начала пуска двигателя. Конечная температуру тела (t_2), равняется рабочей температуре катализатора, а именно 350 °C, начальную температуру тела (t_1), примем равной 0 °C. Форма блока сот катализатора, является максимально приближенной к форме цилиндра. Для украшения расчетов, допустим, что блок сот имеет форму цилиндра. Так же, для упрощения расчетов, вычтем из цилиндра сотовые пустоты для прохода ОГ и представим его в виде сплошного тела. Чтобы, при таком допущении сохранить массу катализатора, уменьшим диаметр (D) цилиндра до 0,045 метров.

Последнее, что потребуется для начала расчетов, это коэффициент теплопередачи (α). Так как выхлопные газы, подобно ветру, постоянно обдувают блок сот катализатора, примем значение α в диапазоне от 10 до 150,

как при принудительной конвекции.

Приступим к расчету.

Определим площадь поверхности тела по формуле:

$$F = \pi \cdot D \cdot L + 2 \cdot \pi \cdot (\frac{2}{4})$$

Определим объем тела по формуле:

$$V = L \cdot \pi \cdot (\frac{2}{4})$$

Найдем массу тела:

$$G = \rho \cdot V$$

Определим коэффициент формы тела:

$$K = ((2,405/(\frac{1}{2}))^2 + (\frac{1}{L})^2)^{-1}$$

Темп нагрева определим по формуле:

$$m = a/K$$

Модифицированное число Био:

$$Bi = a \cdot K \cdot \frac{1}{\lambda \cdot V}$$

Определим отношение напора по поверхности к напору по объему:

$$\Psi = (1 + 1.44 \cdot Bi \cdot Bi^2)^{-0.5}$$

Рассчитаем относительный темп нагрева:

$$M = \Psi \cdot Bi$$

Расчётный темп нагрева определяется по формулам:

$$m_{a\lambda} = M \cdot m$$
 ;

$$m_{cp} = \Psi \cdot a \cdot \frac{1}{c \cdot \rho \cdot V};$$

$$\Delta = ABS(1 - \frac{m_{a\lambda}}{cp}) \cdot 100.$$

Время нагрева определяется по формуле:

$$t = \frac{LN(ABS(t_c - t_1)) - LN(ABS(t_c - t_2))}{a\lambda}$$

Данный расчет времени нагрева, проводится 3 раза, для трех различных значений конечной температуры тела t2. Затем, расчет повторяется, но с использованием теплофизические характеристик сот.

Результаты расчетов времени нагрева, для катализатора, соты которого выполнены из керамики, сведены в таблицы Д1 — Д3, Приложения Д. Результаты расчетов времени нагрева, для катализатора, соты которого выполнены из фольги, сведены в таблицы Д4 — Д6, Приложения Д.

Результаты расчетов, наглядно отображены на рисунке 4.1. На рисунке 4.1, показан прогрев стандартного катализатора (сплошная линия) и прогрев модернизированного катализатора, с сотами, выполненными из нержавеющей фольги и оборудованным электронагревателем (пунктирная линия). Как мы можем видеть, по представленному на рисунке 4.1 графику, время прогрева модернизированного катализатора, заметно меньше.

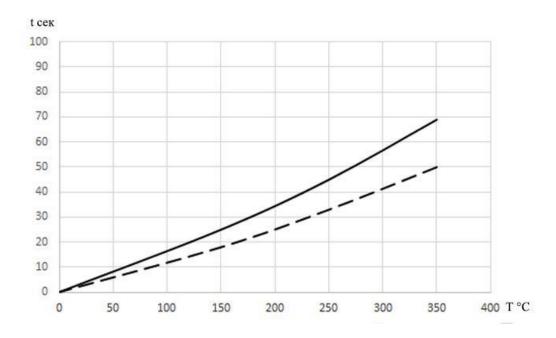


Рисунок 4.1 – Прогрев катализатора (стандартный катализатор обозначен - , катализатор с индукционным устройством электроподогрева. - - -)

5 Безопасность и экологичность бакалаврской работы

Данная часть работы, посвящена вопросам уровня экологичности и безопасности двигателя, при его переходе на каталитический нейтрализатор с индукционным устройством электроподогрева, выполненные из фольги, а не из керамики, в качестве носителя для элементов, запускающих реакции преобразования вредных выбросов ОГ.

5.1 Оценка экологичности, по выбросам ОГ двигателя

Основным результатом модернизации двигателя ВАЗ являлась модернизация каталитического нейтрализатора отработавших газов, что позволило повысить экологичность и надежность двигателя. Разберем влияние модернизированного катализатора на двигатель подробнее.

Благодаря увеличению угла опережения зажигания, а, следовательно, и увеличению длины процесса сгорания, концентрация углеводородов (СН) в отработавших газах снижается. Это происходит, большей за счет длительности процесса сгорания топлива, что позволяет лучше догорать СН за фронтом пламени и в пристеночной области. Так же, благодаря более быстрому прогреву сот, катализатор разогревается до рабочей температуры быстрее и процессы по преобразованию СН начинаются раньше, что так же, положительно сказывается на экологичности двигателя. Таким образом, обеспечивается снижение токсичности ОГ по СН по сравнению с базовыми показателями двигателя.

Токсичность по угарному газу (CO), снижается в связи с большей полнотой сгорания топлива, за счет увеличения длительности процесса сгорания. Так же, благодаря более быстрому прогреву сот, катализатор разогревается до рабочей температуры быстрее и, процессы по преобразованию CO, как и в предыдущем случае, начинаются раньше.

Снижение показателей выбросов оксидов азота (NO_x), так же

обеспечивается, за счет более быстрого прогрева сот катализатора до рабочей температуры, что позволяет начать преобразование NO_x раньше. По мимо этого, снижение выбросов NO_x происходит и за счет увеличения УОЗ, что понижает температуру горения рабочей смеси, а, следовательно, и снижает выбросы NO_x , которые, на прямую зависят от данной температуры.

Условий для образования сажи и других твердых частиц при модернизации не появляется, следовательно, токсичность по этим пунктам останется на прежнем уровне.

5.2 Безопасность и надежность модернизированного двигателя

В отличии от керамических сот катализатора, при разрушении, от сот, выполненных из фольги, не откалываются керамические обладающие высокой твердостью и способные полностью разрушить ДВС при их импульсном забрасывании в цилиндры двигателя. Это позволяет заявить о том, что вероятность столкнуться с дорогостоящим ремонтом ДВС снижается. При разрушении сот из фольги, которое может произойти от их перегрева, соты уводит, и конструкция блока сот искажается, что затрудняет проход ОГ и снижает эффективность ИХ нейтрализации. Данный дефект, появляющиеся при разрушении, не являются губительными для двигателя и позволяет ему сохранять свою работоспособность, благоприятно

сказывается на общей картине надежности двигателя.

В общем, на безопасность работы двигателя и всего транспортного средства, замена сот катализатора, не оказывает какого-либо заметного влияния.

6 Экономический раздел

Данный раздел, посвящен экономическому обоснованию модернизации каталитического нейтрализатора. Основной целью данного раздела, является ответ на вопрос: «Целесообразно ли вводить модернизации в двигатель, с экономической точки зрения?».

6.1 Экономическое обоснование работы

При внесении конструктивных изменений, описанных выше, двигатель ВАЗ 21127 прибавит в стоимости и станет выдавать меньшую мощность.

Как нам известно, при выборе автомобиля, потребителю прежде всего важна его стоимость, а так же технические характеристики транспортного средства, его комфорт и оснащение.

По результатам теплового расчета, можно предположить, что при установке нового каталитического нейтрализатора, мощность двигателя упадет примерно на 5-10% и станет менее 100 л.с. При этом, стоит помнить, что стоимость данного двигателя вырастет.

Такой расклад, является не целесообразным для предприятия АО АвтоВАЗ, особенно для автомобиля LADA Granta. На данный момент, LADA Granta, в основном, оснащается двумя двигателями, это силовые агрегаты, выдающие мощность в 87 и 106 л.с. Двигатель, выдающий 106 л.с, является двигателем ВАЗ 21127, модернизация которого и описана в данной работе и будет снижена, мощность которого И В ходе внедрения каталитического нейтрализатора. В сумме \mathbf{c} увеличением стоимости, автомобили с таким двигателем вряд ли будут пользоваться спросом, ведь разрыв в цене, по сравнению с менее мощным мотором, станет ещё больше, а разрыв в мощности ещё меньше.

Для того, чтобы нейтрализовать такое, предположительно негативное влияние, на спрос данного двигателя, можно прибегнуть к полному отказу

от выпуска менее мощного, восьмидесятисемисильного двигателя. Такое решение, на первый взгляд, может казаться не логичным, но оно будет вполне оправдано, при увеличении количества производства более дорогого ДВС.

Дело в том, что цена любой продукции сильно зависит от количества производства данного товара. Примерная зависимость цены стали 09Г2С, от количества ее производства, показана на рисунке 6.1. На графике, представленном на рисунке 6.1, мы отчетливо видим зависимость цены на сталь на предприятии ООО «НПК «Специальная металлургия» от количества ее производства.

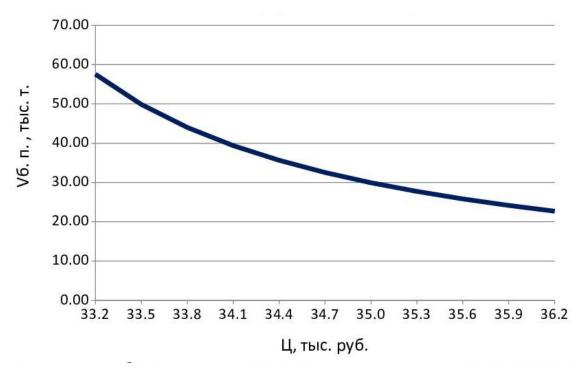


Рисунок 6.1 – Зависимость цены от объема производства

И хотя на графике показана цена на сталь, а не на готовый автомобиль или двигатель, зависимость цены какого-либо товара, на прямую зависит от объема его производства, это аксиома экономики. Это значит, что при остановке производства менее мощного двигателя, ради увеличения производства более мощного, произойдет снижение цены, на силовой агрегат, который будет превосходить тот, что был снят с производства.

Такой экономический ход, может себя оправдать, так как выбора у

потребителя просто не останется. В такой ситуации, покупатель изначально будет немного переплачивать, но, даже на автомобиле в базовой комплектации, будет иметь современный и экологичный двигатель.

ЗАКЛЮЧЕНИЕ

Результатами представленной бакалаврской работы стали выполненные расчеты: тепловой, кинематический, динамический. В ходе проведения данных расчетов, были получены основные параметры двигателя, необходимые для его проектирования.

Полученные, в ходе расчетов, числовые значения, оказались близки к характеристикам двигателя ВАЗ 21127, взятого для основы расчетов. В процессе выполнения работы, были получены мощностные характеристики двигателя, которые так же оказались схожи с упомянутым выше силовым агрегатом.

По результатам расчетов, были построены индикаторные диаграммы двигателя, диаграмма ВСХ, диаграмма перемещения поршня, диаграмма сил инерции действующих на поршень и диаграммы прочих сил, действующих на поршень рассчитанного двигателя.

В результате улучшения были получены следующие изменения в характеристиках двигателя:

- время прогрева каталитического нейтрализатора до рабочей температуры снизилось примерно в 8 раз;
- максимальная мощность двигателя снизилась примерно на 10%; снижение содержания в отработавших газах: CH, CO и NO_x .

В разделе «Безопасность и экологичность бакалаврской работы» была проведена оценка токсичности и надежности двигателя с модернизированным каталитическим нейтрализатором. Двигатель, показал общее повышение экологических характеристик и уровня надежности.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Колчин, А.И. Расчет автомобильных и тракторных двигателей [Текст]/ Колчин, А.И. Демидов В.П. // Учебное пособие для вузов 2-е изд., перераб. и доп. М: Высшая школа 1980. с.496.
- 2. Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / Вибе И.И. // М. Машиностроение, 1971. c.282.
- 3. Корчагин В. А. Тепловой расчет автомобильных двигателей [Электронный ресурс]: учеб. пособие / Корчагин В. А., Ляпин С. А., Коновалова В. А. // Липецкий государственный технический университет Липецк: ЛГТУ: ЭБС АСВ, 2016. 82 с.
- 4. Жегалин О.И. Каталитические нейтрализаторы транспортных машин / О.И. Жегалин, Н.А. Китросский, В.И. Панчишный и др.- М.: Машиностроение, 1979 80 с.
- Звонов В.А. Токсичность двигателей внутреннего сгорания / В.А.
 Звонов // Второе издание, перераб. М.: Машиностроение, 1981. 160 с.
- 6. Луканин В.Н. Двигатели внутреннего сгорания [Текст] / Луканин В.Н. // Кн. 1. Теория рабочих процессов. М.: Высшая школа, 1995. с.452.
- 7. Луканин В.Н. Двигатели внутреннего сгорания [Текст] / Луканин В.Н. // Кн. 2. Динамика и конструирование. М.: Высшая школа, 1995. с. 428.
- 8. Чайнов Н.Д. Конструирование двигателей внутреннего сгорания [Текст] / Чайнов Н.Д., Иващенко Н. А., Краснокутский А. Н., Мягков Л. Л. // Учебник М.: Машиностроение, 2008. 496 с.
- 9. Орлин, А.С. Двигатели внутреннего сгорания: Системы поршневых и комбинированных двигателей. Учебник для вузов по специальности «Двигатели внутреннего сгорания» /С.И. Ефимов, Н.А. Иващенко, В.И. Ивин и др.; Под общей редакцией А.С. Орлина, М.Г. Круглова //. 3-е издание, перераб. И доп. М.: Машиностроение, 1985. с.456.

- 10. Мищенко К.П. Краткий справочник физико-химических величин / К.П. Мищенко, А.А. Равделя // Л.: Химия, 1974. с. 200
- 11. Verhelst, S. A critical review of experimental research on hydrogen fueled SI engines / S. Verhelst, R. Sierens, S. Verstraeten // SAE. 2006. №2006-01-0430.
- 12.Beran, R., Baufeld, T., Philipp, H., Kim, J. T., Kim, J. S.: Entwicklung des H17/24G Dem ersten koreanischen Gasmotor. in: 11. Tagung Der Arbeitsprozess des Verbrennungsmotors. Graz. 2007
- 13.Bonnevie-Svendsen, A., Boulouchos, K., Lämmle, Ch., Vlakos, I.: Double-Vibe-Model for heat release in lean burn gas engines with prechamber ignition. in: 6. Dessauer Gasmotoren-Konferenz. Dessau-Roßlau. 2009
- 14.Rory R, Davis: "The Ball Piston Engine: A New Concept in High Efficient Power Machines", Convergence Eng. Corporation.
- 15.REGI. Us. Inc.: Rand-Cam Engine, US Patent No:0746071, January 10th 2001
- 16. Патент RU №2204027, С1, МПК F01N 3/00, Бюл. №13
- 17.Dyna-Cam Engine Corporation: "Two-cycle swash plate internal combustion engine", USA Patent No:7137366, November 21st 2006
- 18.Renegar, David, C.: "The Quasiturbine", USA Patent No:6629065 September 12th 2003
- 19. Akmandor, i.S., Ersöz, N.: Novel Thermodynamic Cycle, PTC / WO / 2004 / 022919 AI. (March 18th 2004)
- 20.Haywood, R, W.:"A Critical Review of Theorems of Thermodynamics Availability" J. Mech. Eng. Sci. vol.16 MIT Press, 1970.
- 21.Clarke, J. M.: "Thermodynamic Cycle Requirements for Very High Rotational Efficiencies" J. Mech. Eng. Sci. 1974
- 22. Stephen R. Turns: "An Introduction to Combustion" McGraw-Hill Series in Mech. Eng. 1996.
- 23.Baumeister T.: "Mark's Standard Handbook for M. Engineer" McGraw-Hill Inc., New York, 1966.

- 24. Смоленский, В.В. Автомобильные двигатели: курс лекций [Текст]/В.В. Смоленский. Тольятти: ТГУ, 2009. 183 с.
- 25.ГОСТ 7.1-2003. Библиографическая запись. Общие требования и правила составления [Текст]. Москва: ИПК Изд-во стандартов, 2004. 47 с.
- 26.Дзюбан А.М. Учебно-методическое пособие к выполнению выпускной квалификационной работы бакалавров / А.М. Дзюбан, Д.А. Павлов, В.В. Смоленский ФГБОУ ВО «Тольяттинский государственный университет» 2018 51 с.

ПРИЛОЖЕНИЕ А

Таблица A1 - Результаты теплового расчета двигателя BA3 21127 при $n=840~{\rm Muh}^{-1}$

С	φ1	x1-2	ΔΧ1-2	k1-2	K1-2	Тпредполаг	T1-2	T2	σу	ψ(φ'y)	P2	μ1	μ1-2	Vc.T.
343	0	0	0			726,216		726,216	0,05583	1,27917	0,05583	1,27917	1,83556	1
344	1	0,00041	0,00083	1,36866	6,42504	672,427	699,322	735,469	0,04953	1,24763	0,04953	1,24763	1,90599	1,00004
345	2	0,00195	0,00391	1,37219	6,37363	681,882	677,155	754,174	0,04358	1,21792	0,04358	1,21792	2,00238	1,00024
346	3	0,00418	0,00836	1,37037	6,40002	693,401	687,641	786,328	0,03801	1,19005	0,03801	1,19005	2,13729	1,00066
347	4	0,00687	0,01375	1,36818	6,43209	707,960	700,680	834,620	0,03281	1,16405	0,03281	1,16405	2,32052	1,00136
348	5	0,00989	0,01978	1,36553	6,47147	726,499	717,229	900,688	0,02799	1,13993	0,02799	1,13993	2,55938	1,00236
349	6	0,01309	0,02618	1,36236	6,51933	749,889	738,194	985,182	0,02354	1,11769	0,02354	1,11769	2,85849	1,00368
350	7	0,01634	0,03268	1,35867	6,57622	778,919	764,404	1087,773	0,01947	1,09735	0,01947	1,09735	3,21943	1,00534
351	8	0,01950	0,03901	1,35448	6,64205	814,259	796,589	1207,205	0,01578	1,07891	0,01578	1,07891	3,64052	1,00731
352	9	0,02246	0,04491	1,34989	6,71608	856,451	835,355	1341,386	0,01248	1,06239	0,01248	1,06239	4,11672	1,00958
353	10	0,02507	0,05014	1,34501	6,79697	905,883	881,167	1487,543	0,00956	1,04780	0,00956	1,04780	4,63990	1,01212
354	11	0,02724	0,05448	1,33996	6,88297	962,782	934,332	1642,405	0,00703	1,03514	0,00703	1,03514	5,19919	1,01487
355	12	0,02888	0,05776	1,33489	6,97211	1027,210	994,996	1802,414	0,00488	1,02441	0,00488	1,02441	5,78160	1,01780
356	13	0,02993	0,05986	1,32991	7,06235	1099,058	1063,134	1963,932	0,00313	1,01563	0,00313	1,01563	6,37278	1,02082
357	14	0,03036	0,06071	1,32511	7,15182	1178,048	1138,553	2123,429	0,00176	1,00879	0,00176	1,00879	6,95777	1,02389
358	15	0,03016	0,06032	1,32057	7,23887	1263,739	1220,893	2277,650	0,00078	1,00391	0,00078	1,00391	7,52187	1,02695
359	16	0,02938	0,05875	1,31635	7,32220	1355,531	1309,635	2423,742	0,00020	1,00098	0,00020	1,00098	8,05136	1,02992
360	17	0,02806	0,05612	1,31246	7,40084	1452,674	1404,102	2559,343	0,00000	1	0	1	8,53416	1,03276
361	18	0,02629	0,05258	1,30892	7,47414	1554,281	1503,478	2682,645	0,00020	1,00098	0,0002	1,00098	8,96040	1,03542
362	19	0,02417	0,04834	1,30573	7,54176	1659,341	1606,811	2792,404	0,00078	1,00391	0,00078	1,00391	9,32273	1,03786
363	20	0,02181	0,04362	1,30287	7,60358	1766,740	1713,040	2887,934	0,00176	1,00879	0,00176	1,00879	9,61651	1,04007

364	21	0,01931	0,03862	1,30031	7,65968	1875,288	1821,014	2969,066	0,00313	1,01563	0,00313	1,01563	9,83980	1,04202
365	22	0,01678	0,03356	1,29805	7,71025	1983,743	1929,515	3036,086	0,00488	1,02441	0,00488	1,02441	9,99314	1,04372
366	23	0,01431	0,02861	1,29605	7,75559	2090,847	2037,295	3089,659	0,00703	1,03514	0,00703	1,03514	10,07928	1,04517
367	24	0,01197	0,02394	1,29429	7,79602	2195,357	2143,102	3130,742	0,00956	1,04780	0,00956	1,04780	10,10271	1,04638
368	25	0,00982	0,01965	1,29274	7,83191	2296,080	2245,719	3160,499	0,01248	1,06239	0,01248	1,06239	10,06924	1,04737
369	26	0,00791	0,01582	1,29139	7,86361	2391,906	2343,993	3180,208	0,01578	1,07891	0,01578	1,07891	9,98545	1,04817
370	27	0,00625	0,01249	1,29021	7,89147	2481,840	2436,873	3191,196	0,01947	1,09735	0,01947	1,09735	9,85836	1,04881
371	28	0,00484	0,00968	1,28919	7,91580	2565,025	2523,432	3194,761	0,02354	1,11769	0,02354	1,11769	9,69493	1,04929
372	29	0,00367	0,00735	1,28831	7,93689	2640,767	2602,896	3192,134	0,02799	1,13993	0,02799	1,13993	9,50187	1,04967
373	30	0,00273	0,00547	1,28756	7,95501	2708,548	2674,657	3184,432	0,03281	1,16405	0,03281	1,16405	9,28536	1,04994
374	31	0,00200	0,00399	1,28693	7,97042	2768,029	2738,288	3172,646	0,03801	1,19005	0,03801	1,19005	9,05094	1,05015
375	32	0,00143	0,00285	1,28640	7,98332	2819,058	2793,543	3157,626	0,04358	1,21792	0,04358	1,21792	8,80346	1,05029
376	33	0,00100	0,00200	1,28596	7,99394	2861,655	2840,356	3140,085	0,04953	1,24763	0,04953	1,24763	8,54708	1,05039
377	34	0,00069	0,00137	1,28561	8,00245	2896,005	2878,830	3120,609	0,05583	1,27917	0,05583	1,27917	8,28528	1,05046
378	35	0,00046	0,00092	1,28535	8,00905	2922,435	2909,220	3099,668	0,06251	1,31253	0,06251	1,31253	8,02094	1,05051
379	36	0,00030	0,00061	1,28515	8,01391	2941,395	2931,915	3077,634	0,06954	1,34770	0,06954	1,34770	7,75641	1,05054
380	37	0,00019	0,00039	1,28507	8,01587	2941,395	2941,395	3054,796	0,07693	1,38465	0,07693	1,38465	7,49358	1,05056
381	38	0,00012	0,00025	1,28507	8,01580	2941,395	2941,395	3031,376	0,08467	1,42337	0,08467	1,42337	7,23397	1,05057
382	39	7,563E-05	0,00015	1,28507	8,01575	2941,395	2941,395	3007,555	0,09277	1,46383	0,09277	1,46383	6,97879	1,05058
383	40	4,558E-05	9,116E-05	1,28507	8,01572	2941,395	2941,395	2983,472	0,10121	1,50603	0,10121	1,50603	6,72899	1,05058
384	41	2,687E-05	5,373E-05	1,28507	8,01570	2941,395	2941,395	2959,239	0,10999	1,54993	0,10999	1,54993	6,48530	1,05058
385	42	1,548E-05	3,096E-05	1,28508	8,01569	2941,395	2941,395	2934,943	0,11910	1,59552	0,11910	1,59552	6,24828	1,05059
386	43	8,72E-06	1,744E-05	1,28508	8,01568	2941,395	2941,395	2910,654	0,12855	1,64277	0,12855	1,64277	6,01833	1,05059
387	44	4,801E-06	9,601E-06	1,28508	8,01568	2941,395	2941,395	2886,433	0,13833	1,69167	0,13833	1,69167	5,79574	1,05059
388	45	2,582E-06	5,163E-06	1,28508	8,01567	2941,395	2941,395	2862,328	0,14844	1,74219	0,14844	1,74219	5,58069	1,05059
389	46	1,356E-06	2,712E-06	1,28508	8,01567	2941,395	2941,395	2838,380	0,15886	1,79430	0,15886	1,79430	5,37328	1,05059

390	47	6,957E-07	1,391E-06	1,28508	8,01567	2941,395	2941,395	2814,625	0,16960	1,84798	0,16960	1,84798	5,17354	1,05059
391	48	3,484E-07	6,968E-07	1,28508	8,01567	2941,395	2941,395	2791,094	0,18064	1,90320	0,18064	1,90320	4,98142	1,05059
392	49	1,703E-07	3,406E-07	1,28508	8,01567	2941,395	2941,395	2767,812	0,19199	1,95994	0,19199	1,95994	4,79686	1,05059
393	50	8,125E-08	1,625E-07	1,28508	8,01567	2941,395	2941,395	2744,803	0,20363	2,01817	0,20363	2,01817	4,61972	1,05059

Таблица A2 - Результаты теплового расчета двигателя BA3 21127 при $n=2400\ \text{мин}^{\text{-}1}$

С	φ1	x1-2	ΔX1-2	k1-2	K1-2	Тпредполаг	T1-2	T2	σ	ψ(φ'2)	P2	μ1	μ1-2	Vc.T.
340	0	0	0			705,8		705,8	0,07693	1,38465	0,07693	1,38465	1,64358	1,
341	1	0,00013	0,00026	1,37030	6,40107	672,427	689,114	713,730	0,06954	1,34770	0,06954	1,34770	1,70763	1,00001
342	2	0,00069	0,00139	1,37224	6,37288	681,882	677,155	725,185	0,06251	1,31253	0,06251	1,31253	1,78159	1,00008
343	3	0,00159	0,00319	1,37048	6,39847	693,401	687,641	742,177	0,05583	1,27917	0,05583	1,27917	1,87111	1,00025
344	4	0,00277	0,00553	1,36835	6,42960	707,960	700,680	766,323	0,04953	1,24763	0,04953	1,24763	1,98127	1,00053
345	5	0,00416	0,00832	1,36577	6,46795	726,499	717,229	798,904	0,04358	1,21792	0,04358	1,21792	2,11664	1,00095
346	6	0,00574	0,01149	1,36267	6,51472	749,889	738,194	840,881	0,03801	1,19005	0,03801	1,19005	2,28115	1,00153
347	7	0,00747	0,01495	1,35903	6,57054	778,919	764,404	892,885	0,03281	1,16405	0,03281	1,16405	2,47799	1,00229
348	8	0,00931	0,01862	1,35490	6,63537	814,259	796,589	955,209	0,02799	1,13993	0,02799	1,13993	2,70936	1,00323
349	9	0,01121	0,02242	1,35035	6,70850	856,451	835,355	1027,807	0,02354	1,11769	0,02354	1,11769	2,97636	1,00436
350	10	0,01312	0,02625	1,34550	6,78869	905,883	881,167	1110,306	0,01947	1,09735	0,01947	1,09735	3,27889	1,00569
351	11	0,01501	0,03002	1,34047	6,87423	962,782	934,332	1202,035	0,01578	1,07891	0,01578	1,07891	3,61555	1,00722
352	12	0,01682	0,03364	1,33539	6,96322	1027,210	994,996	1302,059	0,01248	1,06239	0,01248	1,06239	3,98368	1,00892
353	13	0,01850	0,03700	1,33038	7,05366	1099,058	1063,134	1409,218	0,00956	1,04780	0,00956	1,04780	4,37935	1,01079
354	14	0,02002	0,04003	1,32554	7,14371	1178,048	1138,553	1522,174	0,00703	1,03514	0,00703	1,03514	4,79749	1,01282
355	15	0,02132	0,04264	1,32094	7,23174	1263,739	1220,893	1639,453	0,00488	1,02441	0,00488	1,02441	5,23203	1,01498
356	16	0,02238	0,04476	1,31664	7,31640	1355,531	1309,635	1759,495	0,00313	1,01563	0,00313	1,01563	5,67605	1,01725
357	17	0,02317	0,04633	1,31266	7,39667	1452,674	1404,102	1880,694	0,00176	1,00879	0,00176	1,00879	6,12201	1,01960
358	18	0,02366	0,04732	1,30903	7,47185	1554,281	1503,478	2001,444	0,00078	1,00391	0,00078	1,00391	6,56202	1,02200
359	19	0,02385	0,04771	1,30574	7,54148	1659,341	1606,811	2120,182	0,00020	1,00098	0,00020	1,00098	6,98813	1,02441
360	20	0,02374	0,04748	1,30279	7,60534	1766,740	1713,040	2235,430	0	1	0	1	7,39256	1,02682

361	21	0,02334	0,04667	1,30015	7,66340	1875,288	1821,014	2345,827	0,00020	1,00098	0,00020	1,00098	7,76810	1,02918
362	22	0,02266	0,04531	1,29781	7,71577	1983,743	1929,515	2450,166	0,00078	1,00391	0,00078	1,00391	8,10825	1,03148
363	23	0,02173	0,04345	1,29574	7,76265	2090,847	2037,295	2547,417	0,00176	1,00879	0,00176	1,00879	8,40757	1,03368
364	24	0,02058	0,04116	1,29393	7,80433	2195,357	2143,102	2636,749	0,00313	1,01563	0,00313	1,01563	8,66178	1,03577
365	25	0,01926	0,03852	1,29235	7,84111	2296,080	2245,719	2717,538	0,00488	1,02441	0,00488	1,02441	8,86791	1,03772
366	26	0,01780	0,03560	1,29098	7,87335	2391,906	2343,993	2789,376	0,00703	1,03514	0,00703	1,03514	9,02433	1,03952
367	27	0,01625	0,03250	1,28980	7,90140	2481,840	2436,873	2852,062	0,00956	1,04780	0,00956	1,04780	9,13076	1,04117
368	28	0,01466	0,02931	1,28878	7,92561	2565,025	2523,432	2905,593	0,01248	1,06239	0,01248	1,06239	9,18816	1,04265
369	29	0,01305	0,02611	1,28792	7,94633	2640,767	2602,896	2950,147	0,01578	1,07891	0,01578	1,07891	9,19860	1,04398
370	30	0,01148	0,02296	1,28720	7,96386	2708,548	2674,657	2986,060	0,01947	1,09735	0,01947	1,09735	9,16507	1,04514
371	31	0,00997	0,01994	1,28659	7,97852	2768,029	2738,288	3013,800	0,02354	1,11769	0,02354	1,11769	9,09131	1,04615
372	32	0,00855	0,01710	1,28610	7,99059	2819,058	2793,543	3033,937	0,02799	1,13993	0,02799	1,13993	8,98155	1,04702
373	33	0,00724	0,01447	1,28570	8,00032	2861,655	2840,356	3047,116	0,03281	1,16405	0,03281	1,16405	8,84036	1,04775
374	34	0,00605	0,01209	1,28539	8,00795	2896,005	2878,830	3054,027	0,03801	1,19005	0,03801	1,19005	8,67240	1,04836
375	35	0,00499	0,00997	1,28516	8,01370	2922,435	2909,220	3055,380	0,04358	1,21792	0,04358	1,21792	8,48228	1,04887
376	36	0,00406	0,00812	1,28499	8,01777	2941,395	2931,915	3051,881	0,04953	1,24763	0,04953	1,24763	8,27442	1,04928
377	37	0,00326	0,00652	1,28489	8,02034	2953,430	2947,413	3044,212	0,05583	1,27917	0,05583	1,27917	8,05294	1,04961
378	38	0,00258	0,00516	1,28484	8,02156	2959,152	2956,291	3033,015	0,06251	1,31253	0,06251	1,31253	7,82158	1,04987
379	39	0,00202	0,00403	1,28484	8,02161	2959,219	2959,185	3018,883	0,06954	1,34770	0,06954	1,34770	7,58368	1,05007
380	40	0,00155	0,00311	1,28488	8,02061	2954,304	2956,761	3002,350	0,07693	1,38465	0,07693	1,38465	7,34215	1,05023
381	41	0,00118	0,00236	1,28495	8,01869	2945,077	2949,691	2983,891	0,08467	1,42337	0,08467	1,42337	7,09946	1,05035
382	42	0,00088	0,00177	1,28506	8,01598	2932,185	2938,631	2963,916	0,09277	1,46383	0,09277	1,46383	6,85768	1,05044
383	43	0,00065	0,00130	1,28520	8,01257	2916,234	2924,210	2942,778	0,10121	1,50603	0,10121	1,50603	6,61850	1,05051
384	44	0,00047	0,00095	1,28536	8,00858	2897,782	2907,008	2920,773	0,10999	1,54993	0,10999	1,54993	6,38328	1,05055
385	45	0,00034	0,00068	1,28555	8,00408	2877,329	2887,555	2898,146	0,11910	1,59552	0,11910	1,59552	6,15309	1,05059
386	46	0,00024	0,00048	1,28575	7,99915	2855,316	2866,323	2875,100	0,12855	1,64277	0,12855	1,64277	5,92874	1,05061
387	47	0,00017	0,00033	1,28596	7,99387	2832,124	2843,720	2851,797	0,13833	1,69167	0,13833	1,69167	5,71082	1,05063
388	48	0,00011	0,00023	1,28619	7,98830	2808,075	2820,100	2828,369	0,14844	1,74219	0,14844	1,74219	5,49975	1,05064
389	49	7,72E-05	0,00015	1,28643	7,98248	2783,437	2795,756	2804,920	0,15886	1,79430	0,15886	1,79430	5,29580	1,05065
390	50	5,127E-05	0,00010	1,28668	7,97647	2758,432	2770,935	2781,531	0,16960	1,84798	0,16960	1,84798	5,09912	1,05065

Таблица A3 - Результаты теплового расчета двигателя BA3 21127 при $n=4000\ \text{мин}^{\text{-}1}$

С	φ1	x1-2	ΔΧ1-2	k1-2	K1-2	Тпредполаг	T1-2	T2	σ	ψ(φ'2)	P2	μ1	μ1-2	Vc.T.
335	0	0	0			671,213		671,213	0,1191	1,59552	0,11910	1,59552	1,31850	1
336	1	3,829E-05	7,658E-05	1,37317	6,35955	672,427	671,82	678,775	0,10999	1,54993	0,10999	1,54993	1,37258	1
337	2	0,00023	0,00046	1,37226	6,37261	681,882	677,155	687,632	0,10121	1,50603	0,10121	1,50603	1,43104	1,00003
338	3	0,00057	0,00114	1,37052	6,39786	693,401	687,641	698,739	0,09277	1,46383	0,09277	1,46383	1,49613	1,00008
339	4	0,00104	0,00208	1,36842	6,42855	707,960	700,680	712,939	0,08467	1,42337	0,08467	1,42337	1,57006	1,00019
340	5	0,00163	0,00327	1,36587	6,46639	726,499	717,229	730,979	0,07693	1,38465	0,07693	1,38465	1,65503	1,00036
341	6	0,00234	0,00467	1,36281	6,51259	749,889	738,194	753,508	0,06954	1,34770	0,06954	1,34770	1,75317	1,00059
342	7	0,00314	0,00629	1,35921	6,56777	778,919	764,404	781,075	0,06251	1,31253	0,06251	1,31253	1,86651	1,00091
343	8	0,00404	0,00808	1,35512	6,63192	814,259	796,589	814,116	0,05583	1,27917	0,05583	1,27917	1,99693	1,00132
344	9	0,00502	0,01004	1,35061	6,70434	856,451	835,355	852,956	0,04953	1,24763	0,04953	1,24763	2,14608	1,00183
345	10	0,00607	0,01214	1,34579	6,78381	905,883	881,167	897,801	0,04358	1,21792	0,04358	1,21792	2,31532	1,00244
346	11	0,00717	0,01434	1,34079	6,86865	962,782	934,332	948,747	0,03801	1,19005	0,03801	1,19005	2,50566	1,00317
347	12	0,00832	0,01663	1,33574	6,95696	1027,210	994,996	1005,779	0,03281	1,16405	0,03281	1,16405	2,71774	1,00401
348	13	0,00948	0,01897	1,33075	7,04682	1099,058	1063,134	1068,780	0,02799	1,13993	0,02799	1,13993	2,95174	1,00497
349	14	0,01066	0,02132	1,32592	7,13640	1178,048	1138,553	1137,535	0,02354	1,11769	0,02354	1,11769	3,20739	1,00605
350	15	0,01183	0,02365	1,32133	7,22409	1263,739	1220,893	1211,737	0,01947	1,09735	0,01947	1,09735	3,48389	1,00725
351	16	0,01296	0,02592	1,31703	7,30860	1355,531	1309,635	1290,99	0,01578	1,07891	0,01578	1,07891	3,77988	1,00856
352	17	0,01405	0,02810	1,31304	7,38893	1452,674	1404,102	1374,815	0,01248	1,06239	0,01248	1,06239	4,09344	1,00998
353	18	0,01507	0,03014	1,30939	7,46437	1554,281	1503,478	1462,656	0,00956	1,04780	0,00956	1,04780	4,42209	1,01151
354	19	0,01601	0,03201	1,30607	7,53450	1659,341	1606,811	1553,885	0,00703	1,03514	0,00703	1,03514	4,76278	1,01313
355	20	0,01684	0,03368	1,30307	7,59908	1766,740	1713,040	1647,808	0,00488	1,02441	0,00488	1,02441	5,11192	1,01483
356	21	0,01756	0,03512	1,30039	7,65806	1875,288	1821,014	1743,680	0,00313	1,01563	0,00313	1,01563	5,46549	1,01661
357	22	0,01815	0,03630	1,29799	7,71154	1983,743	1929,515	1840,714	0,00176	1,00879	0,00176	1,00879	5,81907	1,01845
358	23	0,01860	0,03719	1,29587	7,75967	2090,847	2037,295	1938,092	0,00078	1,00391	0,00078	1,00391	6,16798	1,02033
359	24	0,01890	0,03779	1,29400	7,80270	2195,357	2143,102	2034,986	0,00020	1,00098	0,00020	1,00098	6,50741	1,02225
360	25	0,01904	0,03808	1,29236	7,84090	2296,080	2245,719	2130,567	0,00000	1,00000	0,00000	1,00000	6,83254	1,02417
361	26	0,01903	0,03806	1,29093	7,87456	2391,906	2343,993	2224,025	0,00020	1,00098	0,00020	1,00098	7,13871	1,02610

362	27	0,01887	0,03773	1,28969	7,90400	2481,840	2436,873	2314,587	0,00078	1,00391	0,00078	1,00391	7,42156	1,02801
363	28	0,01855	0,03710	1,28862	7,92952	2565,025	2523,432	2401,527	0,00176	1,00879	0,00176	1,00879	7,67718	1,02989
364	29	0,01809	0,03619	1,28771	7,95141	2640,767	2602,896	2484,184	0,00313	1,01563	0,00313	1,01563	7,90219	1,03172
365	30	0,01751	0,03501	1,28695	7,96997	2708,548	2674,657	2561,971	0,00488	1,02441	0,00488	1,02441	8,09389	1,03349
366	31	0,01680	0,03360	1,28631	7,98548	2768,029	2738,288	2634,388	0,00703	1,03514	0,00703	1,03514	8,25030	1,03520
367	32	0,01599	0,03199	1,28579	7,99820	2819,058	2793,543	2701,029	0,00956	1,04780	0,00956	1,04780	8,37018	1,03682
368	33	0,01510	0,03020	1,28537	8,00838	2861,655	2840,356	2761,584	0,01248	1,06239	0,01248	1,06239	8,45310	1,03834
369	34	0,01414	0,02828	1,28505	8,01627	2896,005	2878,830	2815,843	0,01578	1,07891	0,01578	1,07891	8,49933	1,03978
370	35	0,01313	0,02626	1,28482	8,02209	2922,435	2909,220	2863,695	0,01947	1,09735	0,01947	1,09735	8,50985	1,04111
371	36	0,01209	0,02419	1,28465	8,02605	2941,395	2931,915	2905,125	0,02354	1,11769	0,02354	1,11769	8,48624	1,04233
372	37	0,01104	0,02209	1,28456	8,02836	2953,430	2947,413	2940,207	0,02799	1,13993	0,02799	1,13993	8,43063	1,04345
373	38	0,01000	0,02000	1,28453	8,02922	2959,152	2956,291	2969,098	0,03281	1,16405	0,03281	1,16405	8,34554	1,04446
374	39	0,00897	0,01795	1,28454	8,02879	2959,219	2959,185	2992,028	0,03801	1,19005	0,03801	1,19005	8,23382	1,04537
375	40	0,00799	0,01597	1,28461	8,02724	2954,304	2956,761	3009,288	0,04358	1,21792	0,04358	1,21792	8,09852	1,04618
376	41	0,00704	0,01409	1,28471	8,02473	2945,077	2949,691	3021,220	0,04953	1,24763	0,04953	1,24763	7,94279	1,04689
377	42	0,00616	0,01232	1,28484	8,02141	2932,185	2938,631	3028,208	0,05583	1,27917	0,05583	1,27917	7,76980	1,04751
378	43	0,00534	0,01067	1,28501	8,01739	2916,234	2924,210	3030,659	0,06251	1,31253	0,06251	1,31253	7,58264	1,04805
379	44	0,00458	0,00916	1,28519	8,01279	2897,782	2907,008	3028,999	0,06954	1,34770	0,06954	1,34770	7,38428	1,04852
380	45	0,00390	0,00779	1,28540	8,00772	2877,329	2887,555	3023,660	0,07693	1,38465	0,07693	1,38465	7,17750	1,04891
381	46	0,00328	0,00657	1,28562	8,00227	2855,316	2866,323	3015,069	0,08467	1,42337	0,08467	1,42337	6,96484	1,04925
382	47	0,00274	0,00548	1,28586	7,99650	2832,124	2843,720	3003,641	0,09277	1,46383	0,09277	1,46383	6,74860	1,04952
383	48	0,00227	0,00453	1,28610	7,99049	2808,075	2820,100	2989,774	0,10121	1,50603	0,10121	1,50603	6,53082	1,04975
384	49	0,00186	0,00371	1,28636	7,98429	2783,437	2795,756	2973,839	0,10999	1,54993	0,10999	1,54993	6,31326	1,04994
385	50	0,00151	0,00301	1,28662	7,97795	2758,432	2770,935	2956,182	0,11910	1,59552	0,11910	1,59552	6,09744	1,05009
386	51	0,00121	0,00242	1,28688	7,97149	2733,236	2745,834	2937,117	0,12855	1,64277	0,12855	1,64277	5,88463	1,05022
387	52	0,00096	0,00192	1,28715	7,96495	2707,993	2720,614	2916,926	0,13833	1,69167	0,13833	1,69167	5,67584	1,05031
388	53	0,00076	0,00151	1,28742	7,95835	2682,813	2695,403	2895,859	0,14844	1,74219	0,14844	1,74219	5,47192	1,05039
389	54	0,00059	0,00118	1,28770	7,95172	2657,785	2670,299	2874,135	0,15886	1,79430	0,15886	1,79430	5,27348	1,05045
390	55	0,00045	0,00091	1,28797	7,94505	2632,976	2645,381	2851,942	0,16960	1,84798	0,16960	1,84798	5,08102	1,05050
391	56	0,00035	0,00069	1,28825	7,93836	2608,438	2620,707	2829,442	0,18064	1,90320	0,18064	1,90320	4,89485	1,05053
	1	1	l .	l .	l .		1	I.	1	I.	l .	I.	l .	

392	57	0,00026	0,00052	1,28853	7,93167	2584,210	2596,324	2806,771	0,19199	1,95994	0,19199	1,95994	4,71519	1,05056
393	58	0,0002	0,00039	1,28881	7,92497	2560,322	2572,266	2784,041	0,20363	2,01817	0,20363	2,01817	4,54216	1,05058
394	59	0,00014	0,00029	1,28909	7,91827	2536,797	2548,559	2761,346	0,21557	2,07787	0,21557	2,07787	4,37578	1,05059
395	60	0,00011	0,00021	1,28923	7,91490	2536,797	2536,797	2738,772	0,22780	2,13900	0,22780	2,13900	4,21603	1,05060

Таблица A4 - Результаты теплового расчета двигателя BA3 21127 при $n=5800~{\rm Muh}^{\text{-}1}$

С	φ1	x1-2	ΔΧ1-2	k1-2	K1-2	Тпредполаг	T1-2	T2	σ	ψ(φ'2)	P2	μ1	μ1-2	Vc.t.
327	0	0	0			650,044		650,044	0,14844	1,74219	0,14844	1,74219	1,12890	1
328	1	1,057E-05	2,114E-05	1,37499	6,33341	672,427	661,236	657,329	0,13833	1,69167	0,13833	1,69167	1,17564	1
329	2	7,11E-05	0,00014	1,37227	6,37252	681,882	677,155	665,018	0,12855	1,64277	0,12855	1,64277	1,22479	1,00001
330	3	0,00019	0,00038	1,37053	6,39763	693,401	687,641	673,491	0,11910	1,59552	0,11910	1,59552	1,27715	1,00003
331	4	0,00036	0,00072	1,36845	6,42814	707,960	700,680	683,085	0,10999	1,54993	0,10999	1,54993	1,33349	1,00006
332	5	0,00059	0,00117	1,36592	6,46575	726,499	717,229	694,116	0,10121	1,50603	0,10121	1,50603	1,39459	1,00012
333	6	0,00087	0,00173	1,36287	6,51167	749,889	738,194	706,880	0,09277	1,46383	0,09277	1,46383	1,46128	1,00021
334	7	0,00120	0,00239	1,35929	6,56653	778,919	764,404	721,645	0,08467	1,42337	0,08467	1,42337	1,53437	1,00033
335	8	0,00158	0,00315	1,35522	6,63030	814,259	796,589	738,654	0,07693	1,38465	0,07693	1,38465	1,61468	1,00049
336	9	0,00200	0,00401	1,35073	6,70232	856,451	835,355	758,117	0,06954	1,34770	0,06954	1,34770	1,70297	1,00069
337	10	0,00248	0,00495	1,34594	6,78133	905,883	881,167	780,217	0,06251	1,31253	0,06251	1,31253	1,79997	1,00095
338	11	0,00299	0,00598	1,34097	6,86567	962,782	934,332	805,103	0,05583	1,27917	0,05583	1,27917	1,90636	1,00125
339	12	0,00355	0,00710	1,33594	6,95347	1027,210	994,996	832,899	0,04953	1,24763	0,04953	1,24763	2,02271	1,00161
340	13	0,00414	0,00828	1,33097	7,04278	1099,058	1063,134	863,702	0,04358	1,21792	0,04358	1,21792	2,14952	1,00203
341	14	0,00477	0,00954	1,32617	7,13180	1178,048	1138,553	897,581	0,03801	1,19005	0,03801	1,19005	2,28716	1,00251
342	15	0,00542	0,01084	1,32160	7,21895	1263,739	1220,893	934,580	0,03281	1,16405	0,03281	1,16405	2,43589	1,00306
343	16	0,00610	0,01220	1,31731	7,30293	1355,531	1309,635	974,717	0,02799	1,13993	0,02799	1,13993	2,59578	1,00368
344	17	0,00679	0,01359	1,31334	7,38278	1452,674	1404,102	1017,982	0,02354	1,11769	0,02354	1,11769	2,76674	1,00437
345	18	0,00750	0,01500	1,30970	7,45780	1554,281	1503,478	1064,335	0,01947	1,09735	0,01947	1,09735	2,94847	1,00513
346	19	0,00822	0,01643	1,30639	7,52758	1659,341	1606,811	1113,705	0,01578	1,07891	0,01578	1,07891	3,14044	1,00596
347	20	0,00893	0,01786	1,30340	7,59191	1766,740	1713,040	1165,992	0,01248	1,06239	0,01248	1,06239	3,34188	1,00686
348	21	0,00963	0,01927	1,30072	7,65075	1875,288	1821,014	1221,059	0,00956	1,04780	0,00956	1,04780	3,55177	1,00784

		0.01022	0.02065	1.00022	7.70420	1002.742	1000 515	1070 726	0.00702	1.02514	0.00702	1.02514	2.76002	1.00000
349	22	0,01032	0,02065	1,29832	7,70420	1983,743	1929,515	1278,736	0,00703	1,03514	0,00703	1,03514	3,76882	1,00889
350	23	0,01099	0,02199	1,29619	7,75243	2090,847	2037,295	1338,820	0,00488	1,02441	0,00488	1,02441	3,99149	1,01000
351	24	0,01163	0,02327	1,29430	7,79570	2195,357	2143,102	1401,074	0,00313	1,01563	0,00313	1,01563	4,21799	1,01118
352	25	0,01224	0,02447	1,29264	7,83426	2296,080	2245,719	1465,228	0,00176	1,00879	0,00176	1,00879	4,44633	1,01242
353	26	0,01280	0,02559	1,29119	7,86842	2391,906	2343,993	1530,986	0,00078	1,00391	0,00078	1,00391	4,67434	1,01371
354	27	0,01331	0,02662	1,28992	7,89848	2481,840	2436,873	1598,023	0,00020	1,00098	0,00020	1,00098	4,89969	1,01506
355	28	0,01376	0,02753	1,28882	7,92472	2565,025	2523,432	1665,990	0,00000	1,00000	0,00000	1,00000	5,11999	1,01646
356	29	0,01416	0,02832	1,28788	7,94744	2640,767	2602,896	1734,522	0,00020	1,00098	0,00020	1,00098	5,33281	1,01789
357	30	0,01449	0,02897	1,28707	7,96691	2708,548	2674,657	1803,239	0,00078	1,00391	0,00078	1,00391	5,53578	1,01936
358	31	0,01474	0,02949	1,28639	7,98338	2768,029	2738,288	1871,754	0,00176	1,00879	0,00176	1,00879	5,72660	1,02085
359	32	0,01493	0,02986	1,28583	7,99711	2819,058	2793,543	1939,674	0,00313	1,01563	0,00313	1,01563	5,90315	1,02236
360	33	0,01504	0,03007	1,28538	8,00832	2861,655	2840,356	2006,611	0,00488	1,02441	0,00488	1,02441	6,06350	1,02389
361	34	0,01507	0,03014	1,28501	8,01722	2896,005	2878,830	2072,182	0,00703	1,03514	0,00703	1,03514	6,20600	1,02541
362	35	0,01502	0,03004	1,28474	8,02403	2922,435	2909,220	2136,021	0,00956	1,04780	0,00956	1,04780	6,32928	1,02694
363	36	0,01490	0,02980	1,28454	8,02895	2941,395	2931,915	2197,775	0,01248	1,06239	0,01248	1,06239	6,43229	1,02845
364	37	0,01470	0,02940	1,28441	8,03214	2953,430	2947,413	2257,118	0,01578	1,07891	0,01578	1,07891	6,51432	1,02994
365	38	0,01443	0,02886	1,28434	8,03379	2959,152	2956,291	2313,748	0,01947	1,09735	0,01947	1,09735	6,57499	1,03140
366	39	0,01409	0,02818	1,28433	8,03407	2959,219	2959,185	2367,394	0,02354	1,11769	0,02354	1,11769	6,61426	1,03282
367	40	0,01369	0,02738	1,28437	8,03313	2954,304	2956,761	2417,819	0,02799	1,13993	0,02799	1,13993	6,63238	1,03421
368	41	0,01323	0,02646	1,28445	8,03112	2945,077	2949,691	2464,822	0,03281	1,16405	0,03281	1,16405	6,62992	1,03555
369	42	0,01272	0,02543	1,28457	8,02817	2932,185	2938,631	2508,238	0,03801	1,19005	0,03801	1,19005	6,60768	1,03684
370	43	0,01216	0,02432	1,28472	8,02442	2916,234	2924,210	2547,942	0,04358	1,21792	0,04358	1,21792	6,56670	1,03807
371	44	0,01156	0,02313	1,28490	8,01998	2897,782	2907,008	2583,847	0,04953	1,24763	0,04953	1,24763	6,50818	1,03924
372	45	0,01094	0,02188	1,28511	8,01496	2877,329	2887,555	2615,904	0,05583	1,27917	0,05583	1,27917	6,43350	1,04035
373	46	0,01029	0,02058	1,28533	8,00945	2855,316	2866,323	2644,104	0,06251	1,31253	0,06251	1,31253	6,34412	1,04139
374	47	0,00019	0,00014	1,28457	8,02817	2932,185	2938,631	2508,238	0,03801	1,19005	0,03801	1,19005	6,60768	1,03684
375	48	0,00036	0,00038	1,28472	8,02442	2916,234	2924,210	2547,942	0,04358	1,21792	0,04358	1,21792	6,56670	1,03807
376	49	0,00059	0,00072	1,28490	8,01998	2897,782	2907,008	2583,847	0,04953	1,24763	0,04953	1,24763	6,50818	1,03924
377	50	0,00087	0,00117	1,28511	8,01496	2877,329	2887,555	2615,904	0,05583	1,27917	0,05583	1,27917	6,43350	1,04035
378	51	0,00120	0,00173	1,28533	8,00945	2855,316	2866,323	2644,104	0,06251	1,31253	0,06251	1,31253	6,34412	1,04139
		1	1	l	1		-1	1	1	1	l	l		

		T	1					I		ı	I			
379	52	0,00963	0,01926	1,28557	8,00355	2832,124	2843,720	2668,472	0,06954	1,34770	0,06954	1,34770	6,24157	1,04237
380	53	0,00896	0,01792	1,28582	7,99733	2808,075	2820,100	2689,067	0,07693	1,38465	0,07693	1,38465	6,12743	1,04328
381	54	0,00829	0,01658	1,28609	7,99085	2783,437	2795,756	2705,981	0,08467	1,42337	0,08467	1,42337	6,00327	1,04412
382	55	0,00762	0,01525	1,28636	7,98418	2758,432	2770,935	2719,333	0,09277	1,46383	0,09277	1,46383	5,87065	1,04489
383	56	0,00697	0,01395	1,28664	7,97735	2733,236	2745,834	2729,268	0,10121	1,50603	0,10121	1,50603	5,73108	1,04560
384	57	0,00634	0,01268	1,28693	7,97041	2707,993	2720,614	2735,954	0,10999	1,54993	0,10999	1,54993	5,58599	1,04624
385	58	0,00573	0,01147	1,28722	7,96339	2682,813	2695,403	2739,574	0,11910	1,59552	0,11910	1,59552	5,43673	1,04682
386	59	0,00515	0,01031	1,28751	7,95633	2657,785	2670,299	2740,328	0,12855	1,64277	0,12855	1,64277	5,28458	1,04734
387	60	0,00460	0,00921	1,28780	7,94923	2632,976	2645,381	2738,424	0,13833	1,69167	0,13833	1,69167	5,13068	1,04781
388	61	0,00409	0,00817	1,28810	7,94213	2608,438	2620,707	2734,080	0,14844	1,74219	0,14844	1,74219	4,97610	1,04822
389	62	0,00361	0,00721	1,28839	7,93503	2584,210	2596,324	2727,514	0,15886	1,79430	0,15886	1,79430	4,82178	1,04859
390	63	0,00316	0,00633	1,28869	7,92794	2560,322	2572,266	2718,947	0,16960	1,84798	0,16960	1,84798	4,66853	1,04891
391	64	0,00276	0,00551	1,28898	7,92089	2536,797	2548,559	2708,594	0,18064	1,90320	0,18064	1,90320	4,51710	1,04919
392	65	0,00239	0,00477	1,28914	7,91718	2536,797	2536,797	2696,672	0,19199	1,95994	0,19199	1,95994	4,36811	1,04943
393	66	0,00205	0,00411	1,28915	7,91684	2536,797	2536,797	2683,391	0,20363	2,01817	0,20363	2,01817	4,22208	1,04964
394	67	0,00176	0,00351	1,28916	7,91655	2536,797	2536,797	2668,947	0,21557	2,07787	0,21557	2,07787	4,07947	1,04981
395	68	0,00149	0,00298	1,28917	7,91628	2536,797	2536,797	2653,523	0,22780	2,13900	0,22780	2,13900	3,94060	1,04997
396	69	0,00126	0,00252	1,28918	7,91605	2536,797	2536,797	2637,289	0,24031	2,20153	0,24031	2,20153	3,80575	1,05009
397	70	0,00105	0,00211	1,28919	7,91584	2536,797	2536,797	2620,402	0,25309	2,26544	0,25309	2,26544	3,67511	1,05020
398	71	0,00088	0,00175	1,28920	7,91567	2536,797	2536,797	2603,004	0,26614	2,33070	0,26614	2,33070	3,54883	1,05029
399	72	0,00072	0,00145	1,28920	7,91552	2536,797	2536,797	2585,223	0,27945	2,39727	0,27945	2,39727	3,42698	1,05036
400	73	0,00059	0,00119	1,28921	7,91539	2536,797	2536,797	2567,174	0,29302	2,46512	0,29302	2,46512	3,30959	1,05042
401	74	0,00048	0,00097	1,28921	7,91528	2536,797	2536,797	2548,958	0,30684	2,53422	0,30684	2,53422	3,19667	1,05047
402	75	0,00039	0,00078	1,28922	7,91518	2536,797	2536,797	2530,661	0,32091	2,60455	0,32091	2,60455	3,08816	1,05051
403	76	9,417E-05	0,00063	1,28922	7,91511	2536,797	2536,797	2512,362	0,33521	2,67606	0,33521	2,67606	2,98400	1,05054
404	77	7,23E-05	0,00050	1,28922	7,91504	2536,797	2536,797	2494,123	0,34975	2,74873	0,34975	2,74873	2,88411	1,05057
405	78	5,508E-05	0,00040	1,28923	7,91499	2536,797	2536,797	2476,001	0,36450	2,82251	0,36450	2,82251	2,78836	1,05059
406	79	4,163E-05	8,326E-05	1,28923	7,91495	2536,797	2536,797	2458,040	0,37948	2,89738	0,37948	2,89738	2,69665	1,05060
407	80	3,121E-05	6,243E-05	1,28923	7,91491	2536,797	2536,797	2440,277	0,39466	2,97331	0,39466	2,97331	2,60884	1,05062
]							

Таблица A5 - Результаты теплового расчета двигателя BA3 21127 при $n=6100~\text{ми}\text{H}^{-1}$

С	φ1	x1-2	ΔΧ1-2	k1-2	K1-2	Тпредполаг	T1-2	T2	σ	ψ(φ'2)	P2	μl	μ1-2	Vc.T.
325	0	0	0	#ДЕЛ/0!	#ДЕЛ/0!	641,145		641,145	0,16960	1,84798	0,16960	1,84798	1,01151	1,00000
326	1	3,88E-06	7,76E-06	1,37578	6,32225	672,427	656,786	648,314	0,15886	1,79430	0,15886	1,79430	1,05342	1,00000
327	2	2,941E-05	5,882E-05	1,37227	6,37249	681,882	677,155	655,658	0,14844	1,74219	0,14844	1,74219	1,09722	1,00000
328	3	8,371E-05	0,00017	1,37054	6,39757	693,401	687,641	663,386	0,13833	1,69167	0,13833	1,69167	1,14331	1,00001
329	4	0,00017	0,00034	1,36846	6,42803	707,960	700,680	671,673	0,12855	1,64277	0,12855	1,64277	1,19207	1,00003
330	5	0,00028	0,00057	1,36593	6,46556	726,499	717,229	680,691	0,11910	1,59552	0,11910	1,59552	1,24388	1,00006
331	6	0,00043	0,00087	1,36288	6,51140	749,889	738,194	690,611	0,10999	1,54993	0,10999	1,54993	1,29917	1,00010
332	7	0,00061	0,00123	1,35931	6,56616	778,919	764,404	701,594	0,10121	1,50603	0,10121	1,50603	1,35838	1,00016
333	8	0,00083	0,00165	1,35525	6,62981	814,259	796,589	713,794	0,09277	1,46383	0,09277	1,46383	1,42194	1,00025
334	9	0,00107	0,00214	1,35077	6,70169	856,451	835,355	727,352	0,08467	1,42337	0,08467	1,42337	1,49029	1,00036
335	10	0,00135	0,00270	1,34599	6,78055	905,883	881,167	742,402	0,07693	1,38465	0,07693	1,38465	1,56385	1,00049
336	11	0,00166	0,00332	1,34102	6,86472	962,782	934,332	759,063	0,06954	1,34770	0,06954	1,34770	1,64303	1,00066
337	12	0,00200	0,00401	1,33600	6,95233	1027,210	994,996	777,447	0,06251	1,31253	0,06251	1,31253	1,72823	1,00086
338	13	0,00238	0,00475	1,33105	7,04144	1099,058	1063,134	797,655	0,05583	1,27917	0,05583	1,27917	1,81980	1,00110
339	14	0,00278	0,00556	1,32625	7,13025	1178,048	1138,553	819,778	0,04953	1,24763	0,04953	1,24763	1,91806	1,00138
340	15	0,00321	0,00641	1,32169	7,21717	1263,739	1220,893	843,898	0,04358	1,21792	0,04358	1,21792	2,02327	1,00171
341	16	0,00366	0,00733	1,31741	7,30092	1355,531	1309,635	870,086	0,03801	1,19005	0,03801	1,19005	2,13564	1,00208
342	17	0,00414	0,00829	1,31345	7,38053	1452,674	1404,102	898,402	0,03281	1,16405	0,03281	1,16405	2,25528	1,00250
343	18	0,00464	0,00929	1,30982	7,45532	1554,281	1503,478	928,892	0,02799	1,13993	0,02799	1,13993	2,38223	1,00297
344	19	0,00516	0,01033	1,30652	7,52487	1659,341	1606,811	961,589	0,02354	1,11769	0,02354	1,11769	2,51640	1,00349
345	20	0,00570	0,01140	1,30354	7,58899	1766,740	1713,040	996,509	0,01947	1,09735	0,01947	1,09735	2,65757	1,00406
346	21	0,00625	0,01250	1,30086	7,64763	1875,288	1821,014	1033,651	0,01578	1,07891	0,01578	1,07891	2,80542	1,00470
347	22	0,00681	0,01362	1,29847	7,70091	1983,743	1929,515	1072,996	0,01248	1,06239	0,01248	1,06239	2,95943	1,00539
348	23	0,00737	0,01475	1,29634	7,74899	2090,847	2037,295	1114,501	0,00956	1,04780	0,00956	1,04780	3,11894	1,00613
349	24	0,00794	0,01588	1,29446	7,79214	2195,357	2143,102	1158,107	0,00703	1,03514	0,00703	1,03514	3,28314	1,00693
350	25	0,00850	0,01700	1,29280	7,83062	2296,080	2245,719	1203,730	0,00488	1,02441	0,00488	1,02441	3,45105	1,00779

351	26	0,00906	0,01811	1,29134	7,86474	2391,906	2343,993	1251,263	0,00313	1,01563	0,00313	1,01563	3,62154	1,00871
352	27	0,00960	0,01920	1,29007	7,89479	2481,840	2436,873	1300,581	0,00176	1,00879	0,00176	1,00879	3,79333	1,00968
353	28	0,01013	0,02025	1,28897	7,92108	2565,025	2523,432	1351,533	0,00078	1,00391	0,00078	1,00391	3,96503	1,01070
354	29	0,01063	0,02126	1,28802	7,94389	2640,767	2602,896	1403,950	0,00020	1,00098	0,00020	1,00098	4,13517	1,01178
355	30	0,01111	0,02222	1,28721	7,96349	2708,548	2674,657	1457,644	0,00000	1,00000	0,00000	1,00000	4,30218	1,01290
356	31	0,01156	0,02311	1,28653	7,98014	2768,029	2738,288	1512,409	0,00020	1,00098	0,00020	1,00098	4,46450	1,01407
357	32	0,01197	0,02394	1,28596	7,99408	2819,058	2793,543	1568,021	0,00078	1,00391	0,00078	1,00391	4,62057	1,01528
358	33	0,01234	0,02469	1,28549	8,00555	2861,655	2840,356	1624,247	0,00176	1,00879	0,00176	1,00879	4,76884	1,01653
359	34	0,01267	0,02535	1,28511	8,01476	2896,005	2878,830	1680,839	0,00313	1,01563	0,00313	1,01563	4,90789	1,01781
360	35	0,01296	0,02592	1,28482	8,02191	2922,435	2909,220	1737,543	0,00488	1,02441	0,00488	1,02441	5,03637	1,01912
361	36	0,01319	0,02638	1,28461	8,02718	2941,395	2931,915	1794,099	0,00703	1,03514	0,00703	1,03514	5,15310	1,02045
362	37	0,01337	0,02675	1,28446	8,03077	2953,430	2947,413	1850,244	0,00956	1,04780	0,00956	1,04780	5,25705	1,02180
363	38	0,01350	0,02700	1,28438	8,03283	2959,152	2956,291	1905,716	0,01248	1,06239	0,01248	1,06239	5,34738	1,02317
364	39	0,01357	0,02714	1,28435	8,03354	2959,219	2959,185	1960,256	0,01578	1,07891	0,01578	1,07891	5,42346	1,02454
365	40	0,01359	0,02717	1,28437	8,03302	2954,304	2956,761	2013,611	0,01947	1,09735	0,01947	1,09735	5,48483	1,02591
366	41	0,01354	0,02709	1,28444	8,03144	2945,077	2949,691	2065,536	0,02354	1,11769	0,02354	1,11769	5,53126	1,02728
367	42	0,01344	0,02688	1,28454	8,02892	2932,185	2938,631	2115,800	0,02799	1,13993	0,02799	1,13993	5,56270	1,02864
368	43	0,01329	0,02657	1,28467	8,02558	2916,234	2924,210	2164,182	0,03281	1,16405	0,03281	1,16405	5,57930	1,02999
369	44	0,01307	0,02615	1,28484	8,02153	2897,782	2907,008	2210,479	0,03801	1,19005	0,03801	1,19005	5,58137	1,03131
370	45	0,01281	0,02562	1,28503	8,01688	2877,329	2887,555	2254,508	0,04358	1,21792	0,04358	1,21792	5,56937	1,03260
371	46	0,01250	0,02500	1,28524	8,01172	2855,316	2866,323	2296,102	0,04953	1,24763	0,04953	1,24763	5,54392	1,03387
372	47	0,01214	0,02428	1,28546	8,00613	2832,124	2843,720	2335,119	0,05583	1,27917	0,05583	1,27917	5,50571	1,03509
373	48	0,01174	0,02348	1,28571	8,00018	2808,075	2820,100	2371,436	0,06251	1,31253	0,06251	1,31253	5,45558	1,03628
374	49	0,01131	0,02261	1,28596	7,99393	2783,437	2795,756	2404,955	0,06954	1,34770	0,06954	1,34770	5,39439	1,03742
375	50	0,01084	0,02167	1,28623	7,98745	2758,432	2770,935	2435,604	0,07693	1,38465	0,07693	1,38465	5,32309	1,03852
376	51	0,01250	0,02500	1,28524	8,01172	2855,316	2866,323	2296,102	0,04953	1,24763	0,04953	1,24763	5,54392	1,03387
377	52	0,01214	0,02428	1,28546	8,00613	2832,124	2843,720	2335,119	0,05583	1,27917	0,05583	1,27917	5,50571	1,03509
378	53	0,01174	0,02348	1,28571	8,00018	2808,075	2820,100	2371,436	0,06251	1,31253	0,06251	1,31253	5,45558	1,03628
379	54	0,01131	0,02261	1,28596	7,99393	2783,437	2795,756	2404,955	0,06954	1,34770	0,06954	1,34770	5,39439	1,03742
380	55	0,01084	0,02167	1,28623	7,98745	2758,432	2770,935	2435,604	0,07693	1,38465	0,07693	1,38465	5,32309	1,03852

							T							1
381	56	0,01034	0,02068	1,28650	7,98077	2733,236	2745,834	2463,331	0,08467	1,42337	0,08467	1,42337	5,24265	1,03956
382	57	0,00982	0,01964	1,28678	7,97394	2707,993	2720,614	2488,110	0,09277	1,46383	0,09277	1,46383	5,15405	1,04056
383	58	0,00928	0,01856	1,28707	7,96699	2682,813	2695,403	2509,940	0,10121	1,50603	0,10121	1,50603	5,05829	1,04150
384	59	0,00873	0,01746	1,28736	7,95995	2657,785	2670,299	2528,839	0,10999	1,54993	0,10999	1,54993	4,95635	1,04238
385	60	0,00818	0,01635	1,28765	7,95284	2632,976	2645,381	2544,851	0,11910	1,59552	0,11910	1,59552	4,84919	1,04320
386	61	0,00762	0,01524	1,28795	7,94568	2608,438	2620,707	2558,038	0,12855	1,64277	0,12855	1,64277	4,73773	1,04398
387	62	0,00707	0,01413	1,28825	7,93850	2584,210	2596,324	2568,480	0,13833	1,69167	0,13833	1,69167	4,62286	1,04469
388	63	0,00652	0,01304	1,28855	7,93131	2560,322	2572,266	2576,275	0,14844	1,74219	0,14844	1,74219	4,50540	1,04535
389	64	0,00599	0,01198	1,28885	7,92412	2536,797	2548,559	2581,538	0,15886	1,79430	0,15886	1,79430	4,38614	1,04595
390	65	0,00547	0,01094	1,28901	7,92026	2536,797	2536,797	2584,391	0,16960	1,84798	0,16960	1,84798	4,26580	1,04651
391	66	0,00497	0,00994	1,28903	7,91976	2536,797	2536,797	2584,974	0,18064	1,90320	0,18064	1,90320	4,14505	1,04701
392	67	0,00450	0,00899	1,28905	7,91929	2536,797	2536,797	2583,435	0,19199	1,95994	0,19199	1,95994	4,02449	1,04746
393	68	0,00404	0,00809	1,28907	7,91883	2536,797	2536,797	2579,932	0,20363	2,01817	0,20363	2,01817	3,90468	1,04787
394	69	0,00362	0,00724	1,28908	7,91841	2536,797	2536,797	2574,622	0,21557	2,07787	0,21557	2,07787	3,78609	1,04824
395	70	0,00322	0,00644	1,28910	7,91801	2536,797	2536,797	2567,666	0,22780	2,13900	0,22780	2,13900	3,66917	1,04857
396	71	0,00285	0,00570	1,28912	7,91764	2536,797	2536,797	2559,226	0,24031	2,20153	0,24031	2,20153	3,55427	1,04885
397	72	0,00251	0,00502	1,28913	7,91730	2536,797	2536,797	2549,458	0,25309	2,26544	0,25309	2,26544	3,44171	1,04911
398	73	0,00220	0,00439	1,28914	7,91699	2536,797	2536,797	2538,518	0,26614	2,33070	0,26614	2,33070	3,33175	1,04933
399	74	0,00191	0,00382	1,28916	7,91670	2536,797	2536,797	2526,552	0,27945	2,39727	0,27945	2,39727	3,22460	1,04952
400	75	0,00165	0,00331	1,28917	7,91644	2536,797	2536,797	2513,703	0,29302	2,46512	0,29302	2,46512	3,12043	1,04969
401	76	0,00142	0,00285	1,28918	7,91621	2536,797	2536,797	2500,106	0,30684	2,53422	0,30684	2,53422	3,01936	1,04983
402	77	0,00122	0,00243	1,28918	7,91601	2536,797	2536,797	2485,885	0,32091	2,60455	0,32091	2,60455	2,92150	1,04996
403	78	0,00104	0,00207	1,28919	7,91583	2536,797	2536,797	2471,158	0,33521	2,67606	0,33521	2,67606	2,82689	1,05006
404	79	0,00087	0,00175	1,28920	7,91567	2536,797	2536,797	2456,031	0,34975	2,74873	0,34975	2,74873	2,73556	1,05015
405	80	0,00073	0,00147	1,28920	7,91553	2536,797	2536,797	2440,603	0,36450	2,82251	0,36450	2,82251	2,64752	1,05022
406	81	0,00061	0,00123	1,28921	7,91541	2536,797	2536,797	2424,961	0,37948	2,89738	0,37948	2,89738	2,56274	1,05029
407	82	0,00051	0,00102	1,28921	7,91530	2536,797	2536,797	2409,184	0,39466	2,97331	0,39466	2,97331	2,48119	1,05034
408	83	0,00042	0,00084	1,28922	7,91521	2536,797	2536,797	2393,341	0,41005	3,05025	0,41005	3,05025	2,40281	1,05038
409	84	0,00034	0,00069	1,28922	7,91514	2536,797	2536,797	2377,495	0,42563	3,12817	0,42563	3,12817	2,32752	1,05041
410	85	0,00028	0,00056	1,28922	7,91507	2536,797	2536,797	2361,696	0,44141	3,20704	0,44141	3,20704	2,25527	1,05044
						-	-		-					

ПРИЛОЖЕНИЕ Б

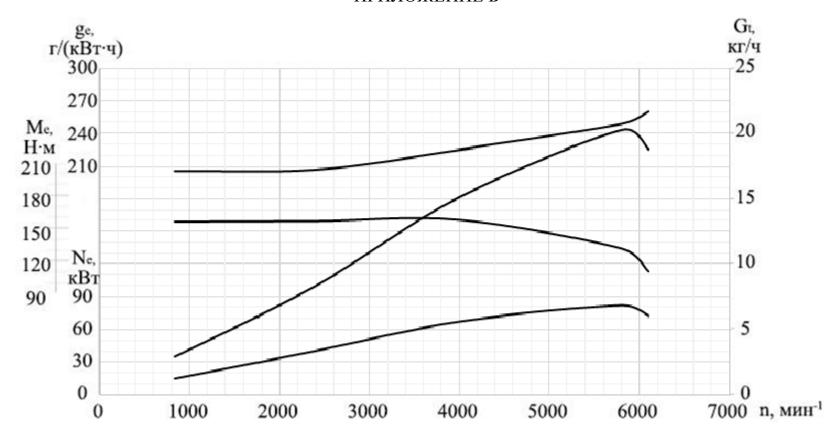
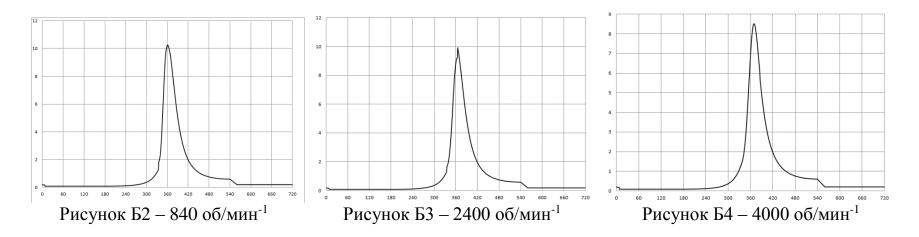
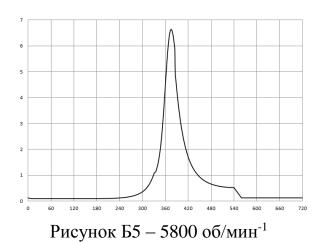
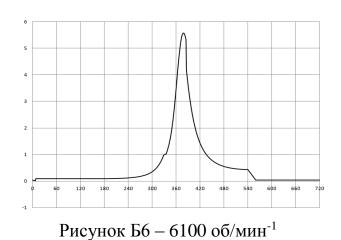





Рисунок Б1 – Диаграмма ВСХ

Ниже, представлены индикаторные диаграммы двигателя ВАЗ 21127

ПРИЛОЖЕНИЕ В

Таблица В1 — Результаты расчета кинематики двигателя при $n=5800~{\rm Muh}^{-1}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13945 13733 13104 12076 10682 8963 6972 4769 2421	3960 3721 3034 1980 688 -688 -1980
10 0,7361 0,574 0,1619 5,102 3,987 1,115 17454 20 2,9075 2,28 0,6279 9,948 7,852 2,0956 16137 30 6,4061 5,064 1,3419 14,303 11,479 2,8234 14056 40 11,0613 8,844 2,2178 17,968 14,758 3,2106 11370 50 16,6525 13,503 3,1498 20,798 17,587 3,2106 8276 60 22,9257 18,9 4,0257 22,706 19,883 2,8234 4992 70 29,6113 24,872 4,7397 23,67 21,574 2,0956 1736 80 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300 90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143	13733 13104 12076 10682 8963 6972 4769 2421	3721 3034 1980 688 -688 -1980 -3034
20 2,9075 2,28 0,6279 9,948 7,852 2,0956 16137 30 6,4061 5,064 1,3419 14,303 11,479 2,8234 14056 40 11,0613 8,844 2,2178 17,968 14,758 3,2106 11370 50 16,6525 13,503 3,1498 20,798 17,587 3,2106 8276 60 22,9257 18,9 4,0257 22,706 19,883 2,8234 4992 70 29,6113 24,872 4,7397 23,67 21,574 2,0956 1736 80 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300 90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803 <	13104 12076 10682 8963 6972 4769 2421	3034 1980 688 -688 -1980 -3034
30 6,4061 5,064 1,3419 14,303 11,479 2,8234 14056 40 11,0613 8,844 2,2178 17,968 14,758 3,2106 11370 50 16,6525 13,503 3,1498 20,798 17,587 3,2106 8276 60 22,9257 18,9 4,0257 22,706 19,883 2,8234 4992 70 29,6113 24,872 4,7397 23,67 21,574 2,0956 1736 80 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300 90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	12076 10682 8963 6972 4769 2421	1980 688 -688 -1980 -3034
40 11,0613 8,844 2,2178 17,968 14,758 3,2106 11370 50 16,6525 13,503 3,1498 20,798 17,587 3,2106 8276 60 22,9257 18,9 4,0257 22,706 19,883 2,8234 4992 70 29,6113 24,872 4,7397 23,67 21,574 2,0956 1736 80 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300 90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	10682 8963 6972 4769 2421	688 -688 -1980 -3034
50 16,6525 13,503 3,1498 20,798 17,587 3,2106 8276 60 22,9257 18,9 4,0257 22,706 19,883 2,8234 4992 70 29,6113 24,872 4,7397 23,67 21,574 2,0956 1736 80 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300 90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	8963 6972 4769 2421 0	-688 -1980 -3034
60 22,9257 18,9 4,0257 22,706 19,883 2,8234 4992 70 29,6113 24,872 4,7397 23,67 21,574 2,0956 1736 80 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300 90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	6972 4769 2421 0	-1980 -3034
70 29,6113 24,872 4,7397 23,67 21,574 2,0956 1736 80 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300 90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	4769 2421 0	-3034
80 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300 90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	2421	
90 43,1676 37,8 5,3676 22,959 22,959 0 -3960 100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	0	
100 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143 110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803		-3721
110 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	2 4 2 4	-3960
	-2421	-3721
	-4769	-3034
120 60,7257 56,7 4,0257 17,06 19,883 -2,8234 -8952	-6972	-1980
130 65,2472 62,097 3,1498 14,377 17,587 -3,2106 -9651	-8963	-688
	-10682	688
	-12076	1980
	-13104	3034
	-13733	3721
	-13945	3960
	-13733	3721
	-13104	3034
	-12076	1980
	-10682	688
230 65,2472 62,097 3,1498 -14,377 -17,587 3,2106 -9651	-8963	-688
240 60,7257 56,7 4,0257 -17,06 -19,883 2,8234 -8952 250 55,4681 50,728 4,7397 -19,479 -21,574 2,0956 -7803	-6972 4760	-1980
	-4769 -2421	-3034 -3721
260 49,5696 44,364 5,2057 -21,495 -22,61 1,115 -6143 270 43,1676 37,8 5,3676 -22,959 -22,959 0 -3960	0	-3960
280 36,4418 31,236 5,2057 -23,725 -22,61 -1,115 -1300	2421	-3721
290 29,6113 24,872 4,7397 -23,67 -21,574 -2,0956 1736	4769	-3034
300 22,9257 18,9 4,0257 -22,706 -19,883 -2,8234 4992	6972	-1980
310 16,6525 13,503 3,1498 -20,798 -17,587 -3,2106 8276	8963	-688
320 11,0613 8,844 2,2178 -17,968 -14,758 -3,2106 11370	10682	688
330 6,4061 5,064 1,3419 -14,303 -11,479 -2,8234 14056	12076	1980
340 2,9075 2,28 0,6279 -9,948 -7,852 -2,0956 16137	13104	3034
350 0,7361 0,574 0,1619 -5,102 -3,987 -1,115 17454	13733	3721
360 0 0 0 0 0 17905	13945	3960
370 0,7361 0,574 0,1619 5,102 3,987 1,115 17454	13733	3721
380 2,9075 2,28 0,6279 9,948 7,852 2,0956 16137	13104	3034
	12076	1980
400 11,0613 8,844 2,2178 17,968 14,758 3,2106 11370	10682	688
410 16,6525 13,503 3,1498 20,798 17,587 3,2106 8276	8963	-688
420 22,9257 18,9 4,0257 22,706 19,883 2,8234 4992	6972	-1980
430 29,6113 24,872 4,7397 23,67 21,574 2,0956 1736	4769	-3034
440 36,4418 31,236 5,2057 23,725 22,61 1,115 -1300	2421	-3721
450 43,1676 37,8 5,3676 22,959 22,959 0 -3960	0	-3960
460 49,5696 44,364 5,2057 21,495 22,61 -1,115 -6143	-2421	-3721
470 55,4681 50,728 4,7397 19,479 21,574 -2,0956 -7803	-4769	-3034
480 60,7257 56,7 4,0257 17,06 19,883 -2,8234 -8952	-6972	-1980

								00.15	
490	65,2472	62,097	3,1498	14,377	17,587	-3,2106	-9651	-8963	-688
500	68,9742	66,756	2,2178	11,547	14,758	-3,2106	-9994	-10682	688
510	71,8777	70,536	1,3419	8,656	11,479	-2,8234	-10096	-12076	1980
520	73,9483	73,32	0,6279	5,757	7,852	-2,0956	-10070	-13104	3034
530	75,1876	75,026	0,1619	2,872	3,987	-1,115	-10011	-13733	3721
540	75,6	75,6	0	0	0	0	-9984	-13945	3960
550	75,1876	75,026	0,1619	-2,872	-3,987	1,115	-10011	-13733	3721
560	73,9483	73,32	0,6279	-5,757	-7,852	2,0956	-10070	-13104	3034
570	71,8777	70,536	1,3419	-8,656	-11,479	2,8234	-10096	-12076	1980
580	68,9742	66,756	2,2178	-11,547	-14,758	3,2106	-9994	-10682	688
590	65,2472	62,097	3,1498	-14,377	-17,587	3,2106	-9651	-8963	-688
600	60,7257	56,7	4,0257	-17,06	-19,883	2,8234	-8952	-6972	-1980
610	55,4681	50,728	4,7397	-19,479	-21,574	2,0956	-7803	-4769	-3034
620	49,5696	44,364	5,2057	-21,495	-22,61	1,115	-6143	-2421	-3721
630	43,1676	37,8	5,3676	-22,959	-22,959	0	-3960	0	-3960
640	36,4418	31,236	5,2057	-23,725	-22,61	-1,115	-1300	2421	-3721
650	29,6113	24,872	4,7397	-23,67	-21,574	-2,0956	1736	4769	-3034
660	22,9257	18,9	4,0257	-22,706	-19,883	-2,8234	4992	6972	-1980
670	16,6525	13,503	3,1498	-20,798	-17,587	-3,2106	8276	8963	-688
680	11,0613	8,844	2,2178	-17,968	-14,758	-3,2106	11370	10682	688
690	6,4061	5,064	1,3419	-14,303	-11,479	-2,8234	14056	12076	1980
700	2,9075	2,28	0,6279	-9,948	-7,852	-2,0956	16137	13104	3034
710	0,7361	0,574	0,1619	-5,102	-3,987	-1,115	17454	13733	3721
720	0	0	0	0	0	0	17905	13945	3960

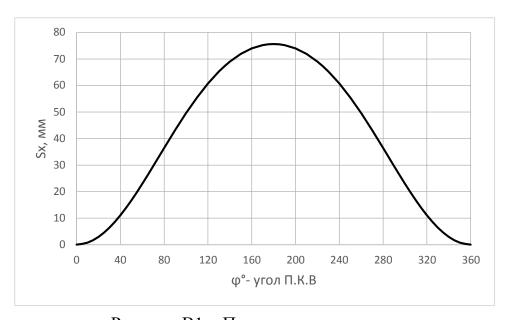


Рисунок В1 – Перемещение поршня

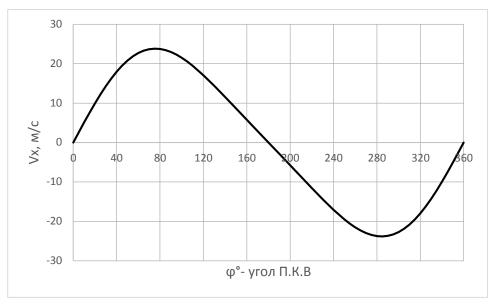


Рисунок 2В – Скорость поршня

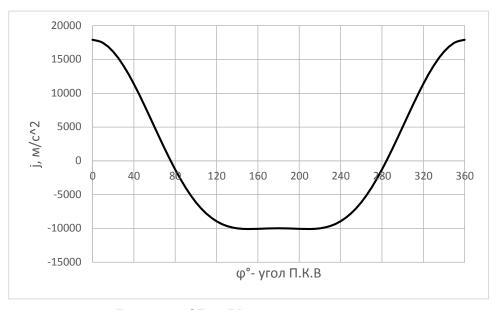


Рисунок 3В – Ускорение поршня

ПРИЛОЖЕНИЕ Г

Таблица $\Gamma 1$ – Результаты расчета кинематики двигателя при n=5800 мин⁻¹

Таол	ица 1 1 –	Результа	ты расче	та кинем	атики дв	игателя і	\mathbf{p} и $\mathbf{n} = 5$	800 мин
φ	Рг	Pj	P1	N	K	Z	T	Rш.ш.
0	0,087825	-12,8361	-12,7482	0	-12,7482	-12,7482	0	32,208
10	-0,05673	-12,5127	-12,5695	-0,6159	-12,5569	-12,2678	-2,77785	31,84894
20	-0,05673	-11,5693	-11,626	-1,1161	-11,5682	-10,5448	-5,02245	30,42203
30	-0,05673	-10,0767	-10,1335	-1,42882	-10,0331	-8,05609	-6,30301	28,22854
40	-0,05673	-8,15113	-8,20786	-1,49383	-8,07861	-5,3269	-6,41855	25,60423
50	-0,05673	-5,93233	-5,98906	-1,30562	-5,8487	-2,85079	-5,42609	22,96091
60	-0,05673	-3,57876	-3,63549	-0,9016	-3,5296	-1,03611	-3,59913	20,80949
70	-0,05673	-1,24382	-1,30055	-0,35115	-1,25536	-0,11445	-1,34217	19,62018
80	-0,05673	0,931968	0,875235	0,248567	0,841572	-0,09277	0,904993	19,57347
90	-0,05673	2,838916	2,782184	0,804051	2,672607	-0,80405	2,782184	20,45392
100	-0,05673	4,403188	4,346455	1,234393	4,179284	-1,96894	4,068282	21,81148
110	-0,05673	5,593956	5,537223	1,500587	5,34481	-3,30018	4,690028	23,23815
120	-0,05673	6,417672	6,360939	1,577513	6,175669	-4,54807	4,719817	24,46738
130	-0,05673	6,918783	6,862051	1,495927	6,701221	-5,55826	4,295644	25,38413
140	-0,05673	7,16468	7,107947	1,293646	6,996011	-6,27632	3,575297	25,98324
150	-0,05673	7,237803	7,18107	1,012531	7,109971	-6,72866	2,714445	26,32873
160	-0,05673	7,219164	7,162431	0,687593	7,126797	-6,96905	1,804933	26,49037
170	-0,05673	7,177584	7,120851	0,348922	7,113737	-7,071	0,897227	26,54594
180	-0,05673	7,158227	7,101495	0	7,101495	-7,10149	0	26,56126
190	-0,05349	7,177584	7,12409	-0,34908	7,116973	-7,07422	-1,57442	26,58066
200	-0,04353	7,219164	7,175631	-0,68886	7,139931	-6,98189	-3,09987	26,62274
210	-0,02609	7,237803	7,211711	-1,01685	7,140308	-6,75737	-4,48568	26,59812
220	0,000218	7,16468	7,164897	-1,30401	7,052064	-6,3266	-5,60295	26,38806
230	0,037616	6,918783	6,9564	-1,5165	6,793359	-5,63468	-6,3025	25,87379
240	0,08952	6,417672	6,507192	-1,61378	6,317662	-4,65264	-6,44212	24,95815
250	0,161143	5,593956	5,755099	-1,55388	5,555115	-3,43004	-5,93926	23,64779
260	0,260527	4,403188	4,663715	-1,32449	4,484341	-2,11266	-4,82228	22,10484
270	0,400319	2,838916	3,239235	-0,93614	3,111657	-0,93614	-3,23924	20,65153
280	0,600939	0,931968	1,532906	-0,43535	1,473949	-0,16249	-1,4348	19,67464
290	0,896302	-1,24382	-0,34752	0,094177	-0,33544	-0,03058	0,294346	19,49257
300	1,344258	-3,57876	-2,2345	0,554155	-2,16941	-0,63683	1,657997	20,16487
310	2,044977	-5,93233	-3,88736	0,847443	-3,79625	-1,85038	2,433484	21,44864
320	3,168461	-8,15113	-4,98267	0,906846	-4,9042	-3,23375	2,506283	22,8315
330	4,968792	-10,0767	-5,10793	0,720218	-5,05735	-4,0608	1,930797	23,59968
340	6,835898	-11,5693	-4,7334	0,454407	-4,70985	-4,2932	1,192818	23,78289
350	12,31294	-12,5127	-0,1998	0,00979	-0,1996	-0,195	0,025174	19,65478
360	22,85484	-12,8361	10,01878	0	10,01878	10,01878	0	9,440984
370	32,70544	-12,5127	20,1927	0,989442	20,17253	19,70808	4,462588	4,469491
380	33,22733	-11,5693	21,65803	2,07917	21,55027	19,64383	9,356267	9,358077
390	22,07228	-10,0767	11,99556	1,691374	11,87679	9,536472	7,46124	12,41539
400	15,53357	-8,15113	7,382437	1,343604	7,266178	4,791202	5,773066	15,76373
410	11,23048	-5,93233	5,298145	1,154996	5,17397	2,521917	4,800119	17,60488
420	8,415564	-3,57876	4,836809	1,199529	4,695931	1,37849	4,78844	18,70459
430	6,539878	-1,24382	5,29606	1,429936	5,112027	0,466053	5,465534	19,76444
			6,19048			· ·		
440	5,258513	0,931968		1,758096	5,952385	-0,65619	6,400957	21,10981
450	4,361691	2,838916	7,200608	2,080976	6,91701	-2,08098	7,200608	22,71238
460	3,720897	4,403188	8,124085	2,30724	7,81162	-3,68021	7,604143	24,35737
470	3,255744	5,593956	8,849699	2,398269	8,542181	-5,27442	7,495695	25,84503
480	2,914743	6,417672	9,332415	2,314439	9,060597	-6,67268	6,924652	27,03434

490	2,664194	6,918783	9,582978	2,089089	9,358377	-7,76221	5,998944	27,87514
500	2,481684	7,16468	9,646363	1,755638	9,494452	-8,51774	4,852121	28,39514
510	2,352216	7,237803	9,590019	1,352193	9,495069	-8,98585	3,625027	28,67566
520	2,265868	7,219164	9,485032	0,910563	9,437842	-9,22894	2,390228	28,7881
530	2,216363	7,177584	9,393947	0,460303	9,384562	-9,32819	1,183637	28,81228
540	2,200232	7,158227	9,358459	0	9,358459	-9,35846	0	28,81823
550	1,144028	7,177584	8,321612	-0,40776	8,313299	-8,26336	-1,83908	27,78406
560	0,087825	7,219164	7,306989	-0,70147	7,270636	-7,1097	-3,15662	26,75632
570	0,087825	7,237803	7,325628	-1,03291	7,253097	-6,86411	-4,55654	26,71533
580	0,087825	7,16468	7,252505	-1,31996	7,138292	-6,40396	-5,67146	26,47825
590	0,087825	6,918783	7,006609	-1,52744	6,842391	-5,67535	-6,34799	25,92433
600	0,087825	6,417672	6,505497	-1,61336	6,316016	-4,65143	-6,44044	24,95654
610	0,087825	5,593956	5,681781	-1,53408	5,484344	-3,38634	-5,8636	23,58657
620	0,087825	4,403188	4,491013	-1,27545	4,318282	-2,03443	-4,64371	21,9901
630	0,087825	2,838916	2,926741	-0,84583	2,811471	-0,84583	-2,92674	20,51543
640	0,087825	0,931968	1,019793	-0,28962	0,98057	-0,1081	-0,95453	19,59113
650	0,087825	-1,24382	-1,15599	0,313274	-1,11582	-0,10173	0,979126	19,58598
660	0,087825	-3,57876	-3,49093	0,865751	-3,38925	-0,99492	2,59027	20,61804
670	0,087825	-5,93233	-5,84451	1,274102	-5,70753	-2,78199	3,658661	22,54066
680	0,087825	-8,15113	-8,06331	1,467522	-7,93633	-5,23309	4,055843	25,02372
690	0,087825	-10,0767	-9,98889	1,408434	-9,88999	-7,94117	3,775802	27,65986
700	0,087825	-11,5693	-11,4815	1,102222	-11,4244	-10,4137	2,893332	30,01325
710	0,087825	-12,5127	-12,4249	0,608821	-12,4125	-12,1267	1,565539	31,62525
720	0,087825	-12,8361	-12,7482	0	-12,7482	-12,7482	0	32,208

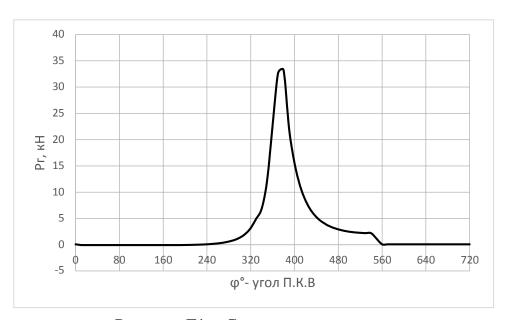


Рисунок $\Gamma 1$ — Силы давления газов

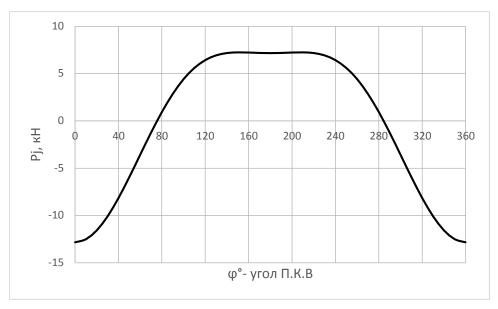


Рисунок Г2 – Силы инерции

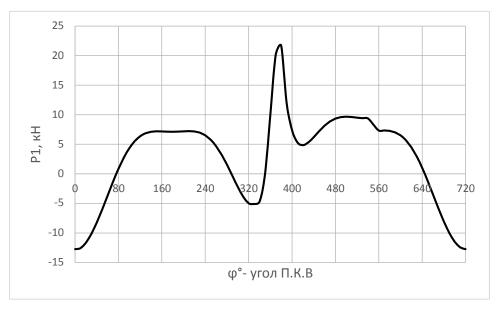


Рисунок Г3 – Суммарные силы действующие в КШМ

ПРИЛОЖЕНИЕ Д

Таблица Д1 — Прогрев стандартного катализатора до 150°

			1	
Исх	одные данные	Обознач	Значения	Ед. изм.
1	Коэффициент теплоотдачи на границе поверхность тела - среда	α=	40,0	Вт/(м2*К)
2	Температура окружающей среды	t _c =	800,0	°C
3	Температура тела начальная	$t_1=$	0,0	°C
4	Температура тела конечная	t ₂ =	150,0	°C
5	Коэффициент теплопроводности тела	λ=	1,5	Вт/(м*К)
6	Коэффициент температуропроводности	a=	3,800E-06	m ² /c
7	Плотность тела	ρ=	2500,000	кг/м3
8	Удельная теплоемкость тела	c=	850,000	Дж/(кг*К)
10	Размеры тела	D=	0,045	M
11		L=	0,250	M
12	Результаты расчетов	Обознач	Значения	Ед. изм.
13	Площадь поверхности тела	F=	0,039	M ²
14	Объём тела	V=	0,000	M^3
15	Масса тела	G=	0,994	КГ
16	К-т формы тела	K=	0,000	M ²
17	Темп нагрева однородного тела при $\alpha{\to}\infty$	m∞=	0,044	1/c
18	Модифицированное число Био	Bi=	0,223	-
19	Отношение среднего температурного напора по поверхности к среднему температурному напору по объёму	Ψ=	0,854	-
20	Относительный темп нагрева	M=	0,191	-
21	Расчетный темп нагрева однородного	m _{αλ} =	0,008	1/c
22	тела	m _c p=	0,002	
23		Δ=	438,333	%
24	Время нагрева	t=	25,285	С

Таблица Д2 – Прогрев стандартного катализатора до 250°

Исх	одные данные	Обознач	Значения	Ед. изм.
1	Коэффициент теплоотдачи на границе поверхность тела - среда	α=	40,0	Вт/(м²*К)
2	Температура окружающей среды	t _c =	800,0	°C
3	Температура тела начальная	$t_1=$	0,0	°C
4	Температура тела конечная	t ₂ =	250,0	°C
5	Коэффициент теплопроводности тела	λ=	1,5	Вт/(м*К)
6	Коэффициент температуропроводности	a=	3,800E-06	M ² /C
7	Плотность тела	ρ=	2500,000	кг/м3
8	Удельная теплоемкость тела	c=	850,000	Дж/(кг*К)
10	Размеры тела	D=	0,045	M
11		L=	0,250	M
12	Результаты расчетов	Обознач	Значения	Ед. изм.
13	Площадь поверхности тела	F=	0,039	M ²
14	Объём тела	V=	0,000	м ³
15	Масса тела	G=	0,994	КГ
16	К-т формы тела	K=	0,000	M ²
17	Темп нагрева однородного тела при $\alpha{\longrightarrow}\infty$	m∞=	0,044	1/c
18	Модифицированное число Био	Bi=	0,223	-
19	Отношение среднего температурного напора по поверхности к среднему температурному напору по объёму	Ψ=	0,854	-
20	Относительный темп нагрева	M=	0,191	-
21	Расчетный темп нагрева однородного	m _{αλ} =	0,008	1/c
22	тела	m _{cp} =	0,002	
23		Δ=	438,333	%
	D	t=	45,426	С
24	Время нагрева	ι–	73,720	

Таблица Д3 — Прогрева стандартного катализатора до 350°

Исх	одные данные	Обознач	Значения	Ед. изм.
1	Коэффициент теплоотдачи на границе поверхность тела - среда	α=	40,0	Вт/(м2*К)
2	Температура окружающей среды	t _c =	800,0	°C
3	Температура тела начальная	t ₁ =	0,0	°C
4	Температура тела конечная	t ₂ =	350,0	°C
5	Коэффициент теплопроводности тела	λ=	1,5	Вт/(м*К)
6	Коэффициент температуропроводности	a=	3,800E-06	м ² /с
7	Плотность тела	ρ=	2500,000	кг/м3
8	Удельная теплоемкость тела	c=	850,000	Дж/(кг*К)
9	Форма тела		Цилиндр	
10	Размеры тела	D=	0,045	M
11		L=	0,250	M
12	Результаты расчетов	Обознач	Значения	Ед. изм.
13	Площадь поверхности тела	F=	0,039	M ²
14	Объём тела	V=	0,000	M^3
15	Масса тела	G=	0,994	КГ
16	К-т формы тела	K=	0,000	M^2
17	Темп нагрева однородного тела при $\alpha{\to}\infty$	m∞=	0,044	1/c
18	Модифицированное число Био	Bi=	0,223	-
19	Отношение среднего температурного напора по поверхности к среднему температурному напору по объёму	Ψ=	0,854	-
20	Относительный темп нагрева	M=	0,191	-
21	Расчетный темп нагрева однородного	m _{αλ} =	0,008	1/c
22	тела	m _{cp} =	0,002	
23		Δ=	438,333	%
24	Время нагрева	t=	68,616	С

Таблица Д4 – Прогрева модерн. катализатора до 150°

Исх	одные данные	Обознач	Значения	Ед. изм.
1	Коэффициент теплоотдачи на границе поверхность тела - среда	α=	40,0	Вт/(м2*К)
2	Температура окружающей среды	t _c =	800,0	°C
3	Температура тела начальная	t ₁ =	0,0	°C
4	Температура тела конечная	$t_2=$	150,0	°C
5	Коэффициент теплопроводности тела	λ=	16	Вт/(м*К)
6	Коэффициент температуропроводности	a=	4,800E-05	м²/с
7	Плотность тела	ρ=	2500,000	кг/м3
8	Удельная теплоемкость тела	c=	850,000	Дж/(кг*К)
9	Форма тела		Цилиндр	1
10	Размеры тела	D=	0,045	M
11		L=	0,250	M
12	Результаты расчетов	Обознач	Значения	Ед. изм.
13	Площадь поверхности тела	F=	0,039	M ²
14	Объём тела	V=	0,000	м ³
15	Масса тела	G=	0,994	ΚΓ
16	К-т формы тела	K=	0,000	M^2
17	Темп нагрева однородного тела при $\alpha \rightarrow \infty$	m∞=	0,044	1/c
18	Модифицированное число Био	Bi=	0,223	-
19	Отношение среднего температурного напора по поверхности к среднему температурному напору по объёму	Ψ=	0,854	-
20	Относительный темп нагрева	M=	0,191	-
21	Расчетный темп нагрева однородного	m _{αλ} =	0,008	1/c
22	тела	m _{cp} =	0,002	
23		Δ=	438,333	%
24	Время нагрева	t=	17,716	С

Таблица Д5 — Прогрева модерн. катализатора до 250°

Исх	одные данные	Обознач	Значения	Ед. изм.
1	Коэффициент теплоотдачи на границе поверхность тела - среда	α=	40,0	Вт/(м2*К)
2	Температура окружающей среды	t _c =	800,0	°C
3	Температура тела начальная	$t_1=$	0,0	°C
4	Температура тела конечная	t ₂ =	250,0	°C
5	Коэффициент теплопроводности тела	λ=	16	Вт/(м*К)
6	Коэффициент температуропроводности	a=	4,800E-05	m ² /c
7	Плотность тела	ρ=	2500,000	кг/м3
8	Удельная теплоемкость тела	c=	850,000	Дж/(кг*К)
9	Форма тела		Цилиндр	
10	Размеры тела	D=	0,045	M
11		L=	0,250	M
12	Результаты расчетов	Обознач	Значения	Ед. изм.
13	Площадь поверхности тела	F=	0,039	\mathbf{M}^2
14	Объём тела	V=	0,000	м ³
15	Масса тела	G=	0,994	КΓ
16	К-т формы тела	K=	0,000	M ²
17	Темп нагрева однородного тела при $\alpha{\longrightarrow}\infty$	m∞=	0,044	1/c
18	Модифицированное число Био	Bi=	0,223	-
19	Отношение среднего температурного напора по поверхности к среднему температурному напору по объёму	Ψ=	0,854	-
20	Относительный темп нагрева	M=	0,191	-
21	Расчетный темп нагрева однородного	m _{αλ} =	0,008	1/c
22	тела	m _{cp} =	0,002	
23		Δ=	438,333	%
24	Время нагрева	t=	33,236	С

Таблица Д6 – Прогрева модерн. катализатора до 350°

Исх	одные данные	Обознач	Значения	Ед. изм.
1	Коэффициент теплоотдачи на границе поверхность тела - среда	α=	40,0	Вт/(м2*К)
2	Температура окружающей среды	t _c =	800,0	°C
3	Температура тела начальная	$t_1=$	0,0	°C
4	Температура тела конечная	$t_2=$	350,0	°C
5	Коэффициент теплопроводности тела	λ=	16	Вт/(м*К)
6	Коэффициент температуропроводности	a=	4,800E-05	м²/с
7	Плотность тела	ρ=	2500,000	кг/м3
8	Удельная теплоемкость тела	c=	850,000	Дж/(кг*К)
9	Форма тела		Цилиндр	
10	Размеры тела	D=	0,045	M
11		L=	0,250	M
12	Результаты расчетов	Обознач	Значения	Ед. изм.
13	Площадь поверхности тела	F=	0,039	M^2
14	Объём тела	V=	0,000	M^3
15	Масса тела	G=	0,994	ΚΓ
16	К-т формы тела	K=	0,000	M^2
17	Темп нагрева однородного тела при α→∞	m∞=	0,044	1/c
18	Модифицированное число Био	Bi=	0,223	-
19	Отношение среднего температурного напора по поверхности к среднему температурному напору по объёму	Ψ=	0,854	-
20	Относительный темп нагрева	M=	0,191	-
21	Расчетный темп нагрева однородного	m _{αλ} =	0,008	1/c
22	тела	m _{cp} =	0,002	
23		Δ=	438,333	%
24	Время нагрева	t=	50,359	С